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Abstract 

This paper treats the exponential linear phase system which consists of eigenfunctions of the discontinuous 

differential operator. Frame properties of this system are studied in weighted Lebesgue spaces with the variable 

order of summability. 

Keywords: system of exponents, frames, weighted space, variable exponent 

1. Introduction 

Perturbed system of exponents  
Zn

ti ne 



 
plays an important role in the study of spectral properties of discrete 

differential operators and in the approximation theory. Apparently, the study of basis properties of these systems 

dates back to the well-known work of (Paley & Wiener, 1934). Since then, a lot of research has been made in this 

field (more details can be found in Sedletskii, 2005; Duffin & Schaeffer, 1952; Young, 1980; Christensen , 2003; 

Heil, 2011 ). It should be stressed that similar systems are of great scientific interest in the frame theory as well.  

Since recently, there arose a great interest in considering various problems, related to some research fields of 

mechanics and mathematical physics, in generalized Lebesgue spaces 
( )pL


 with a variable summability 

exponent  p   (for more information see Kovacik & Rakosnik , 1991; Xianling & Dun , 2001; Kokilashvili & 

Paatashvili, 2006; Sharapudinov, 2007; Kokilashvili & Samko, 2003). Application of Fourier method to the 

problems for partial differential equations in generalized Sobolev classes requires a good knowledge of 

approximative properties of perturbed exponential systems in generalized Lebesgue spaces. 

Approximation-related issues in these spaces have been first studied by Sharapudinov, 2007. 

In this work, we consider an exponential linear phase system. The study of frame properties of perturbed 

exponential systems is closely related to the one of similar properties of perturbed sine and cosine systems. Note 

that the linear phase sine and cosine systems appear when solving partial differential equations by Fourier 

method. Basis properties of linear phase trigonometric systems have been studied in (Moiseev, 1984; Moiseev, 

1987; Bilalov, 1990; Bilalov, 1999; Bilalov. 2001; Bilalov, 2003; Bilalov, 2004; Moiseev, 1998; Moiseev, 1999).  

This work is dedicated to the study of frame properties (atomic decomposition, frameness) of the exponential 

piecewise linear phase system in generalized weighted Lebesgue space.   

2. Needful Information 

We will use the usual notations. N  will be a set of all positive integers; Z  will be a set of all integers; 

 0 ;Z N R    will be the set of all real numbers; C   will stand for the field of complex numbers;   
is the complex  conjugate ;

 nk
   is the Kronecker symbol; 

A  is the characteristic function of the set A . 

Let    : , 1,p      be some Lebesgue-measurable function. By 
0
L

 
we denote the class of all functions 

measurable on  ,   with respect to Lebesgue measure. Denote 

   
 def

p t

pI f f t dt





  . 

Let 

 
  0 : pf I f   L L .  
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With respect to the usual linear operations of addition and multiplication by a number, L  is a linear space as 

 
 

,
supp vrai p t

 


   . With respect to the norm 

 
inf 0 : 1

def

pp

f
f I



  
    

  
, 

 

L  is a Banach space, and we denote it by )(pL . Let 

 

   

1 2 1 2

1 2

1 2

1
: ( ) ( ); 0, , , :

2

.
ln

def

WL p p p C t t t t

C
p t p t

t t

             


   

  

 

Throughout this paper  q t  will denote the conjugate of a function  p t  : 
   

1 1
1

p t q t
  . Denote 

 
 

,
infp vrai p t

 




  . The following generalized Hölder inequality is true 

                                              
;

p q
f t g t dt c p p f g





 

 



 , 

where  
1 1

; 1c p p
p p

 

 
   . 

Directly from the definition we get the property which will be used in sequel.  

  

Property A. If     f t g t  a.e. on  ,  , then 
   p p

f g
 
 . 

It is easy to prove  

Statement 1. Let    , 0, ,p WL p t t        ;  
1

m

i
R  . Function  

1

i

m

i

i

t t


 


 
 

belongs to the 

space 
( )pL


 , if 
 

1
, 1,i

i

i m
p




    ;  where 
1 2 ... m          . 

The following facts play an important role in obtaining  the main results. 

 

Property B [Xianling & Dun, 2001 ] If     pptp 1: , then the class   ,0 C  (class of  

finite and indefinitely differentiable  functions) is everywhere dense in  pL .  

