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Abstract

In this paper, the co-screen conformal 1-lightlike submanifolds of a Lorentzian manifold are introduced as a gen-
eralization of co-screen locally half-lightlike submanifolds in (Wang, Wang & Liu, 2013; Wang & Liu, 2013) and
two examples are given which one is co-screen locally conformal and the other is not. Some results are obtained
on these submanifolds which the co-screen distribution is conformal Killing on the ambient manifold. The induced
Ricci tensor of co-screen conformal 1-lightlike submanifolds is investigated.
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1. Introduction

Inspired by Einstein’s theory of general relativity, the Kaluza-Klein’s theory and the string theory, many physicists
consider that the universe, we live in, can be a 4-dimensional submanifold embedded in high dimensional space-
time manifold and many mathematicians study not only submanifolds of Riemannian manifolds but also study
semi-Riemannian manifolds. One can consider that semi-Riemannian submanifolds are two types which one is
non-degenerate submanifolds and the other is lightlike submanifolds. In (Duggal & Bejancu, 1996; Duggal &
Jin, 2007; Duggal & Sahin, 2010), Duggal and his colleagues published books related with geometry of lightlike
submanifolds and they presented general theory of lightlike submanifolds. Since then large numbers of papers
have been published on lightlike submanifolds of semi-Riemannian manifolds.

Unfortunately, due to degenerate metric on lightlike submanifolds and the screen distribution is not canonical, in-
duced nations of the submanifold (e.g sectional curvature, Ricci curvature, shape operator etc.) depend on choosing
screen distribution that creates a problem. Therefore, it is necessary to find some classes of lightlike submanifold,
whose geometry is essentially the same as that of their chosen screen distribution. Therefore, many mathematicians
have been presented variety of methods to overcome this problem and have identified some special submanifolds.
For example, the authors are used specific suitable methods for this problem in (Akivis & Goldberg, 1998; Akivis
& Goldberg, 1999; Akivis & Goldberg, 2000; Bolós, 2005; Bonnor, 1992; Leistner, 2006). Furthermore, Kupeli
(Kupeli, 1996) has shown that any screen distribution of a lightlike submanifold is isometric to the factor bundle
on the tangent space the submanifold. In (Atindogbe & Duggal, 2004), Atindogbe and Duggal introduced screen
locally conformal lightlike submanifold as a special lightlike submanifold of a semi-Riemannian manifold whose
screen distribution is integrable and induced notions of the submanifold are independent of the screen distribution
as follows:

A lightlike hypersurface (M, g, S (T M)) of a semi-Riemannian manifold is called screen locally conformal if there
is the following relation between the shape operator AN and the local shape operator A∗ξ of the submanifold

AN = φA∗ξ, (1)

where φ is a non-vanishing smooth function on a neighborhood in M.
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Screen conformal lightlike submanifolds are studied on lightlike hypersurfaces in (Atindogbe, Ezin & Tossa, 2006;
Gülbahar, Kılıç & Keleş, 2013a; Gülbahar, Kılıç & Keleş, 2013b; Jin, 2009a; Jin, 2010; Jin, 2014) on half-lightlike
submanifolds in (Duggal & Sahin, 2004; Jin, 2009c) on coisotropic lightlike submanifolds in (Duggal, 2007), on
indefinite complex space forms in (Jin, 2009b; Jin, 2010b), on indefinite contact space form in (Massamba, 2008;
Massamba, 2012), on warped product manifold in (Sahin, 2005). Furthermore, screen conformal submersions are
studied in (Sahin, 2007).

Recently, another special lightlike submanifolds whose screen distribution is integrable and the induced notions of
the submanifold are independent of the screen distribution is defined in (Wang, Wang & Liu, 2013; Wang & Liu,
2013) and given by

Au = φ
cA∗ξ, (2)

where φc is a non-vanishing smooth function on a neighborhood in M, u is is a unit vector field of screen transversal
bundle of the submanifold, Au, A∗ξ are the shape operator and the local shape operator on M, respectively.

2. Preliminaries

Let M̃ be a semi-Riemannian manifold equipped with semi-Riemannian metric g̃ of index q̃. The manifold (M̃, g̃)
is called a Lorentzian manifold if q̃ = 1.

