Enumerations for Compositions and Complete Homogeneous Symmetric Polynomial

Soumendra Bera ${ }^{1}$
${ }^{1}$ Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India
Correspondence: Soumendra Bera, Production (DHDS), IOCL, P.O.- Haldia Oil Refinery, W.B.721606, India.
E-mail: soumendra.bera@gmail.com

Received: January 12, 2015 Accepted: March 7, 2015 Online Published: March 22, 2015
doi:10.5539/jmr.v7n2p1
URL: http://dx.doi.org/10.5539/jmr.v7n2p1

Abstract

We count the number of occurrences of t as the summands (i) in the compositions of a positive integer n into r parts; and (ii) in all compositions of n; and subsequently obtain other results involving compositions. The initial counting further helps to solve the enumeration problems for complete homogeneous symmetric polynomial.

Keywords: composition, summand, sequence, recurrence, binomial coefficient identity, complete homogeneous symmetric polynomial
MS classifications: 05 A 10 ; 05A17; 05A19; 11B37

1. Introduction

For each nonnegative integer r, complete homogeneous symmetric polynomial $h_{r}\left(x_{1}, \ldots, x_{k}\right)$ is the sum of all distinct monomials of degree r in the variables: x_{1}, \ldots, x_{k} Formally

$$
h_{r}\left(x_{1}, \ldots, x_{k}\right)=\sum_{1 \leq i_{1} \leq \ldots \leq i_{r} \leq k} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}
$$

Example:

$$
\begin{gathered}
h_{4}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{1}^{3} x_{2}+x_{1} x_{2}^{3}+x_{1}^{3} x_{3}+x_{1} x_{3}^{3}+x_{2}^{3} x_{3}+x_{2} x_{3}^{3} \\
+x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}
\end{gathered}
$$

The number of terms of the polynomial is 15 ; the numbers of occurrences of $1,2,3$ and 4 as the exponents in different terms among 15 terms are $12,9,6$ and 3 respectively; and the number of occurrences of each of x_{1}, x_{2} and x_{3} as the bases in different terms among 15 terms is 10 .
Evidently $h_{r}\left(x_{1}, \ldots, x_{k}\right)$ has some enumerating problems. We give the solutions of the problems from some combinatorial enumerations for the compositions of a positive integer. The paper has two main parts: (a) counting for compositions and (b) counting for $h_{r}\left(x_{1}, \ldots, x_{k}\right)$.
The main results are as shown:

1. The number of occurrences of an integer t as the summands in the compositions of n into r parts

$$
=r\binom{n-t-1}{r-2}, n \geq r \geq 2, n-r+1 \geq t \geq 1
$$

2. The number of occurrences of t as the summands in all compositions of n

$$
=(n-t+3) 2^{n-t-2}, \quad n>t \geq 1
$$

3. The number of occurrences of t as the exponents in different terms among all the terms of $h_{r}\left(x_{1}, \ldots, x_{k}\right)$

$$
=\sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2}, \quad r, k \geq 2, \quad r-1 \geq t \geq 1
$$

4. The number of occurrences of each variable as the bases in different terms among all the terms of $h_{r}\left(x_{1}, \ldots, x_{k}\right)$

$$
=1+\frac{1}{k} \sum_{t=1}^{r-1} \sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2}
$$

2. Counting for Compositions

For counting, we use some simple notations as shown.

1. Compositions of n into r summands $=C(n, r)$.

The notation $C(n, r)$ without any qualification means all compositions of n into r summands. Otherwise we use an adjective to specify the compositions. For example, we write simply 'some $C(n, r)$ ' to mean some compositions of n into r summands.
2. Number of $C(n, r)=N C(n, r)$.
3. Number of occurrences of t in $C(n, r)=N(t) C(n, r)$.
4. Some particular $C(n, r)$ that start with a common summand $k=k+C(n-k, r-1)$.

We use the symbol of equivalence (\equiv) between $C(n, r)$ and its implication; and similarly between $k+C(n-k, r-$ 1) and its implication.

Examples: $C(4,3) \equiv 1+1+2, \quad 1+2+1, \quad 2+1+1$.
$N C(4,3)=3 ; \quad N(1) C(4,3)=6 ; \quad$ and $N(2) C(4,3)=3$.
Some particular $C(6,4)$, which start with a common summand 2, are:
$2+C(4,3) \equiv 2+1+1+2, \quad 2+1+2+1, \quad 2+2+1+1$.

