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Abstract 

In this paper, we introduce a generalization of the Nevanlinna characteristics and give a short survey of classical 

and recent results on the representation of a meromorphic function in terms of such characteristics. And then we 

characterize the counting functions 𝑁(   𝑓) , 𝑁(    ) , and the characteristics functions   (   𝑓) ,   (    ) 
defined on a non-constant meromorphic 𝑓( ) . Besides this, we prove that the terms 𝑁(𝑒   𝑓) , 𝑁(𝑒    ) ,  

 (𝑒   𝑓), and   (𝑒    )  are convex functions for any real values of  . Finally, we derive some integral 

inequalities depending on these terms, analogous to well known Hadamard’s inequality, by using elementary 

analysis. 

Keywords: Analytic function, convex function, the Hermite-Hadamard integral inequality, meromorphic 

function, Nevanlinna characteristics, Carton’s Identity. 

1. Introduction 

Convexity plays a central and fundamental role in mathematical finance, economics, engineering, management 

science, and optimization theory. In this paper, by meromorphic function we will always mean meromorphic 

function in the complex plane.  

It is well-known that if the function 𝑓: 𝐼 ⊆ ℝ → ℝ is convex then, for   𝑏 𝜖 𝐼 with  < 𝑏, the following 

double inequality  

𝑓 (
  𝑏

 
)  

 

𝑏   
∫ 𝑓( )𝑑 
 

 

 
𝑓( )  𝑓(𝑏)

 
                                                           (   ) 

holds. This is called the Hermite-Hadamard inequality. Since its innovation in 1893, Hadamard’s inequality 

(Hadamard, 1893) has been proved to be one of the most practical inequalities in mathematical analysis. In 

recent years, a lot of refinements and generalizations of the Hermite-Hadamard inequality have been obtained for 

convex functions and its variant forms (Hadamard, 1893; Jiang, 2014; Jing, 2014; Lahiri, 1988; Mainul, 2013), 

and reference cited therein. Hadamard’s inequalities deal with a convex function 𝑓( ) on ,  𝑏- ∈ ℝ  between 

the values of 𝑓 at the mid point  = (  𝑏)  ⁄   and the average of the values of 𝑓 at the endpoints   and 𝑏 

(Chen, 2012). The main principle of this paper is to establish some integral inequality involving the Nevanlinna 

characteristics of meromorphic functions. Throughout this note, we write ℂ ℝ ℝ+ for the set of complex 

numbers, the set of real numbers, and the set of non-negative real numbers, respectively. 

2. Preliminaries 

In this part some necessary definitions and theorems are mentioned which are closely connected to our main 

results discussed in (Titchmarsh, 1939; Polya, 1926; Hayman, 1964). 

Definition 2.1 (Convex function) A convex function is a function whose value at the midpoint of every interval 

in its domain does not exceed the arithmetic mean of its values at the ends of the interval. More generally, a 

function 𝑓( ) is convex on an interval ,  𝑏-  if for any two points  1 and  2 in ,  𝑏- and any 𝜆 where 

0 < 𝜆 <  , 

𝑓(𝜆 1  (  𝜆) 2)  𝜆𝑓( 1)  (  𝜆)𝑓( 2)  
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Also, if 𝑓( ) has a second derivative in ,  𝑏-, then a necessary and sufficient condition for it to be convex on 

that interval is that the second derivative 𝑓   ( )  0 for all   in,  𝑏-. 

Moreover, if the inequality above is strict for all  1 and  2, then 𝑓( ) is called strictly convex. Besides that 

the function is called concave when the sign of the inequality is reversed. 

Definition 2.2 (Meromorphic function) A complex function is said to be analytic on a region 𝑅, if it is complex 

differentiable at every point in 𝑅. The terms holomorphic function, differentiable function, and complex 

differentiable function are used interchangeably with “analytic function”. If a complex function is analytic on a 

region 𝑅, it is infinitely differentiable in 𝑅. Also, a complex function may fail to be analytic at one or more 

points through the presence of singularities, or along lines or line segments through the presence of branch cuts. 

