Enumerations for Compositions and Complete Homogeneous Symmetric Polynomial

Soumendra Bera¹

¹Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India

Correspondence: Soumendra Bera, Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India. E-mail: soumendra.bera@gmail.com

Received: January 12, 2015	Accepted: March 7, 2015	Online Published: March 22, 2015
doi:10.5539/jmr.v7n2p1	URL: http://dx.doi.org/10.5539/jmr.v7n2p1	

Abstract

We count the number of occurrences of t as the summands (i) in the compositions of a positive integer n into r parts; and (ii) in all compositions of n; and subsequently obtain other results involving compositions. The initial counting further helps to solve the enumeration problems for complete homogeneous symmetric polynomial.

Keywords: composition, summand, sequence, recurrence, binomial coefficient identity, complete homogeneous symmetric polynomial

MS classifications: 05A10; 05A17; 05A19; 11B37

1. Introduction

For each nonnegative integer r, complete homogeneous symmetric polynomial $h_r(x_1, ..., x_k)$ is the sum of all distinct monomials of degree r in the variables: $x_1, ..., x_k$ Formally

$$h_r(x_1, ..., x_k) = \sum_{1 \le i_1 \le ... \le i_r \le k} x_{i_1} x_{i_2} ... x_{i_r}$$

Example:

$$h_4(x_1, x_2, x_3) = x_1^4 + x_2^4 + x_3^4 + x_1^3 x_2 + x_1 x_2^3 + x_1^3 x_3 + x_1 x_3^3 + x_2^3 x_3 + x_2 x_3^3 + x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$$

The number of terms of the polynomial is 15; the numbers of occurrences of 1, 2, 3 and 4 as the exponents in different terms among 15 terms are 12, 9, 6 and 3 respectively; and the number of occurrences of each of x_1 , x_2 and x_3 as the bases in different terms among 15 terms is 10.

Evidently $h_r(x_1, ..., x_k)$ has some enumerating problems. We give the solutions of the problems from some combinatorial enumerations for the compositions of a positive integer. The paper has two main parts: (a) counting for compositions and (b) counting for $h_r(x_1, ..., x_k)$.

The main results are as shown:

1. The number of occurrences of an integer t as the summands in the compositions of n into r parts

$$= r \binom{n-t-1}{r-2}, n \ge r \ge 2, n-r+1 \ge t \ge 1$$

2. The number of occurrences of t as the summands in all compositions of n

$$= (n-t + 3) 2^{n-t-2}, \ n > t \ge 1$$

3. The number of occurrences of t as the exponents in different terms among all the terms of $h_r(x_1, ..., x_k)$

$$= \sum_{i=2}^{r} i \binom{k}{i} \binom{r-t-1}{i-2}, \quad r,k \ge 2, \quad r-1 \ge t \ge 1$$

4. The number of occurrences of each variable as the bases in different terms among all the terms of $h_r(x_1, ..., x_k)$

$$= 1 + \frac{1}{k} \sum_{t=1}^{r-1} \sum_{i=2}^{r} i \binom{k}{i} \binom{r-t-1}{i-2}$$

2. Counting for Compositions

For counting, we use some simple notations as shown.

1. Compositions of *n* into *r* summands = C(n, r).

The notation C(n, r) without any qualification means all compositions of *n* into *r* summands. Otherwise we use an adjective to specify the compositions. For example, we write simply 'some C(n, r)' to mean some compositions of *n* into *r* summands.

2. Number of C(n, r) = NC(n, r).

3. Number of occurrences of t in C(n, r) = N(t)C(n, r).

4. Some particular C(n, r) that start with a common summand k = k + C(n - k, r - 1).

We use the symbol of equivalence (\equiv) between C(n, r) and its implication; and similarly between k + C(n - k, r - 1) and its implication.

Examples: $C(4, 3) \equiv 1 + 1 + 2$, 1 + 2 + 1, 2 + 1 + 1.

NC(4, 3) = 3; N(1)C(4, 3) = 6; and N(2)C(4, 3) = 3.

