
Journal of Mathematics Research; Vol. 6, No. 4; 2014
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

On Cartesian Products of Cyclic Orthogonal Double

Covers of Circulants
Ramadan El-Shanawany1 & Ahmed El-Mesady1

1 Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufiya University,
Menouf, Egypt

Correspondence: Ahmed. El-Mesady, Department of Physics and Engineering Mathematics, Faculty of Electronic
Engineering, Menoufiya University, Menouf, Egypt. E-mail: ahmed mesady88@yahoo.com

Received: August 26, 2014 Accepted: September 15, 2014 Online Published: November 10, 2014

doi:10.5539/jmr.v6n4p118 URL: http://dx.doi.org/10.5539/jmr.v6n4p118

Abstract

A collection G of isomorphic copies of a given subgraph G of T is said to be orthogonal double cover (ODC) of
a graph T by G, if every edge of T belongs to exactly two members of G and any two different elements from
G share at most one edge. An ODC G of T is cyclic (CODC) if the cyclic group of order |V(T )| is a subgroup of the
automorphism group of G. In this paper, the CODCs of infinite regular circulant graphs by certain infinite graph
classes are considered, where the circulant graphs are labelled by the Cartesian product of two abelian groups.
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1. Introduction

A generalization of notion of an orthogonal double cover (ODC) to arbitrary underlying graphs is as follows. Let
T be an arbitrary graph with n vertices and let G = {G0,G1, . . . ,Gn−1} be a collection of n spanning subgraphs of
T . G is called an orthogonal double cover (ODC) of T if there exists a bijective mapping ϕ : V(T )→ G such that:

(1) Every edge of T is contained in exactly two of the graphs G0,G1, . . . , Gn−1.

(2) For every choice of different vertices a, b of T ,

|E(ϕ(a)) ∩ E(ϕ(b))|=
{

1 if {a, b} ∈ T,
0 otherwise.

Where E(ϕ(a)) and E(ϕ(b)) refer to the edge sets of the graphs ϕ(a) and ϕ(b) respectively, generally E(G) refers to
the edge set of the graph G.

An automorphism of an orthogonal double cover (ODC) G = { G0,G1,G2, . . . , Gn−1} of T is a permutation π :
V(T ) −→ V(T ) such that {π(G0), π(G1), . . . , π(Gn−1)} = G, where for i ∈ {0, 1, 2, . . . , n − 1}, π(Gi) is a subgraph
of T with V(π(Gi)) = {π(v) : v ∈ V(Gi)} and E(π(Gi)) = {{π(u), π(v)} : {u, v} ∈ E(Gi)}. An orthogonal double cover
(ODC) G of T is cyclic orthogonal double cover (CODC) if the cyclic group of order |V(T )| is a subgroup of the
automorphism group of G, the set of all automorphisms of G. Let Γ = {γ0, γ1, . . . , γn−1} be an (additive) abelian
group of order n. The vertices of Kn,n will be labeled by the elements of Γ × Z2. Namely, for (v, i) ∈ Γ × Z2 we
will write vi for the corresponding vertex and define {wi, u j} ∈ E(Kn,n) if and only if i , j, for all w, u ∈ Γ and
i, j ∈ Z2.

Let G be a spanning subgraph of Kn,n and let a ∈ Γ. Then the graph G with E(G + a) = {(u + a, v + a) : (u, v) ∈
E(G)} is called the a-translate of G. The length of an edge e = (u, v) ∈ E(G) is defined by d(e) = v − u.

G is called a half starter with respect to Γ if |E(G)| = n and the lengths of all edges in G are different, i.e.
{d(e) : e ∈ E(G)} = Γ. The following three results were established in (El-Shanawany, 2002).

Theorem 1. (El-Shanawany, 2002) If G is a half starter, then the union of all translates of G forms an edge
decomposition of Kn,n,i.e.

∪
a∈Γ E(G + a) = E(Kn,n).
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Here, the half starter will be represented by the vector: v(G) = (vγ0 , vγ1 , . . . , vγn−1 ), where vγi ∈ Γ and (vγi )0 is the
unique vertex ((vγi , 0) ∈ Γ × {0}) that belongs to the unique edge of length γi.

Two half starter vectors v(G0) and v(G1) are said to be orthogonal if {vγ(G0) − vγ(G1) : γ ∈ Γ} = Γ.

Theorem 2. (El-Shanawany, 2002) If two half starters v(G0) and v(G1) are orthogonal, then G = {Ga,i : (a, i) ∈
Γ × Z2} with Ga,i = Gi + a is an ODC of Kn,n .

The subgraph Gs of Kn,n with E(Gs) = {{u0, v1} : {v0, u1} ∈ E(G)} is called the symmetric graph of G. Note that if
G is a half starter, then Gs is also a half starter.

