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Abstract

This paper treats the exponential linear phase system which consists of eigenfunctions of the discontinuous
differential operator. Frame properties of this system are studied in weighted Lebesgue spaces with the variable
order of summability.
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1. Introduction
Perturbed system of exponents {eiﬂn‘ }ngZ plays an important role in the study of spectral properties of discrete

differential operators and in the approximation theory. Apparently, the study of basis properties of these systems
dates back to the well-known work of (Paley & Wiener, 1934). Since then, a lot of research has been made in this
field (more details can be found in Sedletskii, 2005; Duffin & Schaeffer, 1952; Young, 1980; Christensen , 2003;
Heil, 2011 ). It should be stressed that similar systems are of great scientific interest in the frame theory as well.

Since recently, there arose a great interest in considering various problems, related to some research fields of
mechanics and mathematical physics, in generalized Lebesgue spaces Lo, with a variable summability

exponent p(.) (for more information see Kovacik & Rakosnik , 1991; Xianling & Dun , 2001; Kokilashvili &

Paatashvili, 2006; Sharapudinov, 2007; Kokilashvili & Samko, 2003). Application of Fourier method to the
problems for partial differential equations in generalized Sobolev classes requires a good knowledge of
approximative properties of perturbed exponential systems in generalized Lebesgue spaces.
Approximation-related issues in these spaces have been first studied by Sharapudinov, 2007.

In this work, we consider an exponential linear phase system. The study of frame properties of perturbed
exponential systems is closely related to the one of similar properties of perturbed sine and cosine systems. Note
that the linear phase sine and cosine systems appear when solving partial differential equations by Fourier
method. Basis properties of linear phase trigonometric systems have been studied in (Moiseev, 1984; Moiseev,
1987; Bilalov, 1990; Bilalov, 1999; Bilalov. 2001; Bilalov, 2003; Bilalov, 2004; Moiseev, 1998; Moiseev, 1999).
This work is dedicated to the study of frame properties (atomic decomposition, frameness) of the exponential
piecewise linear phase system in generalized weighted Lebesgue space.

2. Needful Information

We will use the usual notations. N —will be a set of all positive integers; Z — will be a set of all integers;
Z, ={0} UN; R—will be the set of all real numbers; C— will stand for the field of complex numbers; ()-
is the complex conjugate ; &, — is the Kronecker symbol; y, —is the characteristic function of the set A .
Let p:[-z 7] —[l+) be some Lebesgue-measurable function. By £, we denote the class of all functions
measurable on [—ﬂ,ﬂ] with respect to Lebesgue measure. Denote

|p(f)d§f|f(t)|”“)dt.
Let -
Lz{f eﬁoilp(f)<+oo}.
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With respect to the usual linear operations of addition and multiplication by a number, £ is a linear space as

pt = sup[vrai] p(t) < +oo . With respect to the norm

L is a Banach space, and we denote it by Lp(_) . Let

def
WL ={p:p(-7) = p(x);3C >0, Vi,t, e[—;z,;z]:|t1—t2|£%:

= [p(t)-p(t) < —2 }

< -
—Injt,—t,|
Throughout this paper q(t) will denote the conjugate of a function p(t) : %+%51. Denote
p q
p~ =infvrai p(t) . The following generalized Hdder inequality is true

[-7.7]

[IE®afdt=c(p e )Ifl,, ol
1
p+
Directly from the definition we get the property which will be used in sequel.

where c(p‘; p*):l+%—

Property A. If | (t)/<|g(t)| ae.on (-z,7z),then ||f||p(_) £||g||p(_).

It is easy to prove

Statement 1. Let peWL, p(t)>0,Vte[-7,7] ; {ai}lmcR. Function p(t):ﬁ|t—ri|"‘ belongs to the

i=1

space L, ,if o >- , Vi=lm; where —z=1,<7,<..<7, =7.

1
p(z)

The following facts play an important role in obtaining the main results.

Property B [Xianling & Dun, 2001 ] If p(t):1< p~ < p" <-+oo, then the class CSO(— 7r7z) (class of
finite and indefinitely differentiable functions) is everywhere dense in Lp(‘).

