
Journal of Mathematics Research; Vol. 7, No. 2; 2015 

ISSN 1916-9795   E-ISSN 1916-9809 

Published by Canadian Center of Science and Education 

1 

 

Enumerations for Compositions and Complete Homogeneous 

Symmetric Polynomial 

Soumendra Bera
1
 

1
Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India 

Correspondence: Soumendra Bera, Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India. 

E-mail: soumendra.bera@gmail.com 

 

Received: January 12, 2015   Accepted: March 7, 2015   Online Published: March 22, 2015 

doi:10.5539/jmr.v7n2p1          URL: http://dx.doi.org/10.5539/jmr.v7n2p1 

 

Abstract 

We count the number of occurrences of t as the summands (i) in the compositions of a positive integer n into r 

parts; and (ii) in all compositions of n; and subsequently obtain other results involving compositions. The initial 

counting further helps to solve the enumeration problems for complete homogeneous symmetric polynomial.  

Keywords: composition, summand, sequence, recurrence, binomial coefficient identity, complete homogeneous 

symmetric polynomial 

MS classifications: 05A10; 05A17; 05A19; 11B37 

1. Introduction 

For each nonnegative integer r, complete homogeneous symmetric polynomial  ℎ𝑟(𝑥1, … , 𝑥𝑘 ) is the sum of all 

distinct monomials of degree r in the variables: 𝑥1, … , 𝑥𝑘   Formally  

 ℎ𝑟(𝑥1, … , 𝑥𝑘)    =   ∑ 𝑥𝑖1
1 ≤ 𝑖1 ≤ …  ≤ 𝑖𝑟 ≤ 𝑘

𝑥𝑖2 … 𝑥𝑖𝑟  

Example: 

ℎ4(𝑥1, 𝑥2 , 𝑥3 )  =  𝑥1
4  +  𝑥2

4  +  𝑥3
4   +  𝑥1

3 𝑥2  +  𝑥1 𝑥2
3   +   𝑥1

3 𝑥3 + 𝑥1 𝑥3
3   +   𝑥2

3 𝑥3 + 𝑥2 𝑥3
3 

+ 𝑥1
2 𝑥2

2   +  𝑥1
2 𝑥3

2   +  𝑥2
2 𝑥3

2   +   𝑥1
2 𝑥2  𝑥3  +  𝑥1 𝑥2

2 𝑥3  +  𝑥1  𝑥2  𝑥3
2 

The number of terms of the polynomial is 15; the numbers of occurrences of 1, 2, 3 and 4 as the exponents in 

different terms among 15 terms are 12, 9, 6 and 3 respectively; and the number of occurrences of each of 

𝑥1 , 𝑥2 and 𝑥3 as the bases in different terms among 15 terms is 10.  

Evidently ℎ𝑟(𝑥1, … , 𝑥𝑘 ) has some enumerating problems. We give the solutions of the problems from some 

combinatorial enumerations for the compositions of a positive integer. The paper has two main parts: (a) 

counting for compositions and (b) counting for ℎ𝑟(𝑥1, … , 𝑥𝑘 ). 

The main results are as shown: 

1. The number of occurrences of an integer t as the summands in the compositions of n into r parts   

=    (  –     1
 𝑟   2 

) ,       ,   –   +       

2.  The number of occurrences of t as the summands in all compositions of n 

=  (  –   + 3)    –     2,   >     

3. The number of occurrences of t as the exponents in different terms among all the terms of ℎ𝑟(𝑥1, … , 𝑥𝑘 ) 

= ∑ 𝑖 (
𝑘

𝑖
) (
  –    −   

𝑖 −   
)

𝑟 

𝑖 = 2
 ,  , 𝑘   ,   –         
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4. The number of occurrences of each variable as the bases in different terms among all the terms of 

ℎ𝑟(𝑥1, … , 𝑥𝑘 ) 

=   +  
 

𝑘
 ∑ ∑  𝑖 (

𝑘

𝑖 
) (
  –    −  

 𝑖 −    
)

𝑟

𝑖 = 2

𝑟   1 

  = 1
 

2. Counting for Compositions    

For counting, we use some simple notations as shown.   