A half starter G is called a symmetric starter with respect to Γ if v(G) and v(Gs) are orthogonal.

Theorem 3. (El-Shanawany, 2002) Let n be a positive integer and let G be a half starter represented by v(G) =
(vγ0 , vγ1 , . . . , vγn−1 ). Then G is symmetric starter if and only if {vγ − v−γ + γ : γ ∈ Γ} = Γ.

Definition 4. (El-Shanawany, 2002) Let G = (Γ × Z2, E(G)) be a symmetric starter, let {a, a} be the edge in G
with length zero. The graph H = (Γ, E(H)) is called corresponding graph of G, where {a, b} ∈ E(H) if and only if
(a, b) ∈ E(G) with a , b.

Remark 5. (El-Shanawany, 2002) Note that |E(G) − {a, a}| = n − 1 = |E(H)| the number of edges of the graph H.

|∪a∈ΓE(G + a) − ∪a∈Γ{a, a}| = n2 − n = n(n − 1) = ∪a∈ΓE(H + a) = |E(G)| the number of edges of an ODC of Kn

group generated by H.

Theorem 6. (El-Shanawany, 2002) Let n be a positive integer. Let G be a symmetric starter of Kn,n and let H be
the corresponding graph of G. Then H is an orthogonal double cover (ODC) − generating graph with respect to
Γ.

The author of (Gronau, Mullin, & Rosa, 1997) introduced the notion of an orthogonal labelling. Given a graph
G = (V, E) with n − 1 edges, a 1 − 1 mapping ψ : V(G) −→ Zn is an orthogonal labelling of G if:

(1) For every l ∈ {1, 2, . . . , ⌊ (n−1)
2 ⌋}, G contains exactly two edges of length l, and exactly one edge of length n/2 if

n is even, and

(2) {r(l) : l ∈ {1, 2, . . . , ⌊ (n−1)
2 ⌋}}= {1, 2, . . . , ⌊

(n−1)
2 ⌋}.

The following theorem of (Gronau et al., 1997) relates cyclic orthogonal double covers (CODCs) of Kn and the
orthogonal labelling.

Theorem 7. (Gronau et al., 1997). A cyclic orthogonal double covers (CODC) of Kn by a graph G exists if and
only if there exists an orthogonal labelling of G.

The following theorem of Sampathkumar and Srinivasan is a generalization of Theorem 7

Theorem 8. (Sampathkumar, et al., 2011). A cyclic orthogonal double cover (CODC) of Circ(n; {d1, d2, . . . , dk})
by a graph G exists if and only if there exists an orthogonal {d1, d2, . . . , dk}-labelling of G.

For results on orthogonal double cover of circulant graphs, see (Sampathkumar & Srinivasan, 2011), (Higazy,
2013), and (El-Shanawany & Shabana, 2014). In (Gronau et al., 1997), (Gronau, Hartmann, Grüttmüller, U. Leck,
& V. Leck, 2002), (Scapellato, El-Shanawany, & Higazy, 2009), and (El-Shanawany, Higazy, & El-Mesady, 2013),
other results of ODCs by different graph classes can be found. In (Balakrishnan & Ranganathan, 2012), the other
terminology not defined here can be found.

(El-Shanawany et al., 2013) were the first ones introduced the cartesian product method as a recursive constructing
method for orthogonal double covers of complete bipartite graphs , and this idea is potentially promising for
treating various graph lift, see (Shang, 2012), and (Linial & Puder, 2010).

2. On Cartesian Products of Cyclic Orthogonal Double Covers of Circulants

Hereafter, we will use the operation ⋆ for the usual multiplication and × for cartesian product and if there is no
danger of ambiguity, if (i, j) ∈ Zn × Zm we can write (i, j) as i j. The above two Theorems 7, 8 motivated us to the
following:
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Using the fact that there exists a bijective mapping Φ : Zn1
× Zn2

−→ Zn1⋆n2 defined by Φ (i j) = n2i + j : i ∈
Zn1

, j ∈ Zn2
, and hence we consider xy > pq if x > p or if x = p and y > q where xy, pq ∈ Zn1