A complex function that is analytic at all finite points of the complex plane is said to be entire. A single-valued 

function that is analytic in all but possibly a discrete subset of its domain, and at those singularities goes to 

infinity like a polynomial, is called a meromorphic function.  

However, a meromorphic function therefore may only have finite-order, isolated poles and zeros and no essential 

singularities in its domain. 

Example: all rational functions,     ,     , 
1

   1
 etc. 

Definition 2.3 (Transcendental meromorphic function) A meromorphic function other than a rational function 

must have an essential singularity at the point at infinity is called transcendental meromorphic functions. 

Theorem 2.4 Every single-valued analytic function which is regular for every finite value of z and for z = ∞, 

is a constant function. 

Theorem 2.5 A function  (z) is regular everywhere except at infinity where it has a pole of order  , is a 

polynomial of degree  . 

Theorem 2.6 Every rational function is meromorphic in the extended plane. Also the converse, a function which 

is meromorphic in the extended plane is a rational function. 

Theorem 2.7 (Expansion of meromorphic function) Let 𝑓( ) be a non-constant meromorphic function, it’s all 

singularities, except at infinity, are poles. For simplicity suppose that poles are simple. Let  𝜇
 s represent the 

poles and 𝑏𝜇
 s represent the residues, respectively. If 0  | 1|  | 2|  ⋯ then we introduce a sequence of 

closed contours 𝐶𝑛, such that 𝐶𝑛 inclued  1  2 …   𝑛 , but no other poles; and the minimum distance 𝑅𝑛 of 

𝐶𝑛 from the origin tends to infinity with 𝑛, while 𝐿𝑛, the length of 𝐶𝑛  is O(𝑅𝑛) i.e. 𝐿𝑛 = O(𝑅𝑛) and such 

that, on 𝐶𝑛    𝑓( ) = O(𝑅𝑛), this implies that 𝑓( ) is bounded on the system of closed contours 𝐶𝑛taken as a 

whole under this conditions, 

𝑓( ) = 𝑓(0)  ∑𝑏𝑛 (
 

   𝑛
 
 

 𝑛
)

 

𝑛 1

  

for all values of  , except the poles. 

Theorem 2.8 (The Poisson-Jensen’s formula) Let 𝑓( ) be a non-constant meromorphic function. It has zeros at 

the points  1  2 …   𝑚 and poles at the points 𝑏1 𝑏2 …  𝑏𝑛in the disc | |  𝑅, and this is analytic elsewhere 

inside disc | |  𝑅. Then  

l |𝑓( 𝑒𝑖𝜃)| =
 

 𝜋
∫

(𝑅2   2) l |𝑓(𝑅𝑒𝑖𝜑)|

𝑅2    𝑅   s(𝜃  𝜑)   2
𝑑𝜑

2𝜋

0

 

 ∑ l |
𝑅2   ̅𝜇 𝑒

𝑖𝜃

𝑅( 𝑒𝑖𝜃   𝜇)
|

𝑚

𝜇 1

 ∑l |
𝑅2  �̅�𝛾 𝑒

𝑖𝜃

𝑅( 𝑒𝑖𝜃  𝑏𝛾)
|

𝑛

𝛾 1

  

for any  =  𝑒𝑖𝜃(0   < 𝑅), except any poles and zeros of 𝑓( ). 

3. The Nevanlinna Characteristics 

Let 𝑓( ) be a meromorphic function. We shall introduce several real functions defined on ,0  ) which 

characterize the behavior of 𝑓( ). The functions to be introduced will be called the Nevanlinna characteristics of 

𝑓( ). 