Some particular C(6, 4), which start with a common summand 2, are:

 $2 + C(4, 3) \equiv 2 + 1 + 1 + 2, 2 + 1 + 2 + 1, 2 + 2 + 1 + 1.$

2.1 Number of Occurrences of t in the Compositions of n into r Parts

The number of the compositions of a positive integer *n* into *r* parts or summands is $\binom{n-1}{r-1}$. This is a known result. Here we obtain the result in a process of recursive substitution starting with a basic sequential arrangement of *n* into *r* summands. The procedure and result lead to count the number of occurrences of *t* in the compositions of *n* into *r* parts.

First we count NC(n, r) for $n \ge r \ge 1$.

(a) By convention, *n* itself is a composition of *n* so that *r* is equal to 1 for the composition. Therefore, for $n \ge 1$ and r = 1, we have: NC(n, r) = NC(n, 1) = 1.

(b) For $n \ge r \ge 2$, we can write a basic sequential arrangement of C(n, r) in the following way.

$$C(n, r) \equiv 1 + C(n-1, r-1), \quad 2 + C(n-2, r-1), \dots, \quad (n-r+1) + C(r-1, r-1)$$
(1.1)

Consequently for $n \ge r \ge 2$,

$$NC(n, r) = NC(n-1, r-1) + NC(n-2, r-1) + \dots + NC(r-1, r-1)$$
(1.2)

(1.1) and (1.2) yield the successive results as shown.

(i) $C(n, 2) \equiv 1 + (n-1), 2 + (n-2), ..., (n-1) + 1.$ Hence NC(n, 2) = n-1.(ii) $C(n, 3) \equiv 1 + C(n-1, 2), 2 + C(n-2, 2), ..., (n-2) + C(2, 2)$ Hence NC(n, 3) = NC(n-1, 2) + NC(n-2, 2) + ... + NC(2, 2) = (n-2) + ... + 1 $= \binom{n-1}{2}$ Similarly NC(n, 4) = NC(n-1, 3) + NC(n-2, 3) + ... + NC(3, 3) $= \sum_{i=3}^{n-1} \binom{i-1}{2}$ In general for $n \ge r \ge 2$, $NC(n, r) = \binom{n-1}{r-1}$; and including the initial result with this, we get:

$$NC(n,r) = \binom{n-1}{r-1}, \ n \ge r \ge 1$$
⁽²⁾

We count below N(t)C(n, r) by the above process and results.

The basic conditions of *n*, *t* and *r* are: $n \ge t \ge 1$, $n \ge r \ge 1$ and $r \gtrless t$.

(a) When $n \ge 1$ and r = 1 then t = n so that N(t)C(n, r) = N(n)C(n, 1) = 1. For $n > t \ge 1$, mathematically we can write: N(t)C(n, 1) = 0. These are the initial results in the counting of N(t)C(n, r).

(b) When *n* and *r* are the fixed integers for $n \ge r \ge 2$ then we find some fixed C(n, r). In one of these C(n, r), each of r - 1 summands is smallest or 1 so that the rest is greatest. Consequently the greatest value of a summand *t* is n - r + 1. That is, when $n \ge r \ge 2$ then the condition of *t* is: $n - r + 1 \ge t \ge 1$. From (1.1) we find:

(i) Some C(n, r) start with a common summand *t*; and these are: t + C(n - t, r - 1).

(ii) *t* can occur at other places of different compositions under some or all of C(n-1, r-1), C(n-2, r-1), ..., C(r-1, r-1).