× Zn2
and

x⋆ y, p⋆ q ∈ Zn1⋆n2 . The circulant graph Circ(n1 ⋆ n2; X) has a vertex set Zn1 ×Zn2 , where Zn1 = {0, 1, . . . , n1 −
1}, Zn2 = {0, 1, . . . , n2 − 1}, and X ⊂ Zn1 ×Zn2 . Two vertices ab and cd are adjacent if and only if ab− cd = ±(αβ),
where αβ ∈ X, and a, c, and α are calculated inside Zn1 and b, d, and β are calculated inside Zn2 . For an edge
{ab, cd} in Circ(n1 ⋆ n2; X), the length of {ab, cd} is min{|ab − cd|, n1n2 − |ab − cd|}. Given two edges e1 = {ab, cd}
and e2 = { f g, uv} of the same length αβ in Circ(n1 ⋆ n2; X), the rotation-distance r(αβ) between e1 and e2 is
r(αβ) = min{wz, st : {ab+wz, cd+wz} = e2, { f g+ st, uv+ st} = e1}, where addition and difference for a, c, f , and u
are calculated inside Zn1 and for b, d, g, and v are calculated inside Zn2 . Note that if r(αβ) = αβ, then the edges
e1 and e2 are adjacent; if r(αβ) , αβ, then the edges e1 and e2 are nonadjacent. Consider the Cayley graph
Cay(Zn1 × Zn2 , X) = Circ(n1 ⋆ n2; X). Given a subgraph G of Circ(n1 ⋆ n2; X), a 1 − 1 mapping Ψ : V(G) −→
Zn1 × Zn2 is an orthogonal X-labelling of G if one of the following cases in the proof of the following theorem is
verified.

Theorem 9. A cyclic orthogonal double cover (CODC) of Circ(n1⋆n2; X) by a graph G exists if and only if there
exists an orthogonal X-labelling of G.

Proof. Case 1. Let n1be even and n2 > 1 be odd.

Subcase 1.1. For n1 > 2, we find that:

(a) For every αβ ∈ X1 :

X1 =


0β : 1 ≤ β ≤ ⌊ n2

2 ⌋,
αβ : 1 ≤ α ≤ n1

2 − 1, β ∈ Zn2 ,
n1
2 β : 1 ≤ β ≤ ⌊ n2

2 ⌋.
G contains exactly two edges of length αβ, and exactly one edge of length X2 = { n1

2 0},
(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Subcase 1.2. For n1 = 2, we find that:

(a) For every αβ ∈ X1 :

X1 = { αβ : α ∈ Z2, 1 ≤ β ≤ ⌊ n2
2 ⌋ }.

G contains exactly two edges of length αβ, and exactly one edge of length X2 = {10} ,
(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Case 2. Let n1 > 1 be odd and n2 be even.

Subcase 2.1. For n2 > 2, we find that:

(a) For every αβ ∈ X1 :

X1 =


α0 : 1 ≤ α ≤ ⌊ n1

2 ⌋,
αβ : 0 ≤ α ≤ 1

2 (n1 − 1), 1 ≤ β ≤ n2
2 − 1,

n1n2 − αβ : 1
2 (n1 − 1) < α < n1, 1 ≤ β ≤ n2

2 − 1,
α n2

2 : 1 ≤ α ≤ ⌊ n1
2 ⌋.

G contains exactly two edges of length αβ, and exactly one edge of length X2 = {0 n2
2 },

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Subcase 2.2. For n2 = 2, we find that:

(a) For every αβ ∈ X1 : X1 = { αβ if 1 ≤ α ≤ ⌊ n1
2 ⌋, β ∈ Z2 }.

G contains exactly two edges of length αβ, and exactly one edge of length X2 = {01} ,
(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Case 3. Let n1 and n2 be odd.

Subcase 3.1. For n1 > 3 and n2 > 3, we find that:

(a) For every αβ ∈ X1 :
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X1 =


0β : 1 ≤ β ≤ ⌊ n2

2 ⌋,
αβ : 1 ≤ α ≤ ⌊ n1

2 ⌋ − 1, β ∈ Zn2 ,
⌊ n1

2 ⌋β : β ∈ Zn2 .

G contains exactly two edges of length αβ.

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1.

Subcase 3.2. For n1 = 3 and n2 > 3, we find that:

(a) For every αβ ∈ X1 :

X1 =

{
0β : 1 ≤ β ≤ ⌊ n2

2 ⌋,
⌊ n1

2 ⌋β : β ∈ Zn2 .

G contains exactly two edges of length αβ.

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1.

Subcase 3.3. For n1 > 3 and n2 = 3, we find that:

(a) For every αβ ∈ X1 :

X1 =

{
α0 : 1 ≤ α ≤ ⌊ n1

2 ⌋,
α⌊ n1

2 ⌋ : α ∈ Zn1 .

G contains exactly two edges of length αβ.

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1.

Subcase 3.4. For n1 = 3 and n2 = 3 is trivial case.

Case 4. Let n1 and n2 be even.

Subcase 4.1. For n1 > 2 and n2 > 2, we find that:

(a) For every αβ ∈ X1 :

X1 =

{
αβ : α ∈ {0, n1

2 }, 1 ≤ β ≤
n2
2 − 1,

αβ : 1 ≤ α ≤ n1
2 − 1, β ∈ Zn2 .