1. Compositions of n into r summands =  C(n, r).   

The notation C(n, r) without any qualification means all compositions of n into r summands. Otherwise we use an 

adjective to specify the compositions. For example, we write simply ‘some C(n, r)’ to mean some compositions of 

n into r summands.       

2. Number of C(n, r)  =  NC(n, r).  

3. Number of occurrences of t in C(n, r)  =  N(t)C(n, r). 

4. Some particular C(n, r) that start with a common summand k  =  k + C(n – k, r – 1). 

We use the symbol of equivalence (≡) between C(n, r) and its implication; and similarly between k + C(n – k, r – 

1) and its implication.  

Examples: C(4, 3) ≡ 1 + 1 + 2,  1 + 2 + 1,  2 + 1 + 1.   

NC(4, 3) = 3;  N(1)C(4, 3) = 6;  and N(2)C(4, 3) = 3.   

Some particular C(6, 4), which start with a common summand 2, are:  

2 + C(4, 3)  ≡  2 + 1 + 1 + 2,  2 + 1 + 2 + 1,  2 + 2 + 1 + 1. 

2.1 Number of Occurrences of t in the Compositions of n into r Parts 

The number of the compositions of a positive integer n into r parts or summands is (    1
𝑟   1

). This is a known 

result. Here we obtain the result in a process of recursive substitution starting with a basic sequential 

arrangement of n into r summands. The procedure and result lead to count the number of occurrences of t in the 

compositions of n into r parts. 

First we count NC(n, r) for n ≥ r ≥ 1. 

(a) By convention, n itself is a composition of n so that r is equal to 1 for the composition. Therefore, for n ≥ 1 

and r = 1, we have: NC(n, r) = NC(n, 1) = 1.  

(b) For n ≥ r ≥ 2, we can write a basic sequential arrangement of C(n, r) in the following way.   

C(n, r)  ≡  1 + C(n – 1, r – 1),  2 + C(n – 2, r – 1), …,  (n – r + 1) + C(r – 1, r – 1)       (1.1) 

Consequently for n ≥ r ≥ 2,   

NC(n, r)  =  NC(n – 1, r – 1)  +  NC(n – 2, r – 1)  +  …  +  NC(r – 1, r – 1)          (1.2) 

(1.1) and (1.2) yield the successive results as shown.   

(i) C(n, 2)  ≡  1 + (n – 1),  2 + (n – 2), …,  (n – 1) + 1. 

Hence NC(n, 2)  =  n – 1.  

(ii) C(n, 3)  ≡  1 + C(n – 1, 2),   2 + C(n – 2, 2),  …,  (n – 2) + C(2, 2) 

Hence  NC(n, 3)  =  NC(n – 1, 2)  +  NC(n – 2, 2)  +  …  +  NC(2, 2) 

= (n – 2) + … + 1   

= (    1
 2 
) 

Similarly            

NC(n, 4)  =  NC(n – 1, 3)  +  NC(n – 2, 3)  +  …  + NC(3, 3) 

=  ∑  (𝑖  1
 2 
)    1

𝑖 = 3  

=  (    1
 3 
) 
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In general for n ≥ r ≥ 2, NC(n, r)  = (    1
 𝑟   1 

); and including the initial result with this, we get:  

  ( ,  )  =  (    1
 𝑟   1 

),                                      (2) 

We count below N(t)C(n, r) by the above process and results.  

The basic conditions of n, t and r are: n ≥ t ≥ 1, n ≥ r ≥ 1 and r ⋛ t. 

(a) When n ≥ 1 and r = 1 then t = n so that N(t)C(n, r) = N(n)C(n, 1) = 1. For n > t ≥ 1, mathematically we can 

write: N(t)C(n, 1) = 0. These are the initial results in the counting of N(t)C(n, r). 

(b) When n and r are the fixed integers for n ≥ r ≥ 2 then we find some fixed C(n, r). In one of these C(n, r), 

each of r – 1 summands is smallest or 1 so that the rest is greatest. Consequently the greatest value of a summand 

t is n – r + 1. That is, when n ≥ r ≥ 2 then the condition of t is: n – r + 1 ≥ t ≥ 1.  From (1.1) we find:  

(i) Some C(n, r) start with a common summand t; and these are: t + C(n – t, r – 1).  