The smallest positive integer: 1 can occur as the summands in different compositions under C(n-1, r-1), C(n-2, r-1), ..., C(r-1, r-1). Yet occurrences of $t \ge 2$ have some limitations. Since $n-r+1 \ge t$, it follows that if $n-r \le t-2$ then *t* cannot occur in a C(n, r). More precisely, we cannot find the occurrences of

2 in
$$C(r-1, r-1)$$
;
3 in $C(r, r-1)$ and $C(r-1, r-1)$;
4 in $C(r+1, r-1)$, $C(r, r-1)$ and $C(r-1, r-1)$;

In general *t* cannot occur in any composition under C(r + t - 3, r - 1), C(r + t - 4, r - 1), ..., C(r - 1, r - 1) for $r \ge 2$ and $t \ge 2$. Other compositions under C(n - 1, r - 1), C(n - 2, r - 1), ..., C(r + t - 2, r - 1) may contain *t*. Then from (i) and (ii), we get: for $n \ge r \ge 2$ and $n - r + 1 \ge t \ge 1$,

$$N(t)C(n, r) = NC(n - t, r - 1) + [N(t)C(n - 1, r - 1) + N(t)C(n - 2, r - 1) + ... + N(t)C(r + t - 2, r - 1)]$$

$$\Rightarrow N(t)C(n, r) = \binom{n - t - 1}{r - 2} + [N(t)C(n - 1, r - 1) + N(t)C(n - 2, r - 1) + ... + N(t)C(r + t - 2, r - 1)]$$
(3)

When r = 2, then for $n \ge 2$ and $n - 1 \ge t \ge 1$,

$$N(t)C(n, 2) = 1 + N(t)C(t, 1) = 1 + 1$$

= 2 (3.1)

Evidently N(t)C(n, 2) is constant and independent of *t* and *n*. (3.1) is the primary case of (3); and then the rest of (3) is: for $n \ge r \ge 3$ and $n - r + 1 \ge t \ge 1$,

$$N(t)C(n,r) = \binom{n-t-1}{r-2} + [N(t)C(n-1,r-1) + N(t)C(n-2,r-1) + \dots + N(t)C(r+t-2,r-1)]$$
(3.2)

Now our aim is to count N(t)C(n, r) applying (3.1) and (3.2).

1. To count N(t)C(n, r) for t = 1

For
$$n \ge 2$$
, $N(1)C(n, 2) = 2$
For $n \ge 3$, $N(1)C(n, 3) = n-2 + [N(1)C(n-1, 2) + N(1)C(n-2, 2) + ... + N(1)C(2, 2)] = 3(n-2).$
For $n \ge 4$, $N(1)C(n, 4) = \binom{n-2}{2} + [N(1)C(n-1, 3) + N(1)C(n-2, 3) + ... + N(1)C(3, 3)] = \binom{n-2}{2} + 3[(n-3) + (n-4) + ... + 1] = 4 \binom{n-2}{2}.$
Similarly for $n \ge 5$, $N(1)C(n, 5) = \binom{n-2}{3} + 4\sum_{i=4}^{n-1} \binom{i-2}{2} = 5\binom{n-2}{3}.$

In general for $n \ge r \ge 2$, $N(1)C(n, r) = r \binom{n-2}{r-2}$ **2. To count** N(t)C(n, r) for t = 2 n, r and t have the conditions: $n \ge r \ge 2$ and $n - r + 1 \ge t \ge 1$. Hence when t = 2 then the conditions of n and r are: $n - 1 \ge r \ge 2$ and $n \ge 3$. For $n \ge 3$, N(2)C(n, 2) = 2. For $n \ge 4$, N(2)C(n, 3) = n - 3 + [N(2)C(n - 1, 2) + N(2)C(n - 2, 2) + ... + N(2)C(3, 2)] = 3(n - 3). For $n \ge 5$, $N(2)C(n, 4) = \binom{n-3}{2} + [N(2)C(n - 1, 3) + N(2)C(n - 2, 3) + ... + N(2)C(4, 3)]$ $= \binom{n-3}{2} + 3[(n - 4) + (n - 5) + ... + 1]$ $= 4\binom{n-3}{2}$. Thus for $n \ge 6$, $N(2)C(n, 5) = \binom{n-3}{3} + 4\sum_{i=5}^{n-1} \binom{i-3}{2}$ $= 5\binom{n-3}{r-2}$. In general for $n - 1 \ge r \ge 2$, $N(2)C(n, r) = r \binom{n-4}{r-2}$. By the similar operation, we get: For $n - 2 \ge r \ge 2$, $N(3)C(n, r) = r \binom{n-4}{r-2}$. For $n - 3 \ge r \ge 2$, $N(4)C(n, r) = r \binom{n-5}{r-2}$ In this way