Let (M, g) be an (n+1)-dimensional lightlike submanifold of an (n+m+2)-dimensional Lorentzian manifold. The
radical space Rad TpM on the tangent space at a point p ∈ M is one-dimensional subspace, defined by

Rad TpM = {ξ ∈ TpM : gp(ξ, X) = 0, ∀X ∈ TpM}. (3)

The submanifold (M, g) is called a lightlike hypersurface if m is equal to zero. The complementary vector bundle
S (T M) of Rad T M in T M is called the screen bundle of M (Duggal & Bejancu, 2007). For these submanifolds,
any screen bundle is non-degenerate and

T M = Rad T M ⊕orth S (T M), (4)

where ⊕orth denotes the orthogonal direct sum. Consider a complementary vector bundle S (T M⊥) of Rad T M in
T M⊥. Then, we have the following orthogonal direct sum

T M⊥ = Rad T M ⊕orth S (T M⊥). (5)

Here, S (T M⊥) is the non-degenerate distribution with respect to g̃. It is said to be co-screen distribution on M (Jin,
2009c; Jin, 2010b).

Let tr(T M) and ltr(T M) be complementary but not orthogonal vector bundles to T M in T M̃|M and Rad T M in
tr(T M), respectively. In this situation, we have

T M̃|M = (Rad T M ⊕ ltr (T M)) ⊕orth S (T M) ⊕orth S (T M⊥). (6)

Let (M, g) be an (n + 1)-dimensional lightlike submanifold of an (n + m + 2) dimensional (M̃, g̃) andU be a local
coordinate neighborhood of M. Then, there exists a quasi-orthonormal frame of M̃ along M, onU:

{ξ, e1, e2, . . . , en,N, u1, u2, . . . , um}, (7)

where Γ(S (T M)) = Span{e1, e2, . . . , en}, Γ(Rad T M|U) = Span{ξ}, Γ(ltr(T M)|U) = Span{N},
Γ(tr(M)|U) = Span{u1, u2, . . . , um}. We note that the quasi-orthonormal basis of M̃ satisfies that

g̃(ξ,N) = 1, g̃(N,N) = g̃(N, u) = g̃(ξ, u) = 0, (8)

for all u ∈ Γ(tr(T M)|U).

Let ∇̃ be the Levi-Civita connection of M̃ and P be the projection morphism of Γ(T M) to Γ(S (T M)). The Gauss
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and Weingarten formulas are given by

∇̃XY = ∇XY + B(X,Y)N +
m∑
α=1

Dα(X,Y)uα, (9)

∇̃X N = −AN X + ρN +
m∑
α=1

ραuα, (10)

∇̃Xuβ = −AuβX + εN +
m∑
α=1

εαuα, (11)

∇X PY = ∇∗X PY +C(X, PY)ξ, (12)
∇Xξ = −AξX − ρξ, (13)

for any X,Y ∈ Γ(T M), where ∇ and ∇∗ are the induced linear connections on T M and S (T M), respectively; B
and Dα are coefficients of the lightlike second fundamental form and coefficients of the screen second fundamental
form of T M, respectively, C is coefficients of the local second fundamental form on S (T M), AN , Auβ are the shape
operators on M, A∗ξ is the shape operator on S (T M) and ε, εα, ρ, ρα are 1-forms on M.

Let us define a local 1-form η by

η(X) = g̃(X,N), ∀X ∈ Γ(T M|U). (14)

Consider (9), (14) and ∇̃ is a metric connection on M̃ it is known that the induced connection ∇ is not a metric
connection (Duggal & Bejancu, 2007).

The second fundamental form h and the local second fundamental form h∗ are given by, respectively,

h(X,Y) = hℓ(X,Y) + hs(X,Y) and h∗(X, PY) = C(X, PY)ξ, (15)

where

hℓ(X,Y) = B(X,Y)N and hs(X,Y) =
m∑
α=1

Dα(X, Y)uα,

for any X,Y ∈ T M. Here, we note that hℓ is the light part of the second fundamental form and hs is the non-
degenerate part of the second fundamental form.

It is known that B = 0 on Rad T M and it is independent of the screen distribution S (T M) for any α ∈ {1, . . .m}
and the following relations satisfy that

B(X, PY) = g(A∗ξX,Y), g̃(A∗ξX,N) = 0, (16)
Dα(X, PY) = g(AuαX, PY), g̃(∇X N, uα) = ρα, (17)
C(X, PY) = g(AN X, PY), (18)

for any X,Y ∈ T M and α ∈ {1, . . . ,m}.
The submanifold (M, g, S (T M)) is called totally umbilical if there exist smooth functions λ ∈ F(tr(T M)) and
λα ∈ F(S (T M)⊥) for any α ∈ {1, . . . ,m} such that

B(X,Y) = λg(X,Y) and Dα(X,Y) = λαg(X,Y), (19)

for all X,Y ∈ Γ(T M).

A 1-lightlike submanifold is said to be irrotational if ∇̃Xξ ∈ Γ(T M) for any X ∈ Γ(T M), where ξ ∈ Γ(Rad T M)
(Kupeli, 1996).