(ii) t can occur at other places of different compositions under some or all of C(n – 1, r – 1),  C(n – 2, r – 1), …,  

C(r – 1, r – 1). 

The smallest positive integer: 1 can occur as the summands in different compositions under C(n – 1, r – 1), C(n – 

2, r – 1), …, C(r – 1, r – 1). Yet occurrences of t ≥ 2 have some limitations. Since n – r + 1 ≥ t, it follows that if 

n – r ≤ t – 2 then t cannot occur in a C(n, r). More precisely, we cannot find the occurrences of  

2 in C(r – 1, r – 1); 

3 in C(r, r – 1) and C(r – 1, r – 1); 

4 in C(r + 1, r – 1), C(r, r – 1) and C(r – 1, r – 1); 

… … 

In general t cannot occur in any composition under C(r + t – 3, r – 1), C(r + t – 4, r – 1) ,  …, C(r – 1, r – 1) for 

r ≥ 2 and t ≥ 2. Other compositions under C(n – 1, r – 1), C(n – 2, r – 1), …, C(r + t – 2, r – 1) may contain t. 

Then from (i) and (ii), we get: for n ≥ r ≥ 2 and n – r + 1 ≥ t ≥ 1,  

N(t)C(n, r)  =  NC(n – t, r – 1)  +  [N(t)C(n – 1, r – 1)  +  N(t)C(n – 2, r – 1)  +  … 

+ N(t)C(r + t – 2, r – 1)] 

⇒ N(t)C(n, r)  =  (         1
 𝑟   2

)
  

+  [N(t)C(n – 1, r – 1)  +  N(t)C(n – 2, r – 1)  +  … 

+ N(t)C(r + t – 2, r – 1)]                                 (3) 

When r = 2, then for n ≥ 2 and n – 1 ≥ t ≥ 1,  

N(t)C(n, 2)  = 1 + N(t)C(t, 1)  =  1 + 1 

= 2                                       (3.1) 

Evidently N(t)C(n, 2) is constant and independent of t and n. (3.1) is the primary case of (3); and then the rest of 

(3) is: for n ≥ r ≥ 3 and n – r + 1 ≥ t ≥ 1,   

N(t)C(n, r)  =  (         1
 𝑟   2

)
  

+  [N(t)C(n – 1, r – 1)  +  N(t)C(n – 2, r – 1)  +  … 

+  N(t)C(r + t – 2, r – 1)]                                (3.2) 

Now our aim is to count N(t)C(n, r) applying (3.1) and (3.2). 

1. To count N(t)C(n, r) for t = 1 

For n ≥ 2,  N(1)C(n, 2)  =  2 

For n ≥ 3,  N(1)C(n, 3)  =  n – 2 +  [N(1)C(n – 1, 2)  +  N(1)C(n – 2, 2)  + …  +  N(1)C(2, 2)]    

= 3(n – 2). 

For n ≥ 4,  N(1)C(n, 4)  =  (    2
 2
)
 

+  [N(1)C(n – 1, 3)  +  N(1)C(n – 2, 3)  + … +  N(1)C(3, 3)] 

=  (    2
 2
)
  

+ 3[(n – 3) + (n – 4) + … + 1] 

= 4 (    2
 2 
). 

Similarly for n ≥ 5, N(1)C(n, 5)  =  (    2
 3 
)
  

+  4∑  (𝑖   2
 2 
)    1

𝑖 = 4   

= 5
 

(    2
 3 
). 
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In general for n ≥ r ≥ 2,  N(1)C(n, r)  =    (    2
 𝑟   2 

)
  

 

2. To count N(t)C(n, r) for t = 2
 

n, r and t have the conditions: n ≥ r ≥ 2 and n – r + 1 ≥ t ≥ 1. Hence when t = 2 then the conditions of n and r are: 

n – 1 ≥ r ≥ 2 and n ≥ 3. 

For n ≥ 3, N(2)C(n, 2) = 2. 

For n ≥ 4, N(2)C(n, 3) = n – 3 + [N(2)C(n – 1, 2) + N(2)C(n – 2, 2) + … + N(2)C(3, 2)]  

= 3(n – 3). 