G contains exactly two edges of length αβ, and exactly one edge of length

X2 =
{

n1
2 0, 0 n2

2 ,
n1
2

n2
2

}
,

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Subcase 4.2. For n1 = 2 and n2 > 2, we find that:

(a) For every αβ ∈ X1 :

X1 =
{
αβ:α ∈ Z2, 1 ≤ β ≤ n2

2 − 1
}
.

G contains exactly two edges of length αβ, and exactly one edge of length

X2 =
{
10, 0 n2

2 , 1
n2
2

}
,

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Subcase 4.3. For n1 > 2 and n2 = 2, we find that:

(a) For every αβ ∈ X1 :

X1 =
{
αβ : 1 ≤ α ≤ n1

2 − 1, β ∈ Z2

}
.

G contains exactly two edges of length αβ, and exactly one edge of length

X2 =
{
01, n1

2 0, n1
2 1
}
,

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2.

Subcase 4.4. For n1 = 2 and n2 = 2 is trivial case. �

For all positive integers m with gcd(m, 3) = 1, k = l + m, and l ∈ Zm, then for the following Theorem let Hm
1 be a
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graph with the following edges set: E
(
Hm

1

)
= {(0l, 0l + i j) : i j ∈ Y1\{00}} ∪ {(0k, 0k + i j) : i j ∈ Y2} ∪ {(1l, 1l + i j) :

i j ∈ Y3}∪ {(1k, 1k+ i j) : i j ∈ Y4}, where Y1 = A1×A2, Y2 = A1×A4, Y3 = A3×A2,Y4 = A3×A4, A1 = {0, 2}, A2 =

{l, l + 2m}, A3 = {1, 3}, A4 = {l + m, l + 3m}.

Theorem 10. For all positive integers m with gcd(m, 3) = 1, there exists a CODC of Circ(16m; X) by Hm
1 with

respect to Z4 × Z4m.

Proof. Let us define Ψ : V(Hm
1 ) −→ Z4 × Z4m by

Ψ(vα) =


0α : 0 ≤ α ≤ 2m − 1,
0δ : 2m ≤ α ≤ 3m − 1, δ = 2(α − m),
1γ : 3m ≤ α ≤ 5m − 1, γ = α − 3m,
2w : 5m ≤ α ≤ 7m − 1,w = 2(α − 5m).

Hence, the edge of length 0l is (Ψ(vl),Ψ(v2l))\(Ψ(v0),Ψ(v0)), the edge of length 2l is (Ψ(vl),Ψ(vl+5m)), the edge
of length 0(l + 2m) is (Ψ(vl),Ψ(vl+2m)), the edge of length 2(l + 2m) is (Ψ(vl),Ψ(vl+6m)), the edge of length
0(l + m) is (Ψ(vl+m),Ψ(vl+2m)), the edge of length 0(l + 3m) is (Ψ(vl+m),Ψ(v2l)), the edge of length 2(l + m) is
(Ψ(vl+m),Ψ(vl+6m)), the edge of length 2(l + 3m) is (Ψ(vl+m),Ψ(vl+5m)), the edge of length1l is (Ψ(vl+3m),Ψ(vl+5m)),
the edge of length 1(l + 2m) is (Ψ(vl+3m),Ψ(vl+6m)), the edge of length 3l is (Ψ(vl+3m),Ψ(v2l)), the edge of length
3(l + 2m) is (Ψ(vl+3m),Ψ(vl+2m)), the edge of length 1(l + m) is (Ψ(vl+4m),Ψ(vl+6m)), the edge of length 1(l + 3m)
is (Ψ(vl+4m),Ψ(vl+5m)), the edge of length 3(l + m) is (Ψ(vl+4m),Ψ(vl+2m)), and the edge of length 3(l + 3m) is
(Ψ(vl+4m),Ψ(v2l)).

From the edges set of Hm
1 , and according to Subcase 4.1 of Theorem 9, we can find that:

(a) For every αβ ∈ X1;

X1 =

{
αβ : α ∈ {0, 2}, 1 ≤ β ≤ 2m − 1,
αβ : α = 1, β ∈ Z4m.

Hm
1 contains exactly two edges of length αβ, and exactly one edge of length X2 = {20, 0γ, 2γ : γ = 2m} ,

(b) { r(αβ) : αβ ∈ X1} = X1, then X = X1 ∪ X2. �

For an illustration of Theorem 10, let m = 2, then there exists a CODC of Circ(32; X) by H2
1 with respect to

Z4 × Z8, where X = {01, 02, 03, 21, 22, 23, 10, 11, 12, 13, 14, 15, 16, 17, 20, 04, 24}, see Figure 1.
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Figure 1

3. Conclusion

In conclusion, in the future we can get the orthogonal double covers of circulant graphs by new graph classes
where the circulant graphs are labelled by the Cartesian product of two abelian groups.
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