Let {e1, . . . , en} be an orthonormal basis of Γ(S (T M)) and define

µ∗ =
1
n

n∑
i=1

C(ei, ei), µ1 =
1
n

n∑
i=1

B(ei, ei), µ2 =
1
n

n∑
i=1

m∑
α=1

Dα(ei, ei). (20)
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The manifold (M, g, S (T M)) is called minimal if µ1 = µ2 = 0 and Dα = 0 on Rad T M (Bejan & Duggal, 2005;
Duggal & Sahin, 2010).

The mean curvature vector on T M and on Γ(S (T M)) are given by

H(p) =
1
n

trace|S (T M)h = µ1N +
m∑
α=1

µ2uα, (21)

H∗(p) = µ∗ξ + µ1N +
m∑
α=1

µ2uα, (22)

respectively.

Let Π = sp{ei, e j} be 2-dimensional non-degenerate plane of the tangent space TpM at p ∈ M. Then, the number

Ki j =
g(Rp(e j, ei)ei, e j)

gp(ei, ei)gp(e j, e j) − gp(ei, e j)2 (23)

is called the sectional curvature of the section Π at p ∈ M. Since the operator C isn’t symmetric the sectional
curvature function doesn’t need to be symmetric on any lightlike submanifold of a semi-Riemannian manifold
(Duggal & Sahin, 2010).

Let ξ be a null vector of TpM. A plane Π of TpM is called a null plane if it contains ξ and ei such that g̃(ξ, ei) = 0
and g̃(ei, ei) , 0. The null sectional curvature of Π be given in (Beem, Ehrlich, & Easley, 1996) as follows:

Kξ(Π) =
g(Rp(ei, ξ)ξ, ei)

gp(ei, ei)
. (24)

We note that the null sectional curvature measures differences in length of two spacelike geodesic constructed
from the degenerate plane section Π and it is independent of the choice of the spacelike vector ei but it depends
quadratically on the null vector ξ (Albujer & Haesen, 2010).

Let (M, g, S (T M)) be an (n + 1) dimensional 1-lightlike submanifold of an m̃-dimensional Lorentzian manifold
(M̃, g̃) and {e1, .. . . . , en} be an orthonormal basis of Γ(S (T M)). The induced Ricci type tensor R(0,2) of M is defined
by

R(0,2)(X, Y) =
n∑

i=1

g(R(ei, X)Y, ei) + g̃(R(ξ, X)Y,N). (25)

It is known that R(0,2) is not symmetric and has no geometric meaning. The tensor R(0,2) is called the Ricci curvature
if it is symmetric (Duggal & Sahin, 2010).

3. Co-screen Conformal 1-lightlike Submanifolds

We begin this section with the canonical theorems for 1-lightlike submanifolds of a Lorentzian manifold.

Let (M, g) be an (n + 1)-dimensional 1-lightlike submanifold of an (m + n + 2)-dimensional Lorentzian manifold
(M̃, g̃). Let us consider two quasi-orthonormal frame {ξ,N, ei, uα} and {ξ,N′, e′i , u′α} induced onU. In this case, the
followings can be written

e′a =
n∑

b=1

eb
a(eb − fbξ), u′α =

m∑
β=1

uβα(uβ − Qβξ) (26)

and

N′ = N + N1ξ +

n∑
a=1

faea +

m∑
α=1

Qαuα, (27)

where eb
a, uβα, N1, fa and Qα are differentiable functions on U for a ∈ {1, . . . , n} and α ∈ {1, . . . ,m}. Since

g̃(N,N) = 0, we have

N1 = −
1
2

n∑
a=1

( fa)2 − 1
2

m∑
α=1

(Qα)2. (28)
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Let hℓ and h′ℓ are light parts of the second fundamental forms and B and B′ are coefficients of the light parts of
the second fundamental forms on screen distributions S (T M) and S (T M)′, respectively. Taking ξ̃ = θ ξ and thus
Ñ = 1

θ
N, where θ is some function, we obtain

h′ℓ(X,Y) = g̃(∇XY, ξ̃)Ñ = g̃(∇XY, ξ)N = hℓ(X,Y), (29)

which implies that hℓ is independent of the screen distribution S (T M).

Let hs and h′s are non-degenerate parts of the second fundamental forms and D and D′ are coefficients of the
non-degenerate parts of the second fundamental forms on screen distributions S (T M) and S (T M)′, respectively.
Using (26), we have

D′α(X,Y) = g̃(∇̃XY, uα)

=

m∑
β=1

uβα(Dβ(X,Y) − QβB(X,Y)), (30)

which implies that non-degenerate part of the second fundamental form hs depends on the screen distribution.