Let   be a complex number, and the real-valued function 𝑛(   𝑓 =  ) defined by 
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𝑛(   𝑓 =  ) = {

𝑛(   𝑓)                                  =   

𝑛 (   
 

𝑓   
)                         

 

         𝑛(0  𝑓 =  ) = {

𝑛(0  𝑓)                                    =   

𝑛 (0  
 

𝑓   
)                              

 

This functions inform us how many poles and zeros of 𝑓( ) are in the disc | |   . In this paper we use 

𝑛(   ) instead of 𝑛(  
1

   
), here 𝑛(  𝑓) and 𝑛(   ) represent the number of poles and zeros respectively. 

Similarly, Here 𝑛(0 𝑓) and 𝑛(0  ) represent the number poles and zeros of 𝑓( ) in the disc | |  𝜖  (𝜖  
0), respectively. We assume that a pole of order   contributes   to the value of 𝑛(  𝑓). It is clear that 

𝑛(  𝑓)  and 𝑛(   )  are integer-valued, non-decreasing, and right semi-continuous on ,0  ) . A point 

 0𝜖(0  ) is a point of discontinuity for 𝑛(  𝑓) if and only if the disk  | | =  0 contains poles of 𝑓( ), the 

value of the jump at  0 is equal to the number of such poles. The set of points of discontinuity of  𝑛(  𝑓) 
cannot have limit points in ,0  ) , therefore on each interval , 1  2-  ,0  )  the function 𝑛(  𝑓)  is 

piecewise constant. However similar properties hold for 𝑛(   ). It is clear that the functions 𝑛(  𝑓) and 

𝑛(   ) are non-decreasing continuous functions for any positive real values of  . 

Let   be a complex number and let the counting function 𝑁(  𝑓 =  ) be defined by 

𝑁(   𝑓 =  ) 

=

{
 
 

 
 𝑁(   𝑓) = ∫

𝑛(𝑡  )  𝑛(0   )

𝑡
𝑑𝑡

𝑟

0

 𝑛(0   ) l                                     =   

𝑁 (   
 

𝑓   
) = ∫

𝑛(𝑡  )  𝑛(0   )

𝑡
𝑑𝑡

𝑟

0

 𝑛(0   ) l                               

 

This characteristics also describes the location of poles and zeros of 𝑓( ). The counting functions 𝑁(  𝑓), and 

𝑁(  𝑓) are real-valued, non-decreasing continuous functions on (0  ).  

Let 𝑓( ) be a non-constant meromorphic function [11]. Assume  𝜇, and 𝑏𝜇 represent the zeros and the poles 

of 𝑓( ) in the disc | |   , respectively. If 0  | 1|  | 2|  ⋯ and If 0  |𝑏1|  |𝑏2|  ⋯, then we obtain 

that 

∑l 
𝑅

| 𝜇|

𝑛

𝜇 1

=∑ l 
𝑅

 𝜇

𝑛

𝜇 1

= l 
𝑅𝑛

 1 2… 𝑛
  

= 𝑛 l 𝑅  ∑ l  𝑚

𝑛

𝑚 1

                           

= 𝑛 l 𝑅  𝑛 l  𝑛  𝑛 l  𝑛  ∑ l  𝑚

𝑛

𝑚 1

  

= 𝑛(l 𝑅  l  𝑛)  ∑  (l  𝑚+1  l  𝑚)

𝑛 1

𝑚 1

  

= 𝑛∫
 

 
𝑑 

𝑅

𝑟𝑛

 ∑ ∫
 

 
𝑑 

𝑟𝑚+1

𝑟𝑚

𝑛 1

𝑚

  

= ∫
𝑛(    )

 
𝑑 

𝑅

𝑟𝑛

 ∑∫
𝑛(    )

 
𝑑 

𝑟𝑚+1

𝑟𝑚

𝑛 1

𝑚
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= ∫
𝑛(    )

 
𝑑 

𝑅

𝑟1

  

= ∫
𝑛(    )

 
𝑑 

𝑅

𝜖

                      ,si  e 𝑛(   ) = 0       y  ∈ (0  1)- 

= ∫
𝑛(    )  𝑛(0  )

 
𝑑 

𝑅

0

  

= 𝑁(𝑅   )  𝑛(0  ) l  . 