$$N(t)\mathcal{C}(n,r) = r \binom{n-t-1}{r-2}, \ n \ge r \ge 2, n-r+1 \ge t \ge 1$$

$$\tag{4}$$

2.2 Number of Occurrences of t in All Compositions of n

Let the number be denoted by N(t)C(n).

When $n \ge 1$ and t = n, then N(t)C(n) = N(n)C(n) = 1.

The restrictions in (4) are:

$$n \ge r \ge 2$$
, $n-r+1 \ge t \ge 1$ \Leftrightarrow $n > t \ge 1$, $n-t+1 \ge r \ge 2$

Hence for $n > t \ge 1$,

$$N(t)C(n) = \sum_{r=2}^{n-t+1} N(t)C(n,r)$$

= $\sum_{r=2}^{n-t+1} r \binom{n-t-1}{r-2}$
 $\Rightarrow N(t)C(n) = (n-t+3)2^{n-t-2}, n > t \ge 1$ (5)

2.3 Other Results from (2), (4) and (5)

(a) Number of summands in the compositions of *n*

From (5), we get:

Number of the summands in the compositions of *n* for $n \ge 2$

= Number of occurrence of *t* for t = n + Number of occurrences of *t* for $n > t \ge 1$

$$= 1 + \sum_{t=1}^{n-1} (n-t+3) 2^{n-t-2}$$

= 1 + 2ⁿ⁻² $\left[(n+3) \sum_{t=1}^{n-1} 2^{-t} - \sum_{t=1}^{n-1} t 2^{-t} \right]$
= (n+1) 2ⁿ⁻² (6)

Obviously (6) holds for n = 1 also.

(b) A proposition from (5)

Proposition 1. If t_1 and t_2 are the summands in the compositions of n_1 and n_2 respectively such that $n_1 - t_1 = n_2 - t_2$, then the number of occurrences of t_1 in the compositions of n_1 is equal to the number of occurrences of t_2 in the compositions of n_2 .

(c) Number-number relationship

By Pascal's Identity, we get:

$$r\binom{n-2}{r-2} = r\binom{n-1}{r-1} - r\binom{n-2}{r-1}$$

The above relation implies the following number-number relationship from (4) and (2).

Number of occurrences of 1 in C(n, r)

= Number of the summands in
$$C(n, r)$$
 – Number of the summands in $C(n - 1, r)$ (7)

(d) Number-sum relationship

From (6), we get a number-sum relationship as shown.

Number of the summands in the compositions of all *n* integers: 1, 2, ..., *n*

$$= \sum_{\substack{i=1\\ = n}}^{n} \frac{(i+1)2^{i-2}}{2^{n-1}}$$
summands in the compositions of *n*

= Sum of the summands in the compositions of *n*. 3. Counting for Complete Homogeneous Symmetric Polynomial: $h_r(x_1, ..., x_k)$ (8)

3.1 Number of Terms of the Polynomial

The result is known. Here we count the number applying (2) and Vandermonde's identity. Let some terms of the polynomial contain some fixed *m* of *k* variables. The number of these terms = $NC(r, m) = \binom{r-1}{m-1}$. We have $k \ge r$ in the problem. Hence we find: (i) either $1 \le m \le k < r$ (ii) or $1 \le m \le r \le k$.

we have $k \ge 7$ in the problem. Hence we find. (1) ether $1 \le m \le k < 7$ (1) of $1 \le m$.