2.1 Number of Occurrences of t in the Compositions of n into r Parts

The number of the compositions of a positive integer n into r parts or summands is $\binom{n-1}{r-1}$. This is a known result. Here we obtain the result in a process of recursive substitution starting with a basic sequential arrangement of n into r summands. The procedure and result lead to count the number of occurrences of t in the compositions of n into r parts.
First we count $N C(n, r)$ for $n \geq r \geq 1$.
(a) By convention, n itself is a composition of n so that r is equal to 1 for the composition. Therefore, for $n \geq 1$ and $r=1$, we have: $N C(n, r)=N C(n, 1)=1$.
(b) For $n \geq r \geq 2$, we can write a basic sequential arrangement of $C(n, r)$ in the following way.

$$
\begin{equation*}
C(n, r) \equiv 1+C(n-1, r-1), \quad 2+C(n-2, r-1), \ldots, \quad(n-r+1)+C(r-1, r-1) \tag{1.1}
\end{equation*}
$$

Consequently for $n \geq r \geq 2$,

$$
\begin{equation*}
N C(n, r)=N C(n-1, r-1)+N C(n-2, r-1)+\ldots+N C(r-1, r-1) \tag{1.2}
\end{equation*}
$$

(1.1) and (1.2) yield the successive results as shown.
(i) $C(n, 2) \equiv 1+(n-1), 2+(n-2), \ldots, \quad(n-1)+1$.

Hence $N C(n, 2)=n-1$.
(ii) $C(n, 3) \equiv 1+C(n-1,2), \quad 2+C(n-2,2), \quad \ldots, \quad(n-2)+C(2,2)$

Hence $N C(n, 3)=N C(n-1,2)+N C(n-2,2)+\ldots+N C(2,2)$
$=(n-2)+\ldots+1$
$=\binom{n-1}{2}$
Similarly
$N C(n, 4)=N C(n-1,3)+N C(n-2,3)+\ldots+N C(3,3)$
$=\sum_{i=3}^{n-1}\binom{i-1}{2}$
$=\binom{n-1}{3}$

In general for $n \geq r \geq 2, N C(n, r)=\binom{n-1}{r-1}$; and including the initial result with this, we get:

$$
\begin{equation*}
N C(n, r)=\binom{n-1}{r-1}, \quad n \geq r \geq 1 \tag{2}
\end{equation*}
$$

We count below $N(t) C(n, r)$ by the above process and results.
The basic conditions of n, t and r are: $n \geq t \geq 1, n \geq r \geq 1$ and $r \gtreqless t$.
(a) When $n \geq 1$ and $r=1$ then $t=n$ so that $N(t) C(n, r)=N(n) C(n, 1)=1$. For $n>t \geq 1$, mathematically we can write: $N(t) C(n, 1)=0$. These are the initial results in the counting of $N(t) C(n, r)$.
(b) When n and r are the fixed integers for $n \geq r \geq 2$ then we find some fixed $C(n, r)$. In one of these $C(n, r)$, each of $r-1$ summands is smallest or 1 so that the rest is greatest. Consequently the greatest value of a summand t is $n-r+1$. That is, when $n \geq r \geq 2$ then the condition of t is: $n-r+1 \geq t \geq 1$. From (1.1) we find:
(i) Some $C(n, r)$ start with a common summand t; and these are: $t+C(n-t, r-1)$.
(ii) t can occur at other places of different compositions under some or all of $C(n-1, r-1), \quad C(n-2, r-1), \ldots$, $C(r-1, r-1)$.
The smallest positive integer: 1 can occur as the summands in different compositions under $C(n-1, r-1), C(n-$ $2, r-1), \ldots, C(r-1, r-1)$. Yet occurrences of $t \geq 2$ have some limitations. Since $n-r+1 \geq t$, it follows that if $n-r \leq t-2$ then t cannot occur in a $C(n, r)$. More precisely, we cannot find the occurrences of

2 in $C(r-1, r-1)$;
3 in $C(r, r-1)$ and $C(r-1, r-1)$;
4 in $C(r+1, r-1), C(r, r-1)$ and $C(r-1, r-1)$;