By S  we denote the singular integral 

 



 



td
t

f

i
Sf ,

2

1







, 

where C  is some piecewise Hölder curve on C  . Let     ,0,:   be some weight function. 

Define weight class 

    ,pL :         p

def

p LffL  :,     , 

furnished with the norm 
     


p

def

p
ff 

,
. The validity of the following statement is established in  

Kokilashvili & Samko, 2003. 

Statement 2 [Kokilashvili & Samko, 2003.  Let 
 pWLp 1, . Then, singular operator S  is acting 

boundedly from     ,pL  to      ,pL
 

, if and only if 

             
   

mk
qp k

k
k

,1,
11







.                            (1) 

Let X  be some Banach space with a norm 
X

 . Then 
*

X  will denote its conjugate with a norm *X
 . By 

 ML  we denote the linear span of the set XM  , and M  will stand for the closure of M . 
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System   Xx
Nnn 


 is said to be uniformly minimal in X , if 

  



 Xk

xLu
ux

knn

inf:0  

Nkx
Xk , . 

System   Xx
Nnn 


 is said to be complete in X  if    XxL

Nnn 


. It is called minimal in X  if  

   NkxLx
knnk 


, .  

The following criteria of completeness and minimality are available. 

Criterion 1. System   Xx
Nnn 


 is complete in X , if   ,0nxf  0, *  fXfNn . 

Criterion 2. System   Xx
Nnn 


 is minimal in  X   it has a biorthogonal system   ,

*Xf
Nnn 


i.е. 

  Nknxf nkkn  ., . 

Criterion 3. Complete system    Xx
Nnn 


 is uniformly minimal in X   *sup

XnXn
n

yx , where 

  *Xy
Nnn 


 is a system biorthogonal to it. 

System   Xx
Nnn 


 is said to be a basis for X , if for Xx    








1

:!

n

nnNnn xxK  . 

System   Xx
Nnn 


 is said to be a frame if   

NnnxLx


 ,   







1

:

n

nnNnn xxK  . 

If system   Xx
Nnn 


 forms a basis for X , then it is uniformly minimal. 

We will also need some facts about an atomic decomposition and frames in Banach spaces. 

Definition 1. Let X  be a Banach space and K  a Banach sequence space indexed by N . Let 

    *, XgXf
NkkNkk 


. Then      

NkkNkk fg


,  is an atomic decomposition of X    with respect 

to K  if : 

(i)    Xffg
Nkk 


,K ; 

(ii) 0,  BA :    ,
XNkkX

fBfgfA 
 K

Xf  ; 

(iii)  






1

,

k

kk Xfffgf . 

The concept of the frame is a generalization of the concept of an atomic decomposition. 

Definition 2. Let X  be a Banach space and K  a Banach sequence space indexed  by N . Let 

  *Xg
Nkk 


 and XS K: be a bounded operator. Then   Sg

Nkk ,


 is a Banach frame for X  with 

respect to K  if : 

(i)    Xffg
Nkk 


,K ; 

(ii) 0,  BA :    ,
XNkkX

fBfgfA 
 K

Xf  ; 

(iii)     XfffgS
Nkk 


, . 

A  and B  will be called the frame bounds. 

It is true the following 

Proposition 1. Let X  be a Banach space and K  a Banach sequence space indexed by N  with canonical 

basis  
Nnn 

 , where  
Nkkn n 

  . Let   *Xg
Nkk 


 and  XLS K; . Then the following statements 

are equivalent: 

(i)   Sg
Nkk ,


 is a Banach frame for X  with respect to K . 

(ii)      
NkkNkk Sg


,  is an atomic decomposition of X  with respect to K .  

3. Weighted Hardy Classes with a Variable Summability Exponent 

Let  1:  zz  be a unit ball on the complex plane, and let   be a unit circumference. Denote 
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   
 

  














,10

,
sup0:

p

it

r
pp reuuandinuuh .                      

Lemma 1. Let 1,  pWLp , and let the weight  t  satisfy condition (1). If ),( pLf , then 

0
:10 pLfp  . 

In fact, let ),( pLf . Let us choose   pp ,10   and consider 

dttfdttfI ttpp

p
)(

1

)(

1

00

0
)()( 














  , 

where 1
)(

)(
0


p

tp
t . Let 

1)(

)(
)(




t

t
t




  . Applying Hölder’s inequality, we get 

         
)()(

000

0
),(













 ppp

p fppCI  .                         (2) 

It is not difficult to see that   




),()(

00




p

pp
ff . 