For n ≥ 5, N(2)C(n, 4) = (    3
 2  
)
 

+ [N(2)C(n – 1, 3) + N(2)C(n – 2, 3) + … + N(2)C(4, 3)] 

=  (    3
 2  
)
 

+ 3[(n – 4) + (n – 5) + … + 1] 

= 4(    3
 2  
). 

Thus for n ≥ 6, N(2)C(n, 5) = (    3
 3  
)
 

+ 4∑  (𝑖   3
 2 
)    1

𝑖 = 5    

= 5(    3
 3  
). 

In general for n – 1 ≥ r ≥ 2, N(2)C(n,  r)  =  r (    3
𝑟   2

). 

By the similar operation, we get:  

For n – 2 ≥ r ≥ 2,  N(3)C(n,  r)  =  r (     4
 𝑟   2  

). 

For n – 3 ≥ r ≥ 2,  N(4)C(n,  r)  =  r (     5
 𝑟   2  

). 

…  … 

In this way                            

                                       ( ) ( ,  )  =    (
 −  −  

 −  
) ,        ,   –   +                              (4) 

2.2 Number of Occurrences of t in All Compositions of n  

Let the number be denoted by N(t)C(n). 

When n ≥ 1 and t = n, then N(t)C(n) = N(n)C(n) = 1. 

The restrictions in (4) are: 

n ≥ r ≥ 2,  n – r + 1 ≥ t ≥ 1     n > t ≥ 1,  n – t + 1 ≥ r ≥ 2 

Hence for n > t ≥ 1,  

       ( ) ( )  =  ∑  ( ) ( ,  )
  –     1 

𝑟 = 2
 

                             =  ∑   (
 −  −  

  −  
)

  –     1 

𝑟 = 2
 

  ( ) ( )  =  (  –   + 3)    –     2,    >                     (5) 

2.3 Other Results from (2), (4) and (5)  

(a) Number of summands in the compositions of n   

From (5), we get:      

Number of the summands in the compositions of n for n ≥ 2 

= Number of occurrence of t for t = n + Number of occurrences of t for n > t ≥1   

                =   +∑  (  –    +  3)    –   – 2
  – 1 

  = 1
 

               =  +     – 2 [( + 3)∑    –  
  – 1 

  = 1
 −   ∑     –  

  – 1 

  = 1
 ] 

= ( +  )     – 2                                      (6) 

Obviously (6) holds for n = 1 also. 

(b) A proposition from (5) 

Proposition 1. If  1 and  2   are the summands in the compositions of  1 and  2 respectively such that 

 1 −  1 =   2 −  2 , then the number of occurrences of  1 in the compositions of  1 is equal to the number 

of occurrences of  2 in the compositions of  2. 
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(c) Number-number relationship  

By Pascal’s Identity, we get: 

  (    2
 𝑟   2 

)  =    (    1
 𝑟   1 

) −    (    2
 𝑟   1 

)  

The above relation implies the following number-number relationship from (4) and (2).  

Number of occurrences of 1 in C(n, r) 

= Number of the summands in C(n, r)  –  Number of the summands in C(n – 1, r)          (7) 

(d) Number-sum relationship  

From (6), we get a number-sum relationship as shown. 

Number of the summands in the compositions of all n integers: 1, 2, …, n  

 =   ∑  (𝑖 +  ) 𝑖   2
  

𝑖 = 1
 

=        – 1 
=  Sum of the summands in the compositions of n.                     (8) 

3. Counting for Complete Homogeneous Symmetric Polynomial: 𝒉𝒓(𝒙𝟏, … , 𝒙𝒌)        

3.1 Number of Terms of the Polynomial 

The result is known. Here we count the number applying (2) and Vandermonde's identity. Let some terms of the 

polynomial contain some fixed m of k variables. The number of these terms = NC(r, m) = ( 𝑟    1
     1  

).  

We have k ⋛ r in the problem. Hence we find: (i) either 1 ≤ m ≤ k < r (ii) or 1 ≤ m ≤ r ≤ k. 