By S we denote the singular integral
1 f
Sf =—_J.£)dr, tel’,
2my r—t
where T'cC is some piecewise Hdder curve on C . Let p:[— 7r,7z]—>(0,+oo) be some weight function.

Define weight class
def

Loty Loo) =112 AT eLpgf
def
furnished with the norm “f“ 000 =||of | o) The validity of the following statement is established in
pi).pl: )

Kokilashvili & Samko, 2003.
Statement 2 [Kokilashvili & Samko, 2003/ Let peWL , 1< p~. Then, singular operator S is acting

boundedly from L) ,) to Ly, »ifandonly if
1 1 —
1 e <1 k=1m. (1)
p(rv) alz )
Let X be some Banach space with anorm | -||, . Then X" will denote its conjugate with a norm |- ||, - . By

L[M] we denote the linear span of the set M < X ,and M will stand for the closure of M .
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System {x,},_, X is said to be uniformly minimal in X , if 35>0:vu€Li{I} J|xk—u||xz

nJnzk

8x[l » VK eN.

System {x,},_, X is said to be complete in X if L[ix,} o ]=X . It is called minimal in X if

xkeL%annik,VkeN.

The following criteria of completeness and minimality are available.
Criterion 1. System {x,} _, = X iscompletein X ,if f(x,)=0, VneN, feX = f=0.

NJneN

Criterion 2. System {x,} _, =X is minimal in X < it has a biorthogonal system {f,} <X, ie.

fn(Xk)=5nk,Vn.k eN.

Criterion 3. Complete system  {x, | _ < X is uniformly minimal in X < sup|x,|, [|y|
n

<+, where

{Yn ooy © X s @ system biorthogonal to it.

System {X, },.y © X issaid to be abasis for x ,iffor vxe X {4}, CKix=> A.x, .
n=1

System {x,},_, = X issaidtobeaframeif VxeL[{x.} ], i}y <K X=) AaXy
=1

If system {x, }neN < X forms a basis for X, then it is uniformly minimal.

We will also need some facts about an atomic decomposition and frames in Banach spaces.

Definition 1. Let X be a Banach space and % a Banach sequence space indexed by N . Let
{fhean © X 10ty © X7 Then  ({gy heen » {fi hen ) is @n atomic decomposition of X with respect
to ¥ if:

() {gk(f)}keN ex, Vi eX;
(i)) 3AB>0: A, <[ {oy (e

<B|f|,. VfeX;

.+
GMf:i%UHwWeX.
k=1

The concept of the frame is a generalization of the concept of an atomic decomposition.

Definition 2. Let X be a Banach space and % a Banach sequence space indexed by N . Let
{0}y = X and S:.% — X be a bounded operator. Then ({gy },_ , S) is a Banach frame for X with
respectto % if:

M {0k (Dhen €7, VF e X
(i) 3AB>0: Alf], <[{gu(Flec
(i) S [fge (=1, vfeX.

A and B will be called the frame bounds.

<B|f],. VfeX;

"

It is true the following

Proposition 1. Let X be a Banach space and % a Banach sequence space indexed by N with canonical
basis {0, },.y » where &, =15 f . Let {g,},.y =X~ and SelL(#X). Then the following statements
are equivalent:

(i) ({9}, S) isaBanach framefor X with respectto . .

(i) ({9 heen 15 (6 )hen ) is @n atomic decomposition of X with respectto .5 .

3. Weighted Hardy Classes with a Variable Summability Exponent
Let w= {z 2| < 1} be a unit ball on the complex plane, and let O be a unit circumference. Denote
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ho) E{u tAU=01in o and |u] o =(;s<l:£)1”u(re“]‘ s <+oo}.