It is absolutely clear that the  relation 




 )(

0


 p

, holds if and only if the following inequality is fulfilled 

       .,1,1)(0 mkp kk                                                                                

Hence we get the condition on the parameter 0p  : 

             
 

.,1,1
1 0

0

mk
p

p

p k
k 
















                           (3) 

As
   

,,1,
1

1
1

lim 0

0
010

mk
qp

p

p kk
p
















 
 then it follows directly from relations (1) that it is always possible 

to choose   pp ,10  such that the inequalities (3) are satisfied. As a result, we obtain from (2) that 

,
),(0


 pp fMI  where 

)(
)(0










p
pM  is a constant. Lemma is proved. 

Using this lemma, we prove the following one. 

Lemma 2. Let WLp  , 1p , and let the weight )(t  satisfy the condition (1). If ,),(  phu  then 

  ,10p : 
0phu . 

In fact, let ),( phu . Assume 

 ,)()(
0

0
dteurI

p
it

rp 








 

where )()(  ruur  . From Lemma 1 we obtain that   ,10p : 

),(
)()(

0 


prp uCrI  , 

where C  is a constant  (and in further too) . Consequently   

          




0

0
00

1

),(

1

10

)()(sup
p

prh
pp

r

uCurI
p 

, 

and, as a result 
0phu . Lemma is proved. 

The following theorem is true.  

Theorem 1. Let 1,  pWLp , and let the inequalities (1) be satisfied. If ),( phu  , then ),( pLf :  

dttftPreu r
i

)()(
2

1
)( 









 


 ,                (4) 
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where 



cos21

1
)(

2

2

rr

r
Pr




  is the Poisson kernel. Vice versa, if  ),( pLf  , then function  u , defined 

by (4), belongs to the class ),(ph .  

Proof. First, we consider the necessity. Let ),( phu . Then, by Lemma 2  
0

:,10 phup  . Classical 

results tell us (see e.g. Kusis, 1984) that 
0pLf 

 
such that the relation (4) holds. It is known that 

)()(  freu i   as 1r  a.e. on ),(   (according to Fatou’s lemma Kusis, 1984), and, consequently, 

 
     


 pp

i
freu )()(   as 1r  a.e. on ),(  . Then, by the classical Fatou theorem, we obtain that 

 



















dreudf

p
i

r

p
)()(lim)()(

)(

1

)(
, 

 

i.e. ),( pLf  . Necessity is proved. 

Now, let ),( pLf  and let the relation (4) be true. As the inequalities (1) hold, then it follows from the results 

of Kokilashvili & Samko, 2003 that the singular operator (4) with Cauchy kernel is bounded in ),(pL . It 

follows directly that the integral operator (4) with Poisson kernel is uniformly bounded in ),(pL  with respect 

to )1,0(r , i.e.   ,
),(),(  


ppr fCfP  where    )( i

r reufP  











dttftPr )()(
2

1
 , and C  is a 

constant independent of r  and f  . Theorem is proved. 

Similarly we define the weighted Hardy classes 

 ),(pH . By 



0pH  we denote the usual Hardy class, where 

  ,10p  is some number. Define  )(: ),(1),(   


 pp LfHfH , where 
f are non-tangential 

boundary values on   of f  . 

It is absolutely clear that f  belongs to the space 

 ),(pH  if and only if  fRe  and fIm  belong to the 

space ),(ph . Therefore, many of properties of functions from ),(ph  stay true for functions from 

 ),(pH  . 

Taking into account the relationship between Poisson kernels )(rP  and Cauchy kernels 
ze

e
tK

it

it

z


)(   and 

using Theorem 1, we easily get the validity of  

Theorem 2. Let 1,  pWLp , and let the inequalities (1) be satisfied. If  

 ),(pHF , then ),( pLf :  



















dttftK
ze

dttf
zF zit

)()(
2

1

1

)(

2

1
)( .                          (5) 

Vice versa, if ),( pLf  , then the function F , defined by (5), belongs to the class 

 ),(pH . 

The weighted Hardy class 

 ),(pm H

 
of functions which are analytic in )(\   C  with their orders 

mm 0  at infinity is defined similarly to the classical one. Let  zf  be the analytic function in \C  of 

finite order mm 0  at infinity, i.e. 