Case 1:  When 1 ≤ m ≤ k < r then the number of terms   

= ∑ (𝑘
 
)𝑘 

  = 1 ( 𝑟   1
    1

) 

= ∑ ( 𝑘
𝑘    

)𝑘 
  = 1 ( 𝑟   1

    1
) 

= (𝑘   𝑟   1
 𝑘   1  

) = (𝑘   𝑟   1
 𝑟  

) 

Case 2:  When 1 ≤ m ≤ r ≤ k then the number of terms  

=∑ (
𝑘

 
)

𝑟

  = 1
(
  −   

  −   
) 

= ∑ (𝑘
 
)𝑟 

  = 1 ( 𝑟   1
𝑟    

) 

= ∑  ( 𝑘
  
)𝑟 

  =  ( 𝑟   1
𝑟    

) 

= (𝑘   𝑟   1
 𝑟  

) 

It follows that the number of terms does not depend on equality or any inequality between k and r, which are all 

taken into consideration in the process of solution. Thus we find: 

The number of terms of ℎ𝑟(𝑥1, … , 𝑥𝑘)  =   (𝑘   𝑟   1
 𝑟  

)                    (9) 

3.2 Number of Occurrences of an Integer t as the Powers  

Appling (4), we can count the number of occurrences of an integer t as the powers in different terms among all 

(𝑘   𝑟   1
 𝑟  

) terms of ℎ𝑟(𝑥1, … , 𝑥𝑘).  

The condition of t is: r ≥ t ≥ 1.  

Case 1. The terms in which the integer r occurs as the powers on the variables are: 𝑥1
𝑟, …, 𝑥𝑘

𝑟 . 

Therefore when t = r then the number of occurrences of t is k. 

Case 2. When t < r, clearly then r, k ≠ 1. From (4), we get: 

The number of occurrences of t   

=  ∑ 𝑖 (
𝑘

𝑖
) (
 −  −  

𝑖 −  
)

𝑟 

𝑖 = 2
,    , 𝑘   ,      –                                   ( 0) 
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(10) has some technical terms for some particular values of k, r and t such that the values of these terms are all 0. 

The particulars in the context are described below. 

(i) If m is an integer in (2, …, r) then the product   ( 𝑘
   
) (𝑟       1

     2  
) or   ( 𝑘

   
) ( 𝑟       1

𝑟 –     1     
)  is one among r – 

1 terms of (10). The value of the term is obviously 0 if m > r – t + 1. For example, if the triplet (k, r, t) is (12, 7, 

4) then the values of the last three terms of (10) where m ∈ (5, 6, 7) are all 0. This implies that if the number of 

bases in a term of ℎ7(𝑥1, … , 𝑥12) is 5, 6 or 7 then the number of occurrences of 4 as the powers on the bases is 0, 

or in other words 4 cannot occur as the powers on any of these bases. 

(ii) When r > k then the last r – k terms have the factors: ( 𝑘
𝑘   1

) , …,  (𝑘
 𝑟
) in succession such that the values of 

these r – k terms are all 0. In other words, for r > k, the number of occurrences of t is equal to the summation: 

∑ 𝑖 ( 𝑘
 𝑖  
) (𝑟       1

 𝑖   2  
)𝑘 

𝑖 = 2 .   

3.3 Number of Occurrences of a Variable 𝑥  as the Bases  

From Case 1 and Case 2 of Topic 3.2, we get:  

Total number of bases in all terms of the polynomial   

=   𝑘 +  ∑ ∑ 𝑖 (
𝑘

𝑖
) (
 −  −  

𝑖 −  
)

𝑟

𝑖 = 2

𝑟   1 

  = 1
                                                   (  . ) 

The number of occurrences of every variable 𝑥 ∈ (𝑥1, … , 𝑥𝑘)  in complete homogeneous symmetric 

polynomial of degree r in the variables: 𝑥1, … , 𝑥𝑘 is same. Hence from (11.1), we get: 

The number of occurrences of a variable 𝑥  as the bases 

                                                =     +   
 

𝑘
 ∑ ∑  𝑖 (

𝑘

𝑖 
) (
 −  −  

 𝑖 −   
)

𝑟

𝑖 = 2

𝑟   1 

  = 1
                                              (  . ) 
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