In general t cannot occur in any composition under $C(r+t-3, r-1), C(r+t-4, r-1), \quad \ldots, C(r-1, r-1)$ for $r \geq 2$ and $t \geq 2$. Other compositions under $C(n-1, r-1), C(n-2, r-1), \ldots, C(r+t-2, r-1)$ may contain t. Then from (i) and (ii), we get: for $n \geq r \geq 2$ and $n-r+1 \geq t \geq 1$,

$$
\begin{align*}
N(t) C(n, r)=N C(n-t, r-1) & +[N(t) C(n-1, r-1)+N(t) C(n-2, r-1)+\ldots \\
& +N(t) C(r+t-2, r-1)] \\
\Rightarrow N(t) C(n, r)=\binom{n-t-1}{r-2} & +[N(t) C(n-1, r-1)+N(t) C(n-2, r-1)+\ldots \\
& +N(t) C(r+t-2, r-1)] \tag{3}
\end{align*}
$$

When $r=2$, then for $n \geq 2$ and $n-1 \geq t \geq 1$,

$$
\begin{gather*}
N(t) C(n, 2)=1+N(t) C(t, 1)=1+1 \\
=2 \tag{3.1}
\end{gather*}
$$

Evidently $N(t) C(n, 2)$ is constant and independent of t and n. (3.1) is the primary case of (3); and then the rest of (3) is: for $n \geq r \geq 3$ and $n-r+1 \geq t \geq 1$,

$$
\begin{align*}
N(t) C(n, r)=\binom{n-t-1}{r-2} & +[N(t) C(n-1, r-1)+N(t) C(n-2, r-1)+\ldots \\
& +N(t) C(r+t-2, r-1)] \tag{3.2}
\end{align*}
$$

Now our aim is to count $N(t) C(n, r)$ applying (3.1) and (3.2).

1. To count $N(t) C(n, r)$ for $t=1$

For $n \geq 2, \quad N(1) C(n, 2)=2$
For $n \geq 3, \quad N(1) C(n, 3)=n-2+[N(1) C(n-1,2)+N(1) C(n-2,2)+\ldots+N(1) C(2,2)]$

$$
=3(n-2)
$$

For $n \geq 4, \quad N(1) C(n, 4)=\binom{n-2}{2}+[N(1) C(n-1,3)+N(1) C(n-2,3)+\ldots+N(1) C(3,3)]$

$$
=\binom{n-2}{2}+3[(n-3)+(n-4)+\ldots+1]
$$

$=4\binom{n-2}{2}$.
Similarly for $n \geq 5, N(1) C(n, 5)=\binom{n-2}{3}+4 \sum_{i=4}^{n-1}\binom{i-2}{2}$
$=5\binom{n-2}{3}$.

In general for $n \geq r \geq 2, \quad N(1) C(n, r)=r\binom{n-2}{r-2}$

2. To count $N(t) C(n, r)$ for $t=2$

n, r and t have the conditions: $n \geq r \geq 2$ and $n-r+1 \geq t \geq 1$. Hence when $t=2$ then the conditions of n and r are:
$n-1 \geq r \geq 2$ and $n \geq 3$.
For $n \geq 3, N(2) C(n, 2)=2$.
For $n \geq 4, N(2) C(n, 3)=n-3+[N(2) C(n-1,2)+N(2) C(n-2,2)+\ldots+N(2) C(3,2)]$

$$
=3(n-3)
$$

For $n \geq 5, N(2) C(n, 4)=\binom{n-3}{2}+[N(2) C(n-1,3)+N(2) C(n-2,3)+\ldots+N(2) C(4,3)]$

$$
\begin{gathered}
=\binom{n-3}{2}+3[(n-4)+(n-5)+\ldots+1] \\
=4\binom{n-3}{2}
\end{gathered}
$$