Case 1: When $1 \le m \le k < r$ then the number of terms

$$= \sum_{m=1}^{k} {k \choose m} {r-1 \choose m-1}$$
$$= \sum_{m=1}^{k} {k \choose k-m} {r-1 \choose m-1}$$
$$= {k+r-1 \choose k-1} = {k+r-1 \choose r}$$

Case 2: When $1 \le m \le r \le k$ then the number of terms

$$= \sum_{m=1}^{r} {k \choose m} {r-1 \choose m-1}$$
$$= \sum_{m=1}^{r} {k \choose m} {r-1 \choose r-m}$$
$$= \sum_{m=0}^{r} {k \choose m} {r-1 \choose r-m}$$
$$= {k+r-1 \choose r}$$

It follows that the number of terms does not depend on equality or any inequality between k and r, which are all taken into consideration in the process of solution. Thus we find:

The number of terms of
$$h_r(x_1, ..., x_k) = \binom{k+r-1}{r}$$
 (9)

3.2 Number of Occurrences of an Integer t as the Powers

Appling (4), we can count the number of occurrences of an integer t as the powers in different terms among all $\binom{k+r-1}{r}$ terms of $h_r(x_1, \dots, x_k)$.

The condition of *t* is: $r \ge t \ge 1$.

Case 1. The terms in which the integer r occurs as the powers on the variables are: $x_1^r, ..., x_k^r$.

Therefore when t = r then the number of occurrences of t is k.

Case 2. When t < r, clearly then $r, k \neq 1$. From (4), we get:

The number of occurrences of *t*

$$= \sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2}, \ r,k \ge 2, \ r-1 \ge t \ge 1$$

$$(10)$$

(10) has some technical terms for some particular values of k, r and t such that the values of these terms are all 0. The particulars in the context are described below.

(i) If *m* is an integer in (2, ..., *r*) then the product $m\binom{k}{m}\binom{r-t-1}{m-2}$ or $m\binom{k}{m}\binom{r-t-1}{r-t+1-m}$ is one among *r*-

1 terms of (10). The value of the term is obviously 0 if m > r - t + 1. For example, if the triplet (k, r, t) is (12, 7, 4) then the values of the last three terms of (10) where $m \in (5, 6, 7)$ are all 0. This implies that if the number of bases in a term of $h_7(x_1, ..., x_{12})$ is 5, 6 or 7 then the number of occurrences of 4 as the powers on the bases is 0, or in other words 4 cannot occur as the powers on any of these bases.

(ii) When r > k then the last r - k terms have the factors: $\binom{k}{k+1}$, ..., $\binom{k}{r}$ in succession such that the values of these r - k terms are all 0. In other words, for r > k, the number of occurrences of t is equal to the summation: $\sum_{i=2}^{k} i\binom{k}{i}\binom{r-t-1}{i-2}$.

3.3 Number of Occurrences of a Variable x_m as the Bases

From Case 1 and Case 2 of Topic 3.2, we get:

Total number of bases in all terms of the polynomial

$$= k + \sum_{t=1}^{r-1} \sum_{i=2}^{r} i\binom{k}{i} \binom{r-t-1}{i-2}$$
(11.1)

The number of occurrences of every variable $x_m \in (x_1, ..., x_k)$ in complete homogeneous symmetric polynomial of degree r in the variables: $x_1, ..., x_k$ is same. Hence from (11.1), we get:

The number of occurrences of a variable x_m as the bases

$$= 1 + \frac{1}{k} \sum_{t=1}^{r-1} \sum_{i=2}^{r} i \binom{k}{i} \binom{r-t-1}{i-2}$$
(11.2)

References

Andrews, G. E. (2004). The Theory of Partitions, Cambridge University Press, Chapter 4, 54.

Arthur, T. B., & Jennifer, Q. (2003). Proofs That Really Count: The Art of Combinatorial Proof, MAA, 63-68.

Hall, H. S., & Knight, S. R. (1967). Higher Algebra, Macmillan and Co, London, 164 -166.

John, R. (1979). Combinatorial identities, R. E. Krieger Pub. Co.

Miklós, B. (2006). A walk through combinatorics, World Scientific Publishing Co. Pte. Ltd. 65-69, 89.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).