)()()( 21 zfzfzf  , 

where )(1 zf  is a polynomial of degree   00 010  mzfmm , and )(2 zf  is a regular part of Laurent 

series expansion of )(zf  in the neighborhood of an infinitely remote point. If the function 









z
fz

1
)( 2 , 

belongs to the class 

 ),(pH , then we will say that the function  zf  belongs to the class 


 ),(pm H  . 

The validity of the following theorem is proved just like in the classical case. 

Theorem 3. Let ,1,  pWLp  and let the inequalities (1) be satisfied. If 

 ),(pHf , then  



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014 

142 

 

,01,0)()(
),(





refref

p

itit


                                           

where 
f  are non-tangential boundary values on   of f .  

Just as we have the following 

Theorem 4. Let ,1,  pWLp  and let the inequalities (1) be satisfied. If 

 ),(pm Hf , then   

 ,01,0)()(
),(





refref

p

itit


      

where 
f  are non-tangential boundary values on   of f  from the outside of  . 

Let us show the validity an analogue of the classical theorem of Smirnov. Assume that 1,  pWLp  and let 

the inequality (1) be fulfilled. Let 
 1Hu  and   ,


 pLu  , where 

u  be non-tangential boundary value on  

 of u . Then it is known that   1Lf : 

 
 









d
z

f

i
zu 





2

1
 . 

Consequently,     ii efreu 
 

a. e. on   ,  as 01r . Hence directly follows that   , pLf .
 
Then 

by Theorem 2 we obtain  



  ,pHu . Thus, the following theorem is true.  

Theorem 5. Let ,1,  pWLp  and let the inequalities (1) be satisfied. If 
 1Hu  and   ,


 pLu , then 

 



  ,pHu   

4. Bases of exponents in weighted Hardy classes 

Consider the system of exponents   ZneE  int  and denote   kn
k

eE 


 
int)( . By 

 ),(pL  and 

 ),(pm L

 
we 

denote the restrictions of classes 

 ),(pH  and 


 ),(pm H , respectively, to  , i.e. 

.; // ),(),(),(),(  











  pmpmpp HLHL  Let’s show that if the inequalities (1) hold, then the system )0(

E  

forms a basis for 

 ),(pL . Take 


 ),(pLf . If the inequalities (1) hold, then 


  1),( LLp   . Then, as is known 

          



 Zndf n ,0)( 



 .                               (6) 

More information about this fact can be found in Kusis,1984; Privalov, 1950. If the inequalities (1) hold, then it 

follows from the results in  Danilyuk, 1975  that the system of exponents E  forms a basis for ),(pL . Taking 

into account (6), we obtain that f  can be expanded in a series in  ),(pL
 

of the following form 








0

intint )(

n

nefef , 

where nf  are the biorthogonal coefficients of f  with respect to the system E . It is absolutely clear that such 

an expansion is unique. Consequently, the system 
)0(

E  forms a basis for 

 ),(pL . Similarly it can be proved 

that if the inequalities (1) hold, then the system 
)(mE forms a basis for 


 ),(pm L . Thus, the following theorem is 

true. 

Theorem 6. Let ,1,  pWLp  and let the inequalities (1) be satisfied. Then the system 
)0(

E ( 
)(mE ) forms a 

basis for 

 ),(pL (


 ),(pm L ),  p1 . 

5. Riemann Boundary Value Problem for 

 ),(pH  Classes 

Consider the following Riemann problem in 




   ),(),( pmp HH  classes 

                       ,),()()()(    fFGF                            (7) 

where ),( pLf  is some function. By the solution of problem (7) we mean a pair of analytic functions 
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





   ),(),())();(( pmp HHzFzF , boundary values of which satisfy the relation (7) almost everywhere. 

Introduce the following functions  zX i
 , which are analytic inside (with the + sign) and outside (with the - 

sign) the unit circle, respectively: 

   

















 










dt
ze

ze
eGzX

it

it
it

ln
4

1
exp1 , 

   

















 












dt
ze

ze
tzX

it

it

4

1
exp2 , 

where    iteGt arg . Define 

 
 

  















.2,1,1,

,1,

1
izzX

zzX
zZ

i

i

i  

Sokhotski-Plemelj formulas yield 

   
 it

it
it

eZ

eZ
eG







1

1  ,
   

 it

it
ti

eZ

eZ
e







2

2
. 

