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Abstract 

In this paper, a new technique of Hybrid of Adomian polynomial is developed by the substitution of a One-step 

method of Taylor’s series approximation of orders I and II into the nonlinear part of Adomian decomposition 

method .This yield a new Taylor series of Adomian Decomposition Method in the nonlinear part. The 

applications of the modified new hybrid polynomial to some classical problems give results that approximate the 

analytical solutions of the problems with minimal errors.  

Keyword: Adomian decomposition method, Taylor series approximation, new hybrid of Adomian polynomial, 

ordinary differential equation 

1. Introduction 

Recently a great deal of interest has been focused on the application of Adomian’s decomposition method to 

solve a wide variety of linear and nonlinear problems (Adomian, 1993). This method generates solutions in the 

form of a series whose terms are determined by a recursive relationship using the Adomian polynomials. 

Researchers who have used the Adomian’s decomposition method have frequently enumerated on the advantages 

that it offers. Since it was first presented in the eighties, Adomian decomposition method has led to several 

modifications in an attempt to improve the accuracy or expand the application of the original method. One of 

such recent modification was presented in (Adomian & Rach, 1996), and an improved version of it that 

converges slightly faster was presented in (Rach, 2008). But inspite of the various types of modified Adomian 

polynomial available, the algorithm of the original Adomian polynomial is more simple and convenient in 

application. Recently, a simple Mathematical program to compute the n
th

 term of the Adomian polynomial was 

developed in (Abbaoui & Cherrault, 1994) and (Wazwaz, 1999), were Pade approximants were employed to 

obtain modified decomposition to generate an improved solution with minimal error. Several other research work 

on Adomian decomposition methods abound in (Adomian, 1993; Adomian & Rach, 1996; Almazmumy, Hendi & 

Bakodah, 2012). 

The modifications of Adomian decomposition method arise from difficulties encounter in solving certain 

classical problems of differential equations. This usually involves slight change in the Adomian polynomial, 

which is aimed at improving the convergence of the series solution. The convergent concept of the Adomian 

decomposition method is addressed in (Abbaoui & Cherrault, 1994; Adomian & Rach, 1996; Ahmed, 2008), and 

its application to the initial value problem of ordinary differential equation is discussed in (Anguelov & Lubuma, 

2001; Wazwaz, 1998). 

Therefore, the aim of this work is to generate a new Hybrid of Adomian polynomial in the Adomian 

decomposition method and then apply it to some classical equations and compare the result with their respective 

analytical solutions as shown in the tables and 3D graph. 

2. General Adomian Decomposition Method  

Considering a general nonlinear differential equation presented in (Adomian & Cherruault, 1996) as 

   fFy  ,                                   (2.0) 
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where F  is a nonlinear differential operator, yandf are functions of x . Rewriting the equation in the 

operator form  

                            fNyRyLy  ,                               (2.1) 

RL, are invertible and non-invertible linear operator of F  respectively, and N  is a nonlinear operator 

representing the nonlinear term in F . Appling the inverse operator 𝐿−1, the equation (2.1) implies 

NyLRyLfLLyL 1111   .                         (2.2) 

By the definition of F as a differential operator and L is linear, then 
1L  is  an integrator, and with any 

given initial condition, LyL 1
 yield an equation y of the form 

NyLRyLxgxy 11)()(    ,                        (2.2) 

where )(xg  is the function generated by integrating f , using  defined initial conditions. Employing the 

Adomian decomposition method on (2.2), an infinite series  
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is obtained, with the nonlinear term defined as 
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nA is the Adomian polynomials, which is determined by 
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  Equation (2.2) can be express in terms of (2.3a) and (2.4) as,  
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with a recursive relationship   
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Using equation (2.5), with the corresponding relation of (2.6) the y series solution is determine immediately. 

3. The Modified New Hybrid of Adomian polynomial 

Considering the recurrent relation of the non-linear part of equation (2.3) as 

)()( 1

1 nn ALxy 

  ,               (3.0) 

and the substitution of the non-local approximation defined in(Anguelov & Lubuma, 2000; Anguelov & Lubuma, 

2001; Anguelov, & Lubuma, 2003) as  
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is obtained, where 
nn Ay 2

. 

By Taylor series expansion,  

),(
!

...),(
!2

),(
1

'
2

01 nn

n
n

nnnnn yxf
n

h
yxf

h
yxhfyy



  ,            (3.2) 

and rewriting equation (3.1) in terms of (3.2), the new hybrid of Adomian polynomial is thus 
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4. Numerical Implementation of Equation (3.3) 

In this section some initial value problems are considered to show the efficiency of the modified equation (3.3). 

Problem 1. Consider the initial value problem of the form  

.1)0(,2,  yyy                               (4.0)

 Equation (4.0) has analytical solution  

.
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1
)(

x
xy




             (4.1) 

Solving (4.0) using the modified hybrid equation (3.3), the following terms of the series is obtained,  
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And 
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Using the yn  terms of (4.2) to obtained 
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Table 4.1. Comparism of results of the New Hybrid ADM with the analytical solution at h=0.1             