Lemma 1. Let peWL,p 21, and let the weight p(t) satisfy condition (1). If fel,,,, then
Infact, let f el ,.Letuschoose p,e [1 p’J and consider
4 T i ,L
Iy, = I|f(t)|p°dt= I|f(t)|p°p“(t)p ) g,
where «a(t) = O >1.Let a*(t) = IO . Applying Holder’s inequality, we get
Po at)-1
I, <C(p~, p)|[f|™ p" ~Po : 2
Gt LI I el @)
It is not difficult to see that
U I L T
a() p().p

<40, holds if and only if the following inequality is fulfilled

a’()

It is absolutely clear that the relation “p ~Po

- poa*(fk)ak > —l, k =l,_m.
Hence we get the condition on the parameter p, :

1 Po ra—
—|1l-——=| k=1m. 3
s po( p<rk>] i <

As lim i(l— &J o , k=1m, then it follows directly from relations (1) that it is always possible
Po—1+0 Py p(ze)) alzy)

to choose poell, p’J such that the inequalities (3) are satisfied. As a result, we obtain from (2) that

< — —Po . - -
Iy, < M||f||p(A)’p <+, where M “p ()”a*(') is a constant. Lemma is proved.
Using this lemma, we prove the following one.
Lemma 2. Let peWL ,p 21, and let the weight p(t) satisfy the condition (1). If ueh,, ,, then
3py €[l4oo]: ueh, .
In fact, let ueh, ,.Assume
T itA| P
1, ()= flur @] " at,
where u, (z) = u(rz) . From Lemma 1 we obtain that 3p, e[l+w]:
I Po (r) < C"Ur ()" p()p '
where C isaconstant (and in further too) . Consequently
1

sup (1, () =Jul. <Clur O], <40

0<r<1 Po Po hpo — IO ’
and, asaresult ueh, . Lemmais proved.
The following theorem is true.
Theorem 1. Let peWL, p~ >1, and let the inequalities (1) be satisfied. If ueh,, , ,then If el ,:

oy 17
u(re'?)=— jpr @-vf M)t | )
2z
-
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2
where P, ()= 21—r is the Poisson kernel. Vice versa, if f el
1+r° —-2rcosa

by (4), belongs to the class h

b()p - then function u() , defined
ON-

Proof. First, we consider the necessity. Let ueh Then, by Lemma 2 3p, e [L+o]:u e hp, - Classical

p()p
results tell us (see e.g. Kusis, 1984) that 3f eL, such that the relation (4) holds. It is known that

u(re'’) > f(0) as r—>1 ae. on (-, 7) (according to Fatou’s lemma Kusis, 1984), and, consequently,

‘u(rem)‘ pw)p(ﬁ)—)‘f(@)‘ p(e)p(ﬂ) as r—1 a.e.on (-z, 7). Then, by the classical Fatou theorem, we obtain that

. 4
u(re"g)‘p( ) 5(0)d6 < 10,

j|f(9)|"“’)p(9)d9g lim I
r-l

- -
ie. fe Loy
Now, let felL,, , and letthe relation (4) be true. As the inequalities (1) hold, then it follows from the results
of Kokilashvili & Samko, 2003 that the singular operator (4) with Cauchy kernel is bounded in L, ,. It
with respect

. Necessity is proved.

follows directly that the integral operator (4) with Poisson kernel is uniformly bounded in L, ,

to re(0l), ie. |P(f) . <C|f|

oM

i 17 .
_ iy _ _
0(p where Pr(f)_u(re )= Py J.Pr(a t)yf(t)dt , and C is a

constant independentof r and f . Theorem is proved.

+

Similarly we define the weighted Hardy classes H, ,.

By H ;0 we denote the usual Hardy class, where

+

b()p = {f eH :f"e Loeyp (aw)}, where f* are non-tangential

Po €[L+w) is some number. Define H
boundary values on éw of f

+

It is absolutely clear that f belongs to the space H 0().p

if and only if Re f and Im f belong to the

space hy, ,. Therefore, many of properties of functions from h,, , stay true for functions from H ;(4), b
it
Taking into account the relationship between Poisson kernels P, () and Cauchy kernels K, (t) = ite and
e j—
using Theorem 1, we easily get the validity of
Theorem 2. Let peWL, p~ >1, and let the inequalities (1) be satisfied. If FeH g(_),p ythen 3f el ,:
T V4
1 f(t)dt 1
F(z)=— _=—jthtdt. 5
(2) el Pl O () (5)

.
p().p -

of functions which are analytic in C\@ (o = wU0dw) with their orders

Vice versa, if f e L then the function F , defined by (5), belongs to the class H

JON-IN
The weighted Hardy class ,Hp, ,
m, <m at infinity is defined similarly to the classical one. Let f(z) be the analytic function in C\w of
finite order my <m at infinity, i.e.