Assume      zZzZzZ   21 . We have 

      0   ZGZ ,    .                           (8) 

Introduce the piecewise analytic function  

 
 

 















.1,

,1,

zzZ

zzZ
zZ  

Following the classics, we call function  zZ  the canonical solution of the problem (7). Substituting the (8) 

expression for  G  in (7), we obtain   

 

 

 

 















Z

F

Z

F
,   . 

Let  
 

 zZ

zF
z




   , and define the piecewise analytic function  

 
 

 















.1,

,1,

zz

zz
z  

It is not difficult to see that the function  zZ  has neither poles nor zeros for z . Therefore, functions 

 z  and  zF  have the same order at infinity. The results of Danilyuk, 1975 imply directly that the function 

 z  belongs to the Hardy class 
H  for sufficiently small values of 0 . Let us show that    1Hz . To 

do so, it suffices to prove that      
1L , because the rest will immediately follow from the Smirnov 

theorem (Danilyuk, 1975) . 

We will suppose that the coefficient )(G  satisfies the following conditions: 

1)  );(  
 LG  

2)  )(a r g)( iteGt   is a piecewise Hölder function on   , .  

Let

 

    r
r

k sss ...: 11  
be the points of discontinuity of the function )(t  and   

     00:
1

 kkk
r

k sshh  , ;,1 rk   

be the corresponding jumps of )(t at these points. Denote 

    0h ;        00
0

0h . 

Let 
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 

 

 












 








 

 


 












d

t
ctg

t
tu

h

24

1
exp

2
sin 0

2

0

0
0

. 

Assume 

  ,
2

sin

0

2


 






 



r

k

h

k

k

st
tu


where 0s . 

As is known (see Danilyuk, 1975 ), the boundary values  Z  are expressed by the formula 

        21

02

0

2
sin

h

it t
tutueZ










 

 , 

i.e.      

   
2

0

02
2

sin

kh
r

k

kit st
tueZ





 


   . 

It follows directly from the Sokhotski-Plemelj formula that 

 
  







 





1

1
,

sup iteZvrai


. 

Thus, the following representation is true for   1
 iteZ  : 

                            
2

0

1

0

1

1

1

2
sin

kh
r

k

kitit st
tueZeZ 







 

 .                    (9) 

By the definition of solution, we have 



  ),()( pHzF . Consequently, )()( ),(    


pLF . Therefore, if 

)()( 1),(

1




 




q
LZ , then we obtain directly from the Hölder inequality that )()( 1   L . 

We will need the following easy-to-prove lemma that follows directly from Statement 1. 

Lemma 3. Let   ,Cp  and   .,,0)(  ttp  Then the function 


 ctt )(  belongs to ),(pL  

if 
)(

1

cp
  for ,,1, mkc k    and 

)(

1
0 cp

k    for 
0kc  . 

Represent the product 
1

Z  in the following form  








 

l

k

k
kttuZZ

0

1

0

1

1

1 
 , 

where      r

kk
m

kk
l

kk st
010

arg


  , and k  is defined by the relation 

                     .,0,
2

1
arg

01

lksh it

r

i

ii

m

i

tik kk
 






                     (10) 

Taking into account Lemma 3, we obtain that if the inequalities 

rk
tq k

k ,0,
)(

1
 ,                              (11) 

are true, then the product 
1

Z  belongs to the space )(qL , i.e. 1),(

1







q

LZ . So, if the inequalities (11) 

are true, then the function )(z  belongs to classes 

1H . Consequently, according to the results of Danilyuk, 

1975, )(z  is a polynomial )(
0

zPm  of order mm 0 . Thus, )()()(
0

zZzPzF m
  . Let’s find out under 

which conditions the function )(zF 
 belongs to the space 


 ),(pH . We have 



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014 

145 

 




 

l

k

k
kttuZZ

0

01


 . 

Consequently, if the inequalities 

                                   rk
tp k

k ,0,
)(

1
  ,                    

are true, then it is clear that  ),()( 


 pLF , and hence 



 ),(pm HF . So, if the inequalities 

 
rk

tptq k
k

k

,0,
1

)(

1
   ,                              (12) 

are true, then the general solution of the homogenous problem 

         ,010 FGF , 

in classes    




   ,, pmp HH  can be represented as      zZzPzF m00  , where  zPm0  

is an arbitrary 

polynomial of order mm 0 .  