Using similar method, one can easily get

C′(X, PY) = C(X, PY) − 1
2
∥e∥2B(X,Y) + g(∇XPY, e) (31)

where e =
∑n

a=1 faea is called the characteristic vector field.

Let us consider the first derivative of a screen distribution S (T M) given by

S (p) = Span{[X,Y]p : Xp,Yp ∈ S (T M), p ∈ M}, (32)

where [, ] denotes the Lie-bracket. Then, we have the following:

Theorem 1 Let (M, g, S (T M)) be an (n + 1)-dimensional 1-lightlike submanifold of a Lorentzian manifold. If
the first derivative S defined by (32) coincides with S (T M), then S (T M) is a canonical screen of M, up to an
orthogonal transformation with a canonical lightlike transversal vector bundle and the screen second fundamental
form h∗ is independent of a screen distribution.

The proof is same as that of Theorem 2.1 in (Duggal, 2007), so we omit it here.

Now, we recall a class of 1-lightlike submanifolds of a Lorentzian manifold which admits an integrable canonical
screen distribution as follows.

Definition 2 (Atindogbe & Duggal, 2004) A 1-lightlike submanifold (M, g, S (T M)) of a Lorentzian (M̃, g̃) is
called a screen locally conformal if

B(X,Y) = φC(X,Y), ∀X,Y ∈ Γ(T M|U), (33)

whereU is a local coordinate neighborhood of M and φ is a smooth function on a neighborhoodU in M. If φ is
non-zero constant then the submanifold is called screen homothetic.

Now, we state the following theorem:

Theorem 3 Let (M, g, S (T M)) be an (n + 1)-dimensional 1-lightlike submanifold of an (n + m + 2)-dimensional
Lorentzian manifold (M̃, g̃). Suppose that S (T M) is integrable and S (T M) is totally umbilical immersed in M̃ and
it is parallel along integral curves of the radical distribution. Then, M is screen locally conformal if and only if
µ∗µ1 , 0.

Proof. Let us denote M′ as a leaf of S (T M). Then, we have

∇XY = ∇∗XY +C(X,Y)ξ + B(X,Y)N +
m∑
α=1

Dα(X,Y)uα, (34)

for all X,Y ∈ T M′. The mean curvature vector of M′ is a vector field of the rank (m + 2). From (22) and since M′

is totally umbilical, it is clear that

C(X,Y)ξ + B(X,Y)N +
m∑
α=1

Dα(X,Y)uα = g(X,Y)(µ∗ξ + µ1N +
m∑
α=1

µ2uα). (35)
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In other words,

B(X,Y) = µ1g(X,Y), C(X,Y) = µ∗g(X,Y) and Dα(X,Y) = µ2g(X,Y), (36)

for any α ∈ {1, . . . ,m}. Also, it is known that the mean curvature vector H∗ on Γ(S (T M)) satisfies that

g̃(H∗,H∗) = 2µ1µ
∗ + µ2

2 ≥ 0. (37)

If µ1µ
∗ , 0 then AN X = µ1

µ∗ A∗ξX for all X ∈ T M′. Since S (T M) is parallel along integral curves of the radical
distribution, we have ANξ = 0 so that

AN X =
µ1

µ∗
A∗ξX, (38)

for all X ∈ T M which implies that M is screen locally conformal. The proof of the converse part is straightforward.

Using same proof way of Theorem 2.3 in (Duggal & Bejancu, 1996), we immediately have the following theorem:

Theorem 4 Let (M, g, S (T M)) be a 1-lightlike submanifold of a Lorentzian manifold. Then, the following asser-
tions are equivalent:

1) S (T M) is integrable ;

2) h∗(X, Y) = h∗(Y, X) for all X,Y ∈ Γ(S (T M));

3) the shape operator AN on M is symmetric.

From the above theorem, it is clear that screen conformal 1-lightlike submanifolds have the important features that
their screen distributions are always integrable and the sectional curvature function is always symmetric and it has
significant geometric meanings as in Riemannian manifolds.

We give now the following definition that shows that there is another type lightlike submanifold which its screen
distributions are always integrable and the sectional curvature function defined on it is always symmetric.

Definition 5 Let M be an (n+1)-dimensional lightlike submanifold of a Lorentzian manifold. The submanifold M
is called co-screen locally conformal on a coordinate neighborhood U if there exists a non-zero smooth function
φc such that

AN X = φcAuαX, ∀X ∈ Γ(T M), (39)

for any null transversal vector field N ∈ Γ(ltr(T M)) and α ∈ {1, . . .m}.
We now state the following theorem to characterize the co-screen conformal 1-lightlike submanifolds.