X New Hybrid ADM Analytical solution Error 

0.000 1.0000000000 1.0000000000 0.0000000000 

0.100 1.1111111641 1.1111111641 0.0000000000 

0.200 1.2500000000 1.2500000000 0.0000000000 

0.300 1.4285714626 1.4285714626 0.0000000000 

0.400 1.6666666269 1.6666666269 0.0000000000 

0.500 2.0000000000 2.0000000000 0.0000000000 

0.600 2.5000002384 2.5000002384 0.0000000000 

0.700 3.3333337307 3.3333339691 -0.0000002384 

0.800 5.0000014305 5.0000019073 -0.0000004768 

0.900 10.0000085831 10.0000095367 -0.0000009537 

1.000    

1.100 -9.9999837875 -9.9999856949 0.0000019073 

1.200 -4.9999947548 -4.9999957085 0.0000009537 

1.300 -3.3333306313 -3.3333311081 0.0000004768 

1.400 -2.4999978542 -2.4999985695 0.0000007153 

1.500 -1.9999982119 -1.9999990463 0.0000008345 

1.600 -1.6666651964 -1.6666659117 0.0000007153 

1.700 -1.4285697937 -1.4285708666 0.0000010729 

1.800 -1.2499984503 -1.2499995232 0.0000010729 

1.900 -1.1111093760 -1.1111106873 0.0000013113 

2.000 -0.9999984503 -0.9999997616 0.0000013113 

Table 4.1 shows the performance of the New-Hybrid ADM with the Analytical solution solution. At h=0.1 shows 

a better comparative iteration but with no value at x=1.0. call point of singularity 

 

Diagram1 

 

This shows reflection of the table above with the point of singularity x=1.0 clearly shown 

PROBLEM 2  Consider the initial value problem of the form  

.1)0(,2 2,  yxyy                            (4.5)

 

Equation (4.5) has analytical solution  
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Solving (4.5) using the modified hybrid equation (3.3), the following terms of the series is obtained,  
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Table 4.2. Comparism of results of the New Hybrid ADM with the analytical solution at h=0.1   

x New Hybrid ADM Analytical solution Error 

0.000 1.0000000000 1.0000000000 0.0000000000 

0.100 1.0101009607 1.0101009607 0.0000000000 

0.200 1.0416666269 1.0416666269 0.0000000000 

0.300 1.0989011526 1.0989011526 0.0000000000 

0.400 1.1904761791 1.1904761791 0.0000000000 

0.500 1.3333332539 1.3333333731 -0.0000001192 

0.600 1.5624998808 1.5625001192 -0.0000002384 

0.700 1.9607838392 1.9607845545 -0.0000007153 

0.800 2.7777767181 2.7777786255 -0.0000019073 

0.900 5.2631564140 5.2631626129 -0.0000061989 

1.000 4194295.2500000000 -4194303.7500000000 8.5000000000 

1.100 -4.7618808746 -4.7618975639 0.0000166893 

1.200 -2.2727103233 -2.2727251053 0.0000147820 

1.300 -1.4492542744 -1.4492743015 0.0000200272 

1.400 -1.0416306257 -1.0416660309 0.0000354052 

1.500 -0.7999210358 -0.7999995351 0.0000784993 

1.600 -0.6408274174 -0.6410253048 0.0001978874 

1.700 -0.5285925269 -0.5291002393 0.0005077124 

1.800 -0.4450853467 -0.4464283586 0.0013430119 

1.900 -0.3797498345 -0.3831415772 0.0033917427 

2.000 -0.3248179853 -0.3333332241 0.0085152388 

Table 4.2 shows the performance of the New-Hybrid ADM with the Analytical solution and value at a 

neighborhood of x=1  

 

Diagram 2 

 

The figure shows a reflection of the table above 

Problem 3 

Consider the Abelian physical problem of [11] 

-5000000

-4000000

-3000000

-2000000

-1000000

0

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
     ADOMIAN

   ACTUAL



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 1; 2015 

108 

 

0)0(,1 3,  yyyy               (4.10) 

Solving (4.10) using the modified hybrid equation (3.3), the results is presented in table 3 as,  

 

Table 3. Comparism of results of the Abelian physical problem at h=0.1 with the results in (Omor, 2008) 

x New  Hybrid ADM Omor (2008)  Result Error 

0.000 0.0000000000 0.0000000000 0.0000000000 

0.100 0.0951841399 0.0951841399 0.0000000000 

0.200 0.1815637350 0.1815637350 0.0000000000 

0.300 0.2604402900 0.2604402900 0.0000000000 

0.400 0.3329962790 0.3329962790 0.0000000000 

0.500 0.4001302421 0.4001302123 0.0000000298 

0.600 0.4623936713 0.4623936117 0.0000000596 

0.700 0.5200300217 0.5200299621 0.0000000596 

0.800 0.5731159449 0.5731157660 0.0000001788 

0.900 0.6218037605 0.6218035221 0.0000002384 

1.000 0.6666671038 0.6666667461 0.0000003576 

1.100 0.7091473937 0.7091468573 0.0000005364 

1.200 0.7521032691 0.7521024942 0.0000007749 

1.300 0.8004610538 0.8004600406 0.0000010133 

1.400 0.8619684577 0.8619671464 0.0000013113 

1.500 0.9480487108 0.9480471611 0.0000015497 

1.600 1.0747585297 1.0747567415 0.0000017881 

1.700 1.2638460398 1.2638443708 0.0000016689 

1.800 1.5439125299 1.5439115763 0.0000009537 

1.900 1.9516746998 1.9516758919 -0.0000011921 

2.000 2.5333287716 2.5333352089 -0.0000064373 

Table 4.3 shows the performance of the New-Hybrid ADM with the Omor (2008) at h=.01  

Diagram3

The figure shows a reflection of the table above 

5. Conclusion 

The Taylor’s series approximation of orders I and II is a good mathematical tool in the concept of the modified 

New Hybrid Adomian polynomial from the Adomian Decomposition Method. The application of the new Hybrid 

Adomian polynomial in solving some initial values problems (1-3), yield results that   approximate the 

analytical solutions at step change of  h= 0.1with minimal errors. This is seen in results comparisms of tables 

1-3 and diagrams 1-3 which confirmed the suitability of the New Hybrid for numerical approximation.  
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