Now let’s consider the non-homogenous problem  (7). Take   , pLf  and suppose 

 
 

     










dttfeZtK
zZ

zF
it

z
2

1
.                           (13) 

The Sokhotski-Plemelj formulas imply that the boundary values 


1F  satisfy a.e. the equality (7). Moreover, it 

follows from Statement 2 that         






   ,1,11 ; pp HHzFzF . As a result, we get the validity of the 

following theorem. 

Theorem 7. Let  r
k 1

  be defined by (10) and the inequalities (1), (12) be satisfied. Then the general solution 

of the Riemann problem (7) in classes    




   ,, pmp HH  can be represented in the following form  

       zFzZzPzF m 10
 , 

where  Z  is the canonical solution of homogenous problem,  1F
 

is the particular solution of 

non-homogenous problem (7) defined by (13), and  
0mP

 
is a polynomial of order mm 0 . 

6. Atomic Decomposition 

Consider the following exponential linear phase system 

      Zn
tsignnni

Znn et 



 ,                             (14) 

where C  is a complex parameter. To explore the decomposition with regard to the system (14), we will 

follow the scheme of  Bilalov & Guseynov, 2012 . Consider the conjugate problem 

          ,,   ttfeeFeGeF tiititit ,                    (15) 

where   tiit eeG 2 . The particular solution  zF0  of the problem (15) has the following form 

 
   

   




















 itit

ti

zee

dttfez
zF

112

1
2

2

0
, 

 
   

   




















 itit

ti

zee

dttfez
zF

112

1
2

21

0
. 

Proceeding as in the previous section, we get   tt  Re , 0r ,     0h Re4 . 

Consequently,  Re20  m , kk   , 0k . Then from Theorem 7 we obtain that if the inequalities 

   

____

,1,
11

mk
pq k

k
k







,                              (16) 

   


 pq
m

1
Re2

1
                                (17) 

are true, then the conjugate problem (15) has a unique solution     zFzF 
00 ;

 
in classes  


 ,pH

 
when 

  0F . Also, it can be proved (in the same way as in Bilalov & Guseynov, 2012; Bilalov & Guseinov, 



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014 

146 

 

February, 2011) that, with the inequalities (16) and (17) fulfilled, the system (14) forms a basis for   ,pL .  

Thus, the following theorem is true. 

Theorem 8. Let ,1,  pWLp and the inequalities (16),(17) be fulfilled. Then the exponential system (14) 

forms a basis for the generalized weighted Lebesgue space )(),(  pL . 

7. Atomic Decomposition and Frameness 

Denote by  EK
 

the space of coefficients of the system (14). It is known that the canonical system  
Nnn 

  

forms a basis for в  EK  (see, e.g.  Mamedova, 2012; Sadigova & Mamedova,2013), where  
Nknkn 

  .  

Let     ,:  pLEK K  be a coefficient operator  

   EEK
Znn

n

nn K






 


, . 

K  is an isomorphism between  EK  and   ,pL  , because the system (14) forms a basis for   ,pL  and, 

moreover, nn EK  , Zn . Thus, 

 
 

       ,,,
, 

 ppEZnnp
LffBffA

K
, 

where   fKf
Znn

1


 , and 0, BA  are the constants. Let      ,
**


 qZnn Lt  be the system conjugate 

to E . Then, by definition (see, e.g. Christensen, 2003), the pair  EE ;*
 is an atomic decomposition of   ,pL  

with regard to  EK . Moreover, the pair  KE ;*  forms a Banach frame for   ,pL  with regard to  EK . 

Suppose that dK  is some B -space of the sequences of scalars furnished with the norm 
d

 . Let the pair 

 SG ;*
 form a frame for   ,pL , where      ,

*


 qNnn LtgG  is some system and   ,;  pd LKLS
 

is a 

frame operator. It is not difficult to see that S  performs isomorphism between S
dK  and   ,pL , where 

1Im  SS
dK . Consequently, KS 1  performs isomorphism between  EK  and S

dK , i.e.  EK  and 

S
dK  are isomorphic. Without loss of generality, we will assume that the operator S  is defined on S

dK , i.e. 

  ,;  p
S

d LLS K . 