Theorem 6 Let (M, g, S (T M)) be a 1-lightlike submanifold of a Lorentzian manifold, then M is co-screen confor-
mal if and only if

C(X, PY) = φcDα(X, PY), for all X,Y ∈ Γ(T M), (40)

where φc is a non-zero smooth function on M.

Proof. Let (M, g, S (T M)) be a 1-lightlike submanifold of a Lorentzian manifold. Then, it follows (17) and (18),
we have

C(X, PY) = g(AN X, PY) = φcg(AuαX, PY) = φcDα(X, PY), (41)

for any X,Y ∈ Γ(T M).

Conversely, since the shape operator AN is S (T M)-valued, ρα = 0 for all α ∈ {1, . . .m}. Thus, we obtain C(X, PY) =
φcDα(X, PY) which implies that M is co-screen locally conformal.

Theorem 7 The conditions given in Theorem 4 are always satisfied for any co-screen locally conformal 1-lightlike
submanifold of a Lorentzian manifold.

Example 8 Consider in R7
1 with signature (−,+,+,+,+,+,+) a submanifold M given by the equations

x4 = (x2
1 − x2

2)
1
2 , x3 = (1 − x2

5)
1
2 , x6 = (1 − x2

7)
1
2 , x2, x5, x7 > 0. (42)
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Then, we have

T M = Span{ξ = x1∂x1 + x2∂x2 + x4∂x4,

U1 = x4∂x1 + x1∂x4,U2 = −x5∂x3 + x3∂x5,

U3 = x6∂x7 + x7∂x6},

and

T M⊥ = Span{ξ, u1 = x3∂x3 + x5∂x5, u2 = −x6∂x6 + x7∂x7}.

Thus, Rad T M = Span{ξ} is a distribution on M and S (T M⊥) = Span{u1, u2}. Hence, M is a 1-lightlike submani-
fold of R7

1 with S (T M) = Span{U1,U2,U3}. Also, the lightlike transversal bundle ltr(T M) is spanned by

N =
1

2x1
{−x1∂x1 + x2∂x2 + x4∂x4}.

By direct calculations, we get the manifold (M, g, S (T M)) isn’t co-screen conformal since φc can’t be vanishing
function.

Example 9 Let M̃ = R6
1 be be a semi-Euclidean space of signature (−,+,+,+,+,+,+,+) with respect to the

canonical basis

{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6}.

Let M be a submanifold of R8
1 given by

x1 = sinh u1, x2 = cosh u1, x3 = u1, x4 = u2,

x5 =
1
√

2
u3, x6 = −

1
√

2
u3, (43)

where all of u1, u2, u3, u4 are non-vanishing coordinate functions. Then, we have

Rad T M = Span{ξ = cosh u1∂x1 + sinh u1∂x2 + ∂x3},

S (T M) = Span{e1 = ∂x4, e2 =
1
√

2
∂x5 −

1
√

2
∂x6},

ltr(T M) = Span{N = −1
2

cosh u1∂x1 −
1
2

sinh u1∂x2 +
1
2
∂x3},

tr(T M) = Span{u1 =
1
√

2
∂x5 +

1
√

2
∂x6, u2 = sinh u1∂x1 + cosh u1∂x2}. (44)

By straightforward computations, it can be obtained that the submanifold is co-screen conformal with φc is arbi-
trary.

Now, we give the following:

Theorem 10 Let (M, g, S (T M)) be a totally geodesic, totally umbilical or minimal screen locally conformal
1-lightlike submanifold of a Lorentzian manifold (M̃, g̃). Any leaf M′ of S (T M) immersed in M̃ as a (m + 2)-
dimensional non-degenerate submanifold if and only if the following assertions must be occurred:

a) M is irrotational.

b) M is co-screen locally conformal.

Proof. Let M is a co-screen locally conformal irrotational 1-lightlike submanifold. Suppose that X, Y be tangent
vector fields of the leaf M′ of a screen distribution and h′ is its second fundamental form in M̃. If we put (16),
(17), (18) and (39) in (34) we get

∇̃XY = ∇∗XY + g(A∗ξX,Y)(φξ + N) +
n∑
α=1

g̃(AuαX,Y)uα, (45)
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which implies that

h′(X,Y) = B(X,Y)(φξ + N + uα), for any α = {1, . . . ,m}, (46)

and so

h′(X,Y) =
√
φB(X, Y)(

√
φξ +

1
√
φ

N + uα) (47)

where (
√
φξ + 1√

φ
N + uα) is a unit spacelike vector field on M′. Since M is irrotational Dα(X, ξ) = 0 for all

α ∈ {1, . . . ,m} and B(X, ξ) = 0 for all X ∈ Γ(T M′). Therefore, the leaf M′ of S (T M) immersed in M̃ as a
(m + 2)-dimensional non-degenerate submanifold. The proof of the converse part is straightforward.