f(2) = (D) + f2(2),
where f,(z) is a polynomial of degree my, <m (f,(z)=0m, <0), and f,(2) is a regular part of Laurent

series expansion of f(z) in the neighborhood of an infinitely remote point. If the function ¢(z) = fz(%j,
z

N
p().p

The validity of the following theorem is proved just like in the classical case.

belongs to the class H then we will say that the function f(z) belongs to the class , H

PO

Theorem 3. Let peWL,p™ >1, and let the inequalities (1) be satisfied. If f eH ;(A),p , then
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”f(re“)— f*(e“)”pop 50,1 —>1-0,

where f* are non-tangential boundary valueson 6w of f .

Just as we have the following

p(),p» then

Theorem 4. Let peWL, p~ >1, and let the inequalities (1) be satisfied. If fe, H
“f(re”)—f‘(e“)” 50,r 140,
p().p

where f~ are non-tangential boundary valueson 6w of f from the outside of @ .

Let us show the validity an analogue of the classical theorem of Smirnov. Assume that peWL,p~ >1 and let
the inequality (1) be fulfilled. Let ueH;" and u™ eL), ,where u” be non-tangential boundary value on
dwof u . Then itis known that 3f e L, (6w):

u(z)=%'|‘%dr

oo

Consequently, u(reig)—> f(eig) a.e.on (-z,z) as r—1-0. Hence directly follows that f eL,,. Then
by Theorem 2 we obtain u* e H ;(,)'p . Thus, the following theorem is true.

Theorem 5. Let peWL,p~ >1, and let the inequalities (1) be satisfied. If ueH;" and u™ el ,, then
Ut eHg,

4. Bases of exponents in weighted Hardy classes

Consider the system of exponents E =™} _, and denote E® z{eii”t}nzk.

By Lj and L

pO).p we

POLP

denote the restrictions of classes H;(_)’p and ,H respectively, to ow , e

OV
Lo =Hpow [, mbeop=mHpw., [, - Let’s show that if the inequalities (1) hold, then the system E(”

forms a basis for L, ,. Take Vf el ,.Ifthe inequalities (1) hold, then Ly ,cLi . Then,as is known

If(r)z“drzo,VneA . (6)
More information about this fact can be found in Kusis,1984; Privalov, 1950. If the inequalities (1) hold, then it

follows from the results in - Danilyuk, 1975 that the system of exponents E forms a basis for L, ,. Taking

into account (6), we obtain that f can be expanded inaseriesin L

f(eint) :Z fneint 7
n=0

where f, are the biorthogonal coefficients of f with respect to the system E . It is absolutely clear that such

n()p Of the following form

.
p().p

. Thus, the following theorem is

an expansion is unique. Consequently, the system E(® forms a basis for L . Similarly it can be proved

that if the inequalities (1) hold, then the system E ™ forms a basis for L, ,

true.
Theorem 6. Let peWL, p~ >1, and let the inequalities (1) be satisfied. Then the system E @ ( E™)formsa

basis for Ly , (mLpg,, 1< p<+o.

+

o().p Classes

5. Riemann Boundary Value Problem for H

Consider the following Riemann problemin H classes

000 %m H (),
F'(r)-G()F () = f (1), 7 € 0w, ©)

where f eL is some function. By the solution of problem (7) we mean a pair of analytic functions

p().p
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(F*(z);F‘(z))eH‘g(_)ypxm o()p » boundary values of which satisfy the relation (7) almost everywhere.

Introduce the following functions Xii(z), which are analytic inside (with the + sign) and outside (with the -
sign) the unit circle, respectively:

e =z

x;(z)zexp{ L ].G(t)eit+zdt},

Xi(z)= exp{i % ]T'In‘G(e“]eit—+zdt} ,

+— -
A k elt —7
where 6(t) = arg G(e“). Define
X (2) |7 <1,
Xr @ 751, i=12
Sokhotski-Plemelj formulas yield

Zl7 elt sz elt
Assume Z*(z)=2;(z)Z5(z). We have
Z2°(r)-G(¢)2 (r)=0, redw . (8)
Introduce the piecewise analytic function
Z*(z), 1,
2(2)= (z). )7 <
Z ()| >1.