Conversely, suppose that the B -space of the sequences of scalars dX
 

is isomorphic to  EK  and 

 EXT d K:  is the corresponding isomorphism. Assume TKS  . It is clear that   ,;  pd LXLS   is 

an isomorphism. We have 

         
ZnnZnn fgSfESTfKSTfSSf


  *1111 , 

where        dZnnZnn XfETfg 





*1 , and  fEn
*  is the value of functional   ,

*
 qn LE  at the element 

  , pLf : 

       








 dtttEtffE nn

_______
** . 

It is not difficult to see that     fETfg nn
*1 ~ ,  where       ZnfEfE

Zkknkn 


,
~ **  . It hence follows 

that     ,
 qZnn Lg , i.e.    ZnLg pn   ,

*
, . We have 

 
  

     ,,,
, 

 ppXZnnp
LffMfgfm

d

, 

where 
dX

  is the norm on ,dX and 0; Mm  are the constants. As a result, we obtain that the pair 

  Sg
Znn ;


 forms a frame for   ,pL  with regard to dX . 

So, let’s consider the general case with regard to the system (14). Assume  

  



















 Zkk

p
P m :

1

2

1





.                             (18) 

Let  PRe . Then :0 Zk   
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   


 p
k

q
m

1
Re2

1
0    .                           (19) 

Consider the following system 

 
 

1;0
int

;0

0 


 kn
ikttiti

k eeee k 
,  

where 00
kk   . Proceeding as in the previous case, we obtain that the system 

0kE  forms a  basis for 

  ,pL . In this case, the corresponding conjugate problem has the following form 

         


,,0

0



ttfeeFtGeF

tit
k

it k ,                         (20) 

where    tki
k etG 0

0

2 



. If the inequalities (16), (19) are true, then this problem is uniquely solvable in classes 

   




   ,1, pp HH  for   , pLf . It is obvious that if the conditions (1) are satisfied, then the system 

  Zne 
int  forms a basis for   ,pL . If the system 

0kE  forms a basis for   ,pL  with some Zk 0 , then it is 

isomorphic to   0
int Ee Zn  . Let K

 
denote the space of coefficients of the system 0E  with regard to 

  ,pL . Consider operator      ,,:   pp LLT  defined by 

  fefeTf titi k 
0 , 

where    






   ,1, ,, pp HfHffff . It is not difficult to see that 

 
 

 















.0,

,0,0
int

ne

ne
eT

tni

tni k





 

The unique solvability of the conjugate problem (20) in classes    




   ,1, pp HH  directly implies that the 

operator T  is an isomorphism in   ,pL . Consequently, the spaces of coefficients of the systems 
0kE  and 

0E  with regard to   ,pL  coincide with each other. Thus, the space of coefficients of the system 
0kE  

coincides with the space K . It is absolutely clear that the systems 
0kE  and 0E  differ from each other by the 

finite number of elements. Let 0k
C  be a

 
0k dimensional complex space. If 00 k , then it is clear that 

0kEE  . If ,00 k then E  is a part of 
0kE . It is not difficult to see that the following direct 

decompositions hold: 

  KK  0k
CE   if 00 k ;                              (21) 

 EC
k

KK  0
   if 00 k .                              (22) 

It is absolutely clear that the system 
   1

0

0


 k

k
tki

e


 is linearly independent when 10 k . We denote the linear 

span of this system by 
 0k

L  and identify it with 0k
C . Consider the direct sum 

 
 

     ,,,
00ˆ

  p
k

p
k

p LCLLL  .                           (23) 

Obviously, in this case the system E  forms a basis for   ,
ˆ

pL , and, besides, it forms a frame for   ,
ˆ

pL
 

with 

regard to  EK . When 00 k , it is absolutely clear that this system is a frame sequence with regard to 

 EK . So we have arrived at the conclusion that the following theorem is true.  

Theorem 9. Let ,1,  pWLp  the inequalities (16),(17) be fulfilled,  and the set P  be defined by (18). 

Then, the inequalities (21), (22) hold with regard to the space of coefficients of the system (14,) where Zk 0  

is defined by (19). When 00 k , the system E  forms a basis for   ,
ˆ

pL , where the space   ,
ˆ

pL  is defined 

by the direct sum (23). When 00 k , the system E  is a frame sequence with regard to  EK . 

The author would like to express her deepest gratitude to Professor B.T. Bilalov for his encouragement and 

valuable guidance throughout this research. 
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