Corollary 11 If (M, g, S (T M)) is a lightlike hypersurface of a Lorentzian manifold (M̃, g̃). Then, any leaf M′ of
S (T M) immersed in M̃ as a 2-dimensional non-degenerate submanifold.

Remark 12 The above corollary is also valid for lightlike hypersurfaces of a semi-Riemannian manifold that
proved in ( Atindogbe, Ezin & Tossa, 2006).

Theorem 13 Let (M, g, S (T M)) be a co-screen conformal 1-lightlike submanifold of a Lorentzian manifold. The
co-screen distribution S (T M⊥) is a conformal Killing on M̃ if and only if S (T M) is totally umbilical.

Proof. Let L̃ denote the Lie derivative on M̃. If S (T M⊥) is conformal Killing on M̃, then

(L̃uα g̃)(X,Y) = g̃(∇̃Xuα,Y) + g̃(X, ∇̃Yuα) = δ g(X,Y), (48)

for any uα ∈ Γ(S (T M⊥)) and X,Y ∈ Γ(T M). Here, δ is a smooth function. Putting (17) in (48), we get

(L̃uα g̃)(X,Y) = −2Dα(X,Y) = δg(X,Y), (49)

for any X,Y ∈ Γ(T M). Since M is co-screen conformal, we obtain

C(X,Y) = − δ
2φ

g(X,Y), (50)

which shows that S (T M) is totally umbilical.

Now, we assume that S (T M) is totally umbilical. Then,

C(X, Y) = λ′g(X, Y), ∀X,Y ∈ Γ(S (T M)), (51)

where λ′ is a smooth function. Putting λ′ = − δ2φ , it is clear that S (T M⊥) is a conformal Killing on M̃.

Corollary 14 Let (M, g, S (T M)) be co-screen conformal 1-lightlike submanifold of a Lorentzian manifold. The
co-screen distribution S (T M⊥) is a Killing distribution on M̃ if and only if S (T M) is totally geodesic and M is
minimal.

Using similar proof method of Theorem 3.10 in (Wang & Liu, 2013) we have also the following:

Theorem 15 Let (M, g, S (T M)) be a co-screen conformal 1-lightlike submanifold of a Lorentzian manifold. Then,

1) Any leaf of (S T M) is totally geodesic on M.

2) The submanifold M is a lightlike product manifold of M′ and F where M′ is a leaf of S (T M) and F is a null
curve of M.

3) Dα = 0 on S (T M) for all α ∈ {1, . . . ,m}.
4. Ricci Curvature on Co-screen Conformal 1-lightlike Submanifolds

In this section, we study on the sectional curvature, the null sectional curvature and the induced Ricci curvature
on co-screen conformal 1-lightlike submanifolds of a Lorentzian manifold. We begin this section herewith the
following lemma.

Lemma 16 Let (M, g, S (T M)) be a co-screen conformal 1-lightlike submanifold of a Lorentzian manifold. Let us
denote the Riemannian curvature tensors R and R̃ of the submanifold M and the ambient manifold M̃, respectively.
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Then, we have the following relations:

g̃(R̃(X,Y)PZ, PW) = g(R(X,Y)PZ, PW) + B(X, PZ)C(Y, PW) − B(Y, PZ)C(X, PW)

+
1

(φc)2 [C(X, PZ)C(Y, PW) −C(Y, PZ)C(X, PW)], (52)

g̃(R̃(X,Y)Z,N) = g̃(R(X,Y)Z,N) +
1
φc [C(X,Z)ρα(Y) −C(Y,Z)ρα(X)]

+B(X,Z)η(ANY) − B(Y,Z)η(AN X), (53)

g̃(R̃(X,Y)ξ,N) = g̃(R(X,Y)ξ,N) +
m∑
α=1

ρα(X)εα(Y) − ρα(Y)εα(X), (54)

g̃(R̃(X,Y)Z, ξ) = (∇X B)(Y,Z) − (∇Y B)(X,Z) + B(Y,Z)ρ(X) − B(X, Z)ρ(Y)

+
1
φc [

m∑
α=1

C(Y,Z)εα(X) −C(X,Z)εα(Y)], (55)

where X,Y,Z,W ∈ Γ(T M), N ∈ Γ(ltr(T M)) and ξ ∈ Rad T M.