Following the classics, we call function Z(z) the canonical solution of the problem (7). Substituting the (8)
expression for G(r) in (7), we obtain

= , TEOW.

F*(z
z%(2)

~—~—

, and define the piecewise analytic function

o(2)= {q”(z)' o<1

O (z),[7] > 1.

Let ®*(z)=

It is not difficult to see that the function Z(z) has neither poles nor zeros for z ¢ dw. Therefore, functions
®(z) and F(z) have the same order at infinity. The results of Danilyuk, 1975 imply directly that the function

q)(z) belongs to the Hardy class H; for sufficiently small values of &> 0. Let us show that ®(z)e H; . To

do so, it suffices to prove that ®*(r)e L,(dw), because the rest will immediately follow from the Smirnov
theorem (Danilyuk, 1975) .

We will suppose that the coefficient G(z) satisfies the following conditions:
1) G*el, (ow);
2) Ot)=ar GE") isa piecewise Hdder function on [— 7, 72'].
Let {sk }{ I —7m<S; <..S, <7z be the points of discontinuity of the function #(t) and
e}l by =6(s, +0)-6(s, ~0), k=17 ;
be the corresponding jumps of 4(t) at these points. Denote
hy = 6(- 7)-6(x); héo) =0o(7)— (- 7).
Let
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h(®)

t—z|| 27 17 [
- tg——dr ;.
} em{ 4ﬂ_j90(f)09 - r}

g (t) = {sin

Assume

t—s,

ut)= r {sin

k=0

27
, Where s, =7x.

As is known (see Danilyuk, 1975 ), the boundary values ‘Z‘(r} are expressed by the formula

‘Zg(e"l = uo(t)[u (t)F{sin

Mo
2z
)

hy
27

t—n

r

‘Zi(eit] = Uo(t)H

k=0
It follows directly from the Sokhotski-Plemelj formula that

supvrai{ ‘Zl’(eit lﬂ} <400,

(-m.7)
Z‘(e”l_1 :
‘Z’(ei‘]_l :‘Zl’(e“]_l|u0(t]_1

pPO)p -

. t—s
sin ——K

Thus, the following representation is true for

hy

r t—s, |27

sin

9)

k=0

By the definition of solution, we have F~(z)eH Consequently, F~(r)elL (Ow) . Therefore, if

p().p
-1
‘Z_(r)‘ € Lq(.)]p,1 (Ow) , then we obtain directly from the Hdder inequality that @~ (7) € L, (0w) .

We will need the following easy-to-prove lemma that follows directly from Statement 1.
Lemma 3. Let peC[-7,7] and p(t) >0, Vte[-7,z]. Then the function &(t)=|t—c|* belongs to L

p()p
. 1 — 1
if a>-——- for c#7, Vk=1m, and a+a >-—— for c=17 .
p(c) p(c)
-1
Represent the product ‘Z’p‘ in the following form
I BTN N B
ool ] o [T
k=0
where {t ), =farg 7y JI, UiscJ . and B, is defined by the relation
m r
1 J—
B :Zail{tk}(arg Ti)"'gzhil{tk}(si)i k=0,1. (10)
i=1 i=0
Taking into account Lemma 3, we obtain that if the inequalities
1 JE—
Py >———, k=0,r , (11)
T )

-1 -1
are true, then the product ‘Z*p‘ belongs to the space L, i.e. ‘Z“ € Lq(‘)’p,1 . So, if the inequalities (11)

are true, then the function ®(z) belongs to classes H; . Consequently, according to the results of Danilyuk,
1975, ®(z) is a polynomial Py (z) of order mg <m. Thus, F"(z)=P, (2)Z"(z). Let’s find out under
which conditions the function F~(z) belongs to the space H, ,.We have
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|
2 A|=[zalol] Tht—t ™ -
k=0

Consequently, if the inequalities
1 —

< ,k=0,r
SRS
are true, then it is clear that F~(r)eL,(, ,,and hence F e, H, ,.So, if the inequalities
: L k=0r (12)

-—< P <—F/=,

at) 7 ()
are true, then the general solution of the homogenous problem
Fo (z’) = Gl(r)Fof (z’), Telw,

Ho(),, can be represented as Fy(z)="P, (z)2(z), where P, (z) is an arbitrary

polynomial of order m, <m.