Similarly, for the poles we get,  

∑l 
𝑅

|𝑏𝛾|

𝑛

𝛾 1

= 𝑁(𝑅  𝑓)  𝑛(0  ) l                

Now, if we define 

l +  = {
l             
0       0   <   

 

Then the following properties are obvious: 

a. l +                              if     0  

b. l +   l                          if      0  

c. l +   l +                         if          

d. l  = l +   l +
1

 
                 if       0. 

Let   be a complex number and let the proximity function  (  𝑓 =  ) be defined by (Jing, 2014).  

 (   𝑓 =  )   

=

{
 
 

 
  (   𝑓) =

 

 𝜋
∫ l +|𝑓(𝑅𝑒𝑖𝜑)| 𝑑𝜑
2𝜋

0

                             = ∞ 

 (   
 

𝑓   
) =

 

 𝜋
∫ l +

 

|𝑓(𝑅𝑒𝑖𝜑)   |
𝑑𝜑

2𝜋

0

           ∞ 

 

This function characterizes the growth of the function 𝑓( ). Also, it is a continuous function for any positive 

real values of  . In this paper we use  (   ) instead of (  
1

   
) . 

Characteristics of  𝑁(  𝑓) is useful because it is related, in a natural way, to the Jensen formula. The Jensen 

formula, for 𝑓(0)  0    ∞,  can be written as 

 (𝑅  𝑓)  𝑁(𝑅  𝑓) =  (𝑅   )  𝑁(𝑅   )  l |𝑓(0)|  

Also. for 𝑓(0) = 0    ∞, i.e. if 𝑓( ) has a zero of order 𝜆 or a pole of order 𝜆 at  = 0. Then 

 (𝑅  𝑓)  𝑁(𝑅  𝑓) =  (𝑅   )  𝑁(𝑅   )  l |𝑐𝜆|  

when  𝑐𝜆 is coefficient of  𝜆 in the expansion of 𝑓( ). 

Let   be a complex number, then the Nevanlinna characteristics function   (   𝑓 =  ) on the meromorphic 

function 𝑓( ) are define by  

 (   𝑓 =  ) = {
 (   𝑓) =  (   𝑓)  𝑁(   𝑓)                                = ∞ 

 (    ) =  (    )  𝑁(    )                                 ∞ 
 

This is clear that   (𝑅  𝑓), and  (𝑅   ) are real-valued continuous of  ∈ ,0 ∞). (Hayman, 1926) 

4. Auxiliary Lemmas and Theorems 

Theorem 4.1 (The Nevanlinna’s first fundamental theorem) Let  (z) be a non-constant meromorphic function, 

and   is a complex number. Then, for 𝑓(0)      , we have 
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 (𝑅   ) =  (𝑅  𝑓)  𝑙𝑛|𝑓(0)   |  𝜖(   𝑅)  

where, |ϵ(   R)|  l +| |  l  ,  [ϵ(   R), for each  , is bounded as R goes to infinity]. (Hayman, 1926) 

Theorem 4.2 (Cartan’s identity) Let  (z) be a meromorphic function defined on the disc |z|  R. Then, for 

𝑓(0)  0  ∞, we obtain 

 (    ) =
 

  
∫  (   e  )  
2 

0

 l +| (0)|      (0 <  < 𝑅)  

The expression of  (   𝑓) by an integral is known as Cartan’s identity (due to H.Cartan). (Hayman, 1926) 

Lemma 4.3 The upper bound of  (   𝑓) can be given by the relation (Hayman, 1926). 