Let (M, g, S (T M)) be (n+1)-dimensional co-screen conformal 1-lightlike submanifold, {e1, . . . , en, ξ,N, u1, . . . , um}
be a quasi-orthonormal basis on (M̃, g̃). From (52) and (53), we have

g̃(R̃(ei, X)Y, ei) = g(R(ei, X)Y, ei) + B(ei, Y)C(X, ei) − B(X,Y)C(ei, ei)

+
1

(φc)2 [C(ei,Y)C(X, ei) −C(X,Y)C(ei, ei)] (56)

and

g̃(R̃(ei, ξ)Y,N) = g̃(R(X, ξ)Y,N). (57)

Theorem 17 Let (M, g, S (T M)) be an (n + 1)-dimensional co-screen conformal 1-lightlike submanifold of a
Loretzian manifold (M̃, g̃). Then, the induced Ricci curvature tensor of M is symmetric.

Proof. From (20), (56) and (57) we get

Ric(X, Y) =

n∑
i=1

g(R(ei, X)Y, ei) + g̃(R(X, ξ)Y,N)

= R̃icS (T M)(X,Y) + g̃(R̃(X, ξ)Y,N) + µ∗[B(X,Y) +
1

(φc)2 C(X,Y)]

−
n∑

i=1

[B(Y, ei)C(X, ei) +
1

(φc)2 C(Y, ei)C(X, ei)], (58)

where R̃icS (T M)(X,Y) is n-plane section Ricci curvature of TpM̃ for any X,Y ∈ Γ(T M). Since the operator C is
symmetric on these submanifolds, it is clear that the Ricci tensor is symmetric.

Using (56) we have the following theorem:

Theorem 18 If (M, g, S (T M)) is co-screen conformal 1-lightlike submanifold of a Lorentzian space form M̃(c)
with constant curvature c. Then, the null sectional curvature of M is given by

Kξ(Π) = Dα(ξ, ξ)Dα(ei, ei) − [Dα(ξ, ei)]2, for any α ∈ {1, . . . ,m}, (59)

where Π = Span{ξ, ei} is a degenerate plane section of TpM.

We note that if the submanifold (M, g, S (T M)) is irrotational then the null sectional curvature given by (59) van-
ishes identically.

Definition 19 We define the screen Ricci curvature at a unit vector ei ∈ Γ(S (T M)) as

RicS (T M)(ei) =
n∑

j=1

Ki j, 1 ≤ i , j ≤ n, (60)
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Since Ki j are symmetric for all i, j ∈ {1, . . . , n} in co-screen conformal 1-lightlike submanifolds of a Lorentzian
manifold, it is clear that the screen Ricci curvature is well defined.

We note that the screen Ricci curvature vanishes identically if n = 1, it is equal to the sectional curvature if n = 2.

Theorem 20 Let (M, g, S (T M)) be a 4-dimensional co-screen conformal 1-lightlike submanifold of a Lorentzian
manifold. The screen Ricci curvature RicS (T M) is constant at every unit vector on Γ(S (T M)) if and only if the
following conditions are occurred.

a) The sectional curvature function on M is constant.

b) Any leaf M′ of S (T M) immersed in M̃ is (m + 2)-dimensional non-degenerate submanifold with constant
curvature.

Proof. Let {e1, e2, e3} be an orthonormal basis of Γ(S (T M)). If RicS (T M) is constant, then

RicS (T M)(e1) = K12 + K13 = λ,

RicS (T M)(e2) = K21 + K23 = λ,

RicS (T M)(e3) = K31 + K32 = λ,

where λ is a constant. Thus, we have

K12 =
1
2

[RicS (T M)(e1) + RicS (T M)(e2) − RicS (T M)(e3)] =
1
2
λ,

which shows that the sectional curvature is constant and any leaf M′ of S (T M) immersed in M̃ is (m + 2)-
dimensional non-degenerate submanifold with constant curvature. The proof of the converse part is straightfor-
ward.

Theorem 21 Let (M, g, S (T M)) be an (n+ 1)-dimensional co-screen conformal 1-lightlike submanifold of a semi-
Euclidean space with the screen Ricci curvature on the submanifold vanishes identically. Then, at least one of the
following situations are occurred:

a) µ1C(X, X) =
∑n

i=1 B(ei, X)C(ei, X) for all X ∈ Γ(S (T M)).

b) φc = ∓1.

Proof. If we take trace in (56), we have(
(φc)2 − 1

(φc)2

) n∑
i=1

[B(ei, X)C(ei, X)] − µ1C(X, X) = 0,

which implies that

µ1C(X, X) =
n∑

i=1

B(ei, X)C(ei, X),

or

φc = ∓1. (61)

This is proof of the theorem.

Theorem 22 Let (M, g, S (T M)) be an (n + 1)-dimensional flat co-screen conformal 1-lightlike submanifold with
B = 0 of a semi-Euclidean space. Then, the local shape operator of M takes the form as follows:

A∗ξ =


a −a · · · −a
−a a · · · −a
...

...
. . .