: +
in classes H ), xp

Now let’s consider the non-homogenous problem (7). Take Vvf el , and suppose

Fl(z)=ZZ(?:TKZ(I)Z*(e")f(t)dt- (13)

The Sokhotski-Plemelj formulas imply that the boundary values F;" satisfy a.e. the equality (7). Moreover, it
follows from Statement 2 that (Ff(z); Fl‘(z))e Hoop X1 Hp(),- As a result, we get the validity of the
following theorem.
Theorem 7. Let {ﬂk }{ be defined by (10) and the inequalities (1), (12) be satisfied. Then the general solution
of the Riemann problem (7) in classes H g(,)yp Xm Hp(), can be represented in the following form

F(2)=Pn, (2)2(2)+ Fi(2),
where Z(-) is the canonical solution of homogenous problem, F;(-) is the particular solution of
non-homogenous problem (7) defined by (13), and Py, () is a polynomial of order my <m.

6. Atomic Decomposition
Consider the following exponential linear phase system

E= {En (t)}neZ = {ei(nﬁignnh }neZ ' (14)

where a eC is a complex parameter. To explore the decomposition with regard to the system (14), we will
follow the scheme of Bilalov & Guseynov, 2012 . Consider the conjugate problem

F*(e")—G(e”)F‘(e")= e f(t), te[-x x|, (15)

where G(e“):e‘m’t . The particular solution Fo(z) of the problem (15) has the following form

. 1+2z)2* ¢ el £ (t)dt
Fs (z)=( +2) J‘ _ 720!() —
2z ,,,(l+ e't) (l—ze"t)
Sy b et
FO(Z):(+2) I -72a()d e
a _,,(l+ e”) (Lze’”)
Proceeding as in the previous section, we get 6(t)=—-Reat, r=0, hy=6(-z)-0(z)= 4Rear .
Consequently, S, =a, +2Rea, B, =¢,., Vk=0.Thenfrom Theorem 7 we obtain that if the inequalities

1 1 —
<oy <——, k=1m, (16)
Q(Tk) “ p(Tk)
L<0:m+2Reoz<L a7
a(z) p(r)
are true, then the conjugate problem (15) has a unique solution (Fo*(z); FO’(Z)) in classes H;—r(,)yp when

F~(:0)=0. Also, it can be proved (in the same way as in Bilalov & Guseynov, 2012; Bilalov & Guseinov,
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February, 2011) that, with the inequalities (16) and (17) fulfilled, the system (14) forms a basis for L) ,.
Thus, the following theorem is true.
Theorem 8. Let peWL , p~ >1, and the inequalities (16),(17) be fulfilled. Then the exponential system (14)
forms a basis for the generalized weighted Lebesgue space L, ) -
7. Atomic Decomposition and Frameness
Denote by jzf(E) the space of coefficients of the system (14). It is known that the canonical system {5n }neN
forms a basis for 8 #(E) (see, e.g. Mamedova, 2012; Sadigova & Mamedova,2013), where &, = {5y }, oy -
Let K:#(E)— Ly, beacoefficient operator

Ki= Y 2En, A={dn}oe € #(E)-

n=—cw0

K is an isomorphism between %(E) and Ly, . because the system (14) forms a basis for L, and,
moreover, Ko, =E,, VvneZ.Thus,

At o()p S"{fn}nez e S Bl ] p()p’ Viely,
where {f } _=K™f,and AB>0 are the constants. Let E" = {E:(t)}nez <Ly, be the system conjugate

to E . Then, by definition (see, e.g. Christensen, 2003), the pair {E*; E} is an atomic decomposition of L, ,

with regard to .%(E) . Moreover, the pair {E*; K} forms a Banach frame for L) , with regard to #(E).

. p
Suppose that K is some B -space of the sequences of scalars furnished with the norm |||, . Let the pair

{G*; S} form a frame for L, ,, where G” ={g,(t)},.y SLq(), is some systemand SeL(Ky;L,),) isa

.p

frame operator. It is not difficult to see that S performs isomorphism between zfds and Ly ,, where

P!