Thus for $n \geq 6, N(2) C(n, 5)=\binom{n-3}{3}+4 \sum_{i=5}^{n-1}\binom{i-3}{2}$

$$
=5\binom{n-3}{3}
$$

In general for $n-1 \geq r \geq 2, N(2) C(n, \quad r)=r\binom{n-3}{r-2}$.
By the similar operation, we get:
For $n-2 \geq r \geq 2, \quad N(3) C(n, \quad r)=r\binom{n-4}{r-2}$.
For $n-3 \geq r \geq 2, \quad N(4) C(n, \quad r)=r\binom{n-5}{r-2}$.
... ...
In this way

$$
\begin{equation*}
N(t) C(n, r)=r\binom{n-t-1}{r-2}, n \geq r \geq 2, n-r+1 \geq t \geq 1 \tag{4}
\end{equation*}
$$

2.2 Number of Occurrences of tin All Compositions of n

Let the number be denoted by $N(t) C(n)$.
When $n \geq 1$ and $t=n$, then $N(t) C(n)=N(n) C(n)=1$.
The restrictions in (4) are:

$$
n \geq r \geq 2, \quad n-r+1 \geq t \geq 1 \quad \Leftrightarrow \quad n>t \geq 1, \quad n-t+1 \geq r \geq 2
$$

Hence for $n>t \geq 1$,

$$
\begin{align*}
N(t) C(n) & =\sum_{r=2}^{n-t+1} N(t) C(n, r) \\
& =\sum_{r=2}^{n-t+1} r\binom{n-t-1}{r-2} \\
\Rightarrow N(t) C(n) & =(n-t+3) 2^{n-t-2}, n>t \geq 1 \tag{5}
\end{align*}
$$

2.3 Other Results from (2), (4) and (5)
(a) Number of summands in the compositions of n

From (5), we get:
Number of the summands in the compositions of n for $n \geq 2$
$=$ Number of occurrence of t for $t=n+$ Number of occurrences of t for $n>t \geq 1$

$$
\begin{gather*}
=1+\sum_{t=1}^{n-1}(n-t+3) 2^{n-t-2} \\
=1+2^{n-2}\left[(n+3) \sum_{t=1}^{n-1} 2^{-t}-\sum_{t=1}^{n-1} t 2^{-t}\right] \\
=(n+1) 2^{n-2} \tag{6}
\end{gather*}
$$

Obviously (6) holds for $n=1$ also.

(b) A proposition from (5)

Proposition 1. If t_{1} and t_{2} are the summands in the compositions of n_{1} and n_{2} respectively such that $n_{1}-t_{1}=n_{2}-t_{2}$, then the number of occurrences of t_{1} in the compositions of n_{1} is equal to the number of occurrences of t_{2} in the compositions of n_{2}.

(c) Number-number relationship

By Pascal's Identity, we get:

$$
r\binom{n-2}{r-2}=r\binom{n-1}{r-1}-r\binom{n-2}{r-1}
$$

The above relation implies the following number-number relationship from (4) and (2).
Number of occurrences of 1 in $C(n, r)$
$=$ Number of the summands in $C(n, r)-$ Number of the summands in $C(n-1, r)$
(d) Number-sum relationship

From (6), we get a number-sum relationship as shown.
Number of the summands in the compositions of all n integers: $1,2, \ldots, n$

$$
\begin{equation*}
=\sum_{\substack{i=1 \\=n 2^{n-1}}}^{n}(i+1) 2^{i-2} \tag{8}
\end{equation*}
$$

$=$ Sum of the summands in the compositions of n.
3. Counting for Complete Homogeneous Symmetric Polynomial: $\boldsymbol{h}_{r}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{k}}\right)$

3.1 Number of Terms of the Polynomial

The result is known. Here we count the number applying (2) and Vandermonde's identity. Let some terms of the polynomial contain some fixed m of k variables. The number of these terms $=N C(r, m)=\binom{r-1}{m-1}$.
We have $k \gtreqless r$ in the problem. Hence we find: (i) either $1 \leq m \leq k<r$ (ii) or $1 \leq m \leq r \leq k$.
Case 1: When $1 \leq m \leq k<r$ then the number of terms

$$
\begin{gathered}
=\sum_{m=1}^{k}\binom{k}{m}\binom{r-1}{m-1} \\
=\sum_{m=1}^{k}\binom{k}{k-m}\binom{r-1}{m-1} \\
=\binom{k+r-1}{k-1}=\binom{k+r-1}{r}
\end{gathered}
$$