...
−a −a · · · a

 , (62)

for a is a real number.
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Proof. Since M is flat, using (53) and (54) one can write

D(Y,Z)εα(X) = D(X,Z)εα(Y),
D(X,Z)ρα(Y) = D(Y,Z)εα(X),

i.e

D(Y,Z)[εα(X) − ρα(Y)] = D(X, Z)[εα(Y) − ρα(X)]. (63)

for all X,Y,Z ∈ T M. If we put Y = X + Z then we have

D(Z,Z)[εα(X) − ρα(X)] = D(X,Z)[εα(Z) − ρα(Z)], (64)

i.e

εα(X) − ρα(X)
εα(Z) − ρα(Z)

=
D(X,Z)
D(Z, Z)

. (65)

By using similar method, one has

εα(X) − ρα(X)
εα(Y) − ρα(Y)

=
D(X,Z)
D(Z, Z)

, (66)

which implies that D(Y,Y) = D(Z,Z). Taking into consideration (52) it can be obtained D(Y,Y) = −D(X,Y). Thus
the shape operator A∗ξ takes the form as (62).

Definition 23 Let (M, g, S (T M)) be an (n + 1)-dimensional co-screen conformal 1-lightlike submanifold of a
Loretzian manifold (M̃, g̃). Let {e1, . . . , en} be an orthonormal basis of Γ(S (T M)). We define the screen scalar
curvature at a point p ∈ M as

rS (T M)(p) =
1
2

n∑
i, j=1

Ki j. (67)

Using (52) and (67), we state the following lemma:

Lemma 24 Let (M, g, S (T M)) be an (n+ 1)-dimensional co-screen conformal 1-lightlike submanifold of a Loret-
zian manifold (M̃, g̃). Let {e1, . . . , en} be an orthonormal basis of Γ(S (T M)). Then we have

2rS (T M)(p) = 2̃rS (T M)(p) + µ∗(µ∗ + µ1) −
n∑

i, j=1

[Bi jCi j + (
Ci j

φc )2], (68)

where Bi j = B(ei, e j) and Ci j = C(ei, e j) for all i, j ∈ {1, . . . , n}.
Let us denote

|B|2 =
n∑
i, j

(Bi j)2 and |C|2 =
n∑
i, j

(Ci j)2. (69)

We note that both the second fundamental forms B and C are independent of the screen distribution in co-screen
conformal 1-lightlike submanifolds of a Lorentzian manifold it is clear that the norms of these operators are well-
defined.

Theorem 25 Let (M, g, S (T M)) be an (n + 1)-dimensional co-screen conformal 1-lightlike submanifold of a
Loretzian manifold (M̃, g̃). Then, we have

2rS (T M)(p) ≤ 2̃rS (T M)(p) + µ∗(µ∗ + µ1) +
1
2
|B|2 + 1 − 2(φc)2

(φc)2 |C|2. (70)

The equality case of (70) holds for the point p ∈ M if and only if either the submanifold M is totally geodesic or is
also screen locally conformal with φ = −1.
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Proof. If we put

n∑
i, j=1

Bi jCi j =
1
2
{

n∑
i, j=1

(Bi j +Ci j)2 − (Bi j)2 − (Ci j)2} (71)

in Lemma 24, we get

2rS (T M)(p) = 2̃rS (T M)(p) + µ∗(µ∗ + µ1) − 1
2

n∑
i, j=1

(Bi j +Ci j)2

+
1
2

n∑
i, j=1

(Bi j)2 +
1

2(φc)2

n∑
i, j=1

(Ci j)2, (72)

which implies (70) inequality. The equality case of (70) holds for the point p ∈ M if and only if

n∑
i, j=1

(Bi j +Ci j)2 = 0, (73)

which shows that the submanifold M is totally geodesic or is also screen locally conformal with φ = −1.

Taking into consideration (70), we have also the following theorem:

Theorem 26 Let (M, g, S (T M)) be an (n + 1)-dimensional co-screen conformal 1-lightlike submanifold of a
Loretzian manifold (M̃, g̃). Then, we have

2rS (T M)(p) ≤ 2̃rS (T M)(p) + µ∗(µ∗ + µ1) − 1
2

(traceA)2 +
1
2
|B|2 + 1 − 2(φc)2

(φc)2 |C|2, (74)

where

A =


B11 +C11 B12 +C12 · · · B1n +C1n

B21 +C21 B22 +C22 · · · B2n +C2n
...

Bn1 +Cn1 Bn2 +Cn2 · · · Bnn +Cnn

 . (75)

The equality case of (74) holds for the point p ∈ M if and only if B(X,Y) = −C(X,Y) for all mutually orthogonal
vectors X,Y ∈ Γ(S (T M)).
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