 

 𝜋
∫  (   𝑒𝑖𝜃)𝑑𝜃
2𝜋

0

 l    

Lemma 4.4 (The relationships between the maximum modulus and the characteristic function of a regular 

function) If 𝑓( ) is an analytic function defined on the disc | |  𝑅 (0 < 𝑅    ), and the maximum 

modulus defined by 

𝑀(   𝑓) =   x
|𝑧| 𝑟

|𝑓( )|  

Then the following inequality holds 

 (   𝑓)  l +𝑀(   𝑓)  
𝑅   

𝑅   
 (   𝑓)       (0 <  < 𝑅)  

Lemma 4.5 Let 𝑓( ) be a non-constant meromorphic function, and   is a complex number. Let the counting 

functions 𝑁(   𝑓), 𝑁(    ), and the characteristics functions  (   𝑓),  (    ) be defined on 𝑓( ). Then 

these four functions are convex functions of l  , for 0 <  <  . 

Proof: Using the definition (1.1) it is sufficient to show that a real function 𝜙( ) is convex if and only if  

𝜙   ( )  0, that is 𝜙 ( ) is non-decreasing. 

We have 

𝑁(   𝑓) = ∫
𝑛(𝑡 𝑓)  𝑛(0  𝑓)

𝑡
𝑑𝑡

𝑟

0

 𝑛(0  𝑓) l    

Differentiate with respect to l    then we get 

𝑑𝑁(   𝑓)

𝑑 l  
=

𝑑

𝑑 l  
[∫

𝑛(𝑡 𝑓)  𝑛(0  𝑓)

𝑡
𝑑𝑡

𝑟

0

 𝑛(0  𝑓) l  ]  

=
𝑑

𝑑 l  
∫
𝑛(𝑡 𝑓)  𝑛(0  𝑓)

𝑡
𝑑𝑡

𝑟

0

 𝑛(0  𝑓)  

=
𝑑

𝑑 l  
∫ *𝑛(𝑡 𝑓)  𝑛(0  𝑓)+𝑑 l 𝑡
𝑟

0

 𝑛(0  𝑓)  

=  𝑛(  𝑓)  𝑛(0  𝑓)   𝑛(0  𝑓) = 𝑛(   𝑓)  

Therefore, 𝑁(   𝑓) is a convex function of l  , Similarly, we show that 𝑁(    ) is a convex function of l  . 
Furthermore, for  ∞ <  <  , we obtain 

𝑁(𝑒  𝑓) = ∫ ,𝑛(𝑒  𝑓)  𝑛(0 𝑓)-𝑑𝑡
 

  

 𝑛(0 𝑓)   

Then 𝑁(𝑒  𝑓) is an integral of a non-decreasing real-valued continuous function of  , and it is convex 

function of u. Therefore, 𝑁(   𝑓), and 𝑁(    ) are convex functions of  l  ,  ∈ (0 ∞). 

By the Cartan’s identity relation, we have 

 (   𝑓) =
 

 𝜋
∫ 𝑁(   𝑒𝑖𝜃)𝑑𝜃
2𝜋

0

 l +|𝑓(0)|  

Differentiate with respect to l    then we get 
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𝑑 (   𝑓)

𝑑 l  
=

𝑑

𝑑 l  
[
 

 𝜋
∫ 𝑁(   𝑒𝑖𝜃)𝑑𝜃
2𝜋

0

 l +|𝑓(0)|]  

=
𝑑

𝑑 l  
[
 

 𝜋
∫ 𝑁(   𝑒𝑖𝜃)𝑑𝜃
2𝜋

0

]  0  

=
 

 𝜋
∫

𝑑

𝑑 l  
𝑁(   𝑒𝑖𝜃)𝑑𝜃

2𝜋

0

  

=
 

 𝜋
∫ 𝑛(   𝑒𝑖𝜃)𝑑𝜃
2𝜋

0

  

The value of right-hand side integral is always positive, because 𝑛(   𝑓)  0, and is a non-decreasing 

real-valued continuous function of  . Therefore, we conclude that  (   𝑓) is a convex functions of l  . 

Moreover, we also show that  (    𝑓),  ∞ <  <  , is a convex function of  . Similarly, we show that 

 (    ) and  (𝑒    ) are two convex function of l   and  , respectively. 