Case 2: When $1 \leq m \leq r \leq k$ then the number of terms

$$
\begin{gathered}
=\sum_{m=1}^{r}\binom{k}{m}\binom{r-1}{m-1} \\
=\sum_{m=1}^{r}\binom{k}{m}\binom{r-1}{r-m} \\
=\sum_{m=0}^{r}\binom{k}{m}\binom{r-1}{r-m} \\
=\binom{k+r-1}{r}
\end{gathered}
$$

It follows that the number of terms does not depend on equality or any inequality between k and r, which are all taken into consideration in the process of solution. Thus we find:

$$
\begin{equation*}
\text { The number of terms of } h_{r}\left(x_{1}, \ldots, x_{k}\right)=\binom{k+r-1}{r} \tag{9}
\end{equation*}
$$

3.2 Number of Occurrences of an Integer t as the Powers

Appling (4), we can count the number of occurrences of an integer t as the powers in different terms among all $\binom{k+r-1}{r}$ terms of $h_{r}\left(x_{1}, \ldots, x_{k}\right)$.
The condition of t is: $r \geq t \geq 1$.
Case 1. The terms in which the integer r occurs as the powers on the variables are: $x_{1}^{r}, \ldots, x_{k}^{r}$.
Therefore when $t=r$ then the number of occurrences of t is k.
Case 2. When $t<r$, clearly then $r, k \neq 1$. From (4), we get:
The number of occurrences of t

$$
\begin{equation*}
=\sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2}, r, k \geq 2, \quad r-1 \geq t \geq 1 \tag{10}
\end{equation*}
$$

(10) has some technical terms for some particular values of k, r and t such that the values of these terms are all 0 . The particulars in the context are described below.
(i) If m is an integer in $(2, \ldots, r)$ then the product $m\binom{k}{m}\binom{r-t-1}{m-2}$ or $m\binom{k}{m}\binom{r-t-1}{r-t+1-m} \quad$ is one among $r-$ 1 terms of (10). The value of the term is obviously 0 if $m>r-t+1$. For example, if the triplet (k, r, t) is $(12,7$, 4) then the values of the last three terms of (10) where $m \in(5,6,7)$ are all 0 . This implies that if the number of bases in a term of $h_{7}\left(x_{1}, \ldots, x_{12}\right)$ is 5,6 or 7 then the number of occurrences of 4 as the powers on the bases is 0 , or in other words 4 cannot occur as the powers on any of these bases.
(ii) When $r>k$ then the last $r-k$ terms have the factors: $\binom{k}{k+1}, \ldots,\binom{k}{r}$ in succession such that the values of these $r-k$ terms are all 0 . In other words, for $r>k$, the number of occurrences of t is equal to the summation: $\sum_{i=2}^{k} i\binom{k}{i}\binom{r-t-1}{i-2}$.

3.3 Number of Occurrences of a Variable x_{m} as the Bases

From Case 1 and Case 2 of Topic 3.2, we get:
Total number of bases in all terms of the polynomial

$$
\begin{equation*}
=k+\sum_{t=1}^{r-1} \sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2} \tag{11.1}
\end{equation*}
$$

The number of occurrences of every variable $x_{m} \in\left(x_{1}, \ldots, x_{k}\right)$ in complete homogeneous symmetric polynomial of degree r in the variables: x_{1}, \ldots, x_{k} is same. Hence from (11.1), we get:
The number of occurrences of a variable x_{m} as the bases

$$
\begin{equation*}
=1+\frac{1}{k} \sum_{t=1}^{r-1} \sum_{i=2}^{r} i\binom{k}{i}\binom{r-t-1}{i-2} \tag{11.2}
\end{equation*}
$$

References

Andrews, G. E. (2004). The Theory of Partitions, Cambridge University Press, Chapter 4, 54.
Arthur, T. B., \& Jennifer, Q. (2003). Proofs That Really Count: The Art of Combinatorial Proof, MAA, 63-68.
Hall, H. S., \& Knight, S. R. (1967). Higher Algebra, Macmillan and Co, London, 164-166.
John, R. (1979). Combinatorial identities, R. E. Krieger Pub. Co.
Miklós, B. (2006). A walk through combinatorics, World Scientific Publishing Co. Pte. Ltd. 65-69, 89.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