# =ImS™. Consequently, S™oK performs isomorphism between #(E) and %, ie. #(E) and

> are isomorphic. Without loss of generality, we will assume that the operator S is defined on ° , i.e.

Se L(%S;LP(')vp)'

Fy

Conversely, suppose that the B -space of the sequences of scalars X, is isomorphic to j{(E) and
T: X4 <> #(E) is the corresponding isomorphism. Assume S =K oT . Itis clear that S e L(Xd ; Lp(,)yp) is
an isomorphism. We have

f =55t =sT UKt )=sTA(EL (P} )= S(lgn(F oy ),

*

where {g,(f)} _, :T‘l({En(f)}nEz )e Xq,and Eq(f) is the value of functional E,ely(), at the element

Felpo,:

£3(1)= [ 10 & ol

= x

It is not difficult to see that gn(f):T’l(En(f )) where E;(f)= {5nkE;(f)}k€Z, VneZ . It hence follows
that {0, ),y < Lo@po i€ G ellpp,)s ¥NeZ. Wehave

M ), <[ (s }"xd <Ml ¥ € Lot o
where ||||Xd is the norm on X4, and m;M >0 are the constants. As a result, we obtain that the pair

({9n}pez:S) formsaframefor L, , withregardto X,.

.p
So, let’s consider the general case with regard to the system (14). Assume

P, z{;[p(lﬂ)—amm}wez}- (18)

Let ReagP,.Then 3k, eZ:
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—i<ocm+2Rea:+ko<L . (19)
a(z) p(z)
Consider the following system
Eko E%'akoteinl;efiatefikt}nzo;kzL,
where ay, =a+ky - Proceeding as in the previous case, we obtain that the system E, forms a basis for
Lo~ IN this case, the corresponding conjugate problem has the following form

Fr e )6, (OF )= 1(0) tefma] (20)
where G, (t)= e 2kl |f the inequalities (16), (19) are true, then this problem is uniquely solvable in classes

H ., ¥ Hp), for vfely ,. It is obvious that if the conditions (1) are satisfied, then the system

P

{ei”t }nez forms a basis for L ,. If the system E, forms a basis for L, , with some k, eZ, thenitis

. p
isomorphic to {ei”‘}nez =E,. Let %, denote the space of coefficients of the system E, with regard to
L (), - Consider operator T:L,) , =Ly, defined by

Th =e' %'+ 4ot
where f=f"+f", f"eHy,, ey Hyy,. Itisnotdifficult to see that

e e

gmiak o,

p().p

operator T is an isomorphism in L ,. Consequently, the spaces of coefficients of the systems E, and
p(),p 0

The unique solvability of the conjugate problem (20) in classes H;(,)’p x4 H directly implies that the

E, with regard to L, coincide with each other. Thus, the space of coefficients of the system E,

P
coincides with the space %, . It is absolutely clear that the systems E, and E, differ from each other by the
finite number of elements. Let C* be a |k0|—dimensional complex space. If k, =0, then it is clear that
E=E,. If k,>0, then E is a part of E, . It is not difficult to see that the following direct
decompositions hold:

#(E)=Ck i, if ky20; (21)
#,=C47(E) if ky<O0. (22)

i ko1 . .
It is absolutely clear that the system {e'(‘“")t }kio is linearly independent when k, >1. We denote the linear

span of this system by L&) and identify it with c*o . Consider the direct sum
Loty = L) Ly =C* Ly . (23)
Obviously, in this case the system E forms a basis for Iip(,)’p, and, besides, it forms a frame for ﬁp(‘)yp with
regard to j{(E) When k, <0, it is absolutely clear that this system is a frame sequence with regard to
#(E). So we have arrived at the conclusion that the following theorem is true.

Theorem 9. Let peWL , p~ >1, the inequalities (16),(17) be fulfilled, and the set P, be defined by (18).
Then, the inequalities (21), (22) hold with regard to the space of coefficients of the system (14,) where k, € Z
is defined by (19). When Kk, >0, the system E forms a basis for [p(,)’p, where the space [p(‘)]p is defined
by the direct sum (23). When k, <0, the system E is a frame sequence with regard to zf(E) .

The author would like to express her deepest gratitude to Professor B.T. Bilalov for his encouragement and
valuable guidance throughout this research.
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