5. Main Results 

Theorem 5.1 Let 𝑓( ) be a non-constant meromorphic function, and   be a complex number. Let the 

counting functions 𝑁(   𝑓) , and 𝑁(    )  be defined on 𝑓( ) . Then, for any  1  2  ∈ 𝐼  ,0 ∞)  with 

 1 <  2, we get the following inequalities 

𝑁 (
 2   1
 

 𝑓)  
 

 2   1
∫ 𝑁(𝑒  𝑓)𝑑𝑡
  

 1

 
𝑁( 2 𝑓)  𝑁( 1 𝑓)

 
  

         𝑁 (
 2   1
 

  )  
 

 2   1
∫ 𝑁(𝑒   )𝑑𝑡
  

 1

 
𝑁( 2  )  𝑁( 1  )

 
  

Proof: Consider the real function  𝑁: 𝐼  ℝ → ℝ, defined by 

𝑁(𝑒  𝑓 =  ) 

=

{
 
 

 
 𝑁(𝑒  𝑓) = ∫ ,𝑛(𝑒  𝑓)  𝑛(0 𝑓)-𝑑𝑡

 

  

 𝑛(0 𝑓)                          = ∞ 

𝑁(𝑒   ) = ∫ ,𝑛(𝑒   )  𝑛(0  )-𝑑𝑡
 

  

 𝑛(0  )                          ∞ 

 

Using lemma (4.5), we say that 𝑁(𝑒  𝑓) and 𝑁(𝑒   ) are two convex functions of  , for  ∞ <  <  . 

Now using the Hermite-Hadamard inequality on convex functions, for any  1  2  ∈ 𝐼  ,0 ∞) with  1 <  2,  

we derive the following double inequalities 

𝑁 (
 2   1
 

 𝑓)  
 

 2   1
∫ 𝑁(𝑒  𝑓)𝑑𝑡
  

 1

 
𝑁( 2 𝑓)  𝑁( 1 𝑓)

 
  

         𝑁 (
 2   1
 

  )  
 

 2   1
∫ 𝑁(𝑒   )𝑑𝑡
  

 1

 
𝑁( 2  )  𝑁( 1  )

 
  

This completes the proof of theorem (5.1). 

Theorem 5.2  Let 𝑓( ) be a non-constant meromorphic function, and   be a complex number. Let the 

counting functions  (   𝑓) , and  (    )  be defined on 𝑓( ) . Then, for any  1  2  ∈ 𝐼  ,0 ∞)  with 

 1 <  2, we get the following inequalities 

 (
 2   1
 

 𝑓)  
 

 2   1
∫  (𝑒  𝑓)𝑑 
  

 1

 
 ( 2 𝑓)   ( 1 𝑓)

 
  

          (
 2   1
 

  )  
 

 2   1
∫  (𝑒   )𝑑 
  

 1

 
 ( 2  )   ( 1  )

 
  

Proof: Consider the real function   : 𝐼  ℝ → ℝ, defined by 

 (𝑒  𝑓 =  ) = {
 (𝑒  𝑓) =  (𝑒   𝑓)  𝑁(𝑒   𝑓)                         = ∞ 

 (𝑒   ) =  (𝑒    )  𝑁(𝑒    )                         ∞ 
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Using lemma (4.5), we say that the Nevanlinna Characteristics functions  (𝑒  𝑓), and  (𝑒   ) are two 

convex functions of  , for  ∞ <  <  . Now using the Hermite-Hadamard inequality on convex functions, 

for any  1  2  ∈ 𝐼  ,0 ∞) with  1 <  2,  we derive the following double inequalities 

 (
 2   1
 

 𝑓)  
 

 2   1
∫  (𝑒  𝑓)𝑑𝑡
  

 1

 
 ( 2 𝑓)   ( 1 𝑓)

 
  

          (
 2   1
 

  )  
 

 2   1
∫  (𝑒   )𝑑𝑡
  

 1

 
 ( 2  )   ( 1  )

 
  

This completes the proof of theorem (5.2). 
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