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Abstract

In the paper, the exact solutions to the cubic-quintic nonlinear Schrödinger equation with third and fourth-order
dispersion terms is considered. The improved homogeneous balance method is used for constructing a series of
new exact envelop wave solutions, including envelop solitary wave solutions, envelop periodic wave solutions and
an envelop rational solution.
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1. Introduction

Since third and fourth-order dispersion terms play a crucially important role in describing the propagation of
extremely short pulses, the generalized nonlinear Schrödinger equation

iqz −
β2

2
qtt + γ1|q|2q = i

β3

6
qttt +

β4

24
qtttt − γ2|q|4q (1)

is taken as a model for a sub-picoseconds pulse propagation in a medium which exhibits a parabolic nonlinearity
law (Shundong, 2007, Karpman,1997). In particular, q(z, t) is the slowly varying envelope of the electromagnetic
field, β2 is the parameter of the group velocity dispersion, β3 and β4 are third-order and fourth-order dispersion,
respectively, γ1 and γ2 are the nonlinearity coefficients (Karpman, 1998). As to this equation, its modulation
instability of optical wave was numerically investigated (Woo-Pyo,2002), the relative exact analytic solutions were
studied very few, the researchers mainly studied its several special cases because of itself complications. For the
case β3 = 0, a series of analytical exact solutions are constructed by means of F-expansion method (Gui-Qiong,
2011). In the case β3 = γ1 = 0, a dark solitary wave solution with amplitude only depending on the time was
presented (Azzouzi,2014). In contrast, when β3 = β4 = γ2 = 0, various types exact solution were discovered
(Azzouzi, 2009, Huiqing,2009, Wenxiu,2009, Anjan,2010 ).

Two exact periodic solutions and two kink soliton solutions had been constructed with the homogeneous balance
method (Shundong, 2007). Here, we construct new the exact solutions with the aid of the improved homogeneous
balance method. In section 2, we introduce the general method for solving complex partial differential equations,
and solve the new analytical solutions to high-order dispersive cubic-quintic nonlinear Schrödinger equation in
section 3.

2. The Main Method

In this section, we propose a general method to obtain exact solutions for complex nonlinear partial differential
equations, based on the homogeneous balance method.

Consider a given complex partial differential equation with independent variables z and t

H(q, qz, qzz, ...qt, ...) = 0, (2)

where H is in general a complex polynomial in q and its various partial derivatives. The main steps are:

First. Taking the transformation
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q(x, t) = u(ξ)ei(p1z+p2t+c0), ξ = k1z + k2t + ξ0, (3)

where ki, pi, i = 1, 2 are constants to be determined, c0, ξ0 are arbitrary constants. Substituting (3) into (2) yields a
complex ordinary differential equation, in which the real and imaginary parts read, respectively,

HR(u, u′, u′′, ...) = 0, (4)
HI(u, u′, u′′, ...) = 0. (5)

Second. The next crucial step is to take

u(ξ) =
n∑

i=1

aiF i(ξ), (6)

where ai are constants to be determined later, n is a positive integer that can be determined by balancing the
highest-order derivative terms with the highest power nonlinear terms in the equations, and F(ξ) satisfies the first
kind elliptic equation

(F′(ξ))2 = b1 + b2F2(ξ) + b3F4(ξ). (7)

where bi are arbitrary constants, but b3 is not equal to zero.

Third. Substitute Eq.(7) with (6) into (4) and (5), the left hand sides of (4) and (5) can be converted into two finite
series in F i, respectively, and equating each coefficient of F i to zero yields a system of algebraic equations for
ki, pi, ai. Solve it, ki, pi and ai can be expressed by bi and the coefficients of Eq.(2).

Fourth. Solving Eq.(7) and compounding it’s solutions with (6) and (3), we can obtain a series of envelop solitary
wave solutions, triangle functions and rational solutions of Eq.(2).

3. Exact solutions to Eq. (1)

In this section, we will construct the exact solutions for Eq.(1).

Making the transformation

q = u(ξ) ei(ωt+θz), ξ = µt + αz + ξ0, (8)

for Eq.(1), where ω, θ, µ and α are constants to be determined. Then separating the real and imaginary parts of the
resulting complex ordinary differential equation, we obtain

β4µ
4

24
uξξξξ + µ2(

β2

2
− β4

4
ω2 − β3

2
ω)uξξ + (

β4

24
ω4 +

β3

6
ω3 + θ − β2

2
ω2)u − γ1u3 − γ2u5 = 0;

µ3(
β3

6
+
β4

6
ω)uξξξ + (β2ωµ − α −

β3

2
µω2 − β4

6
µω3)uξ = 0. (9)

Especially, the method of dealing with the above relations differs from Shundong’s (Shundong,2007). Setting{
µ3( β3

6 +
β4
6 ω) = 0,

β2ωµ − α − β3
2 µω

2 − β4
6 µω

3 = 0.
(10)

we finally get

β4µ
4uξξξξ + 6µ2(2β2 − β4ω

2 − 2β3ω)uξξ + (β4ω
4 + 4β3ω

3 + 24θ − 12β2ω
2)u − 24γ1u3 − 24γ2u5 = 0. (11)

Next, our task is to solve the above ordinary differential equation, by balancing the highest order derivative terms
and the highest power nonlinear terms, we choose the ansatz

u = aF(ξ), a , 0, (12)
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where a is a constant to be determined, and F(ξ) must satisfy the following auxiliary equation

(
dF
dξ

)2 = b + cF2 + dF4, (13)

where b, c and d are arbitrary constants. Substituting (12) with (13) into (11) and letting each coefficient of
F i(i = 1, 2, 3) to be zero, we get algebraic equations

β4µ
4(c2 + 12bd) + 6µ2(2β2 − β4ω

2 − 2β3ω)c + β4ω
4 + 4β3ω

3 + 24θ − 12β2ω
2 = 0

20cdβ4µ
4 + 12dµ2(2β2 − β4ω

2 − 2β3ω) − 24γ1a2 = 0
24d2β4µ

4 − 24γ2a4 = 0.
(14)

Solving the algebraic equations (10) and (14) yields

ω = −β3

β4
; a = ± 1

β4

√√√
6γ1dβ2

4 − 3γ2|d|
√
β4
γ2

(2β2β4 + β
2
3)

5cγ2
;

µ = ± 1
β4

√√√
6γ1|d|β4

√
β4
γ2
− 3d(2β2β4 + β

2
3)

5cd
; α = −µ

β3(3β2β4 + β
2
3)

3β3
4

θ =
β2

3(β2
3 + 4β2β4)

8β3
4

− β4(c2 + 12bd)
24

µ4 −
c(2β2β4 + β

2
3)

4β4
µ2. (15)

Solving F(ξ) from (13) one by one and substituting them into (15) together with (8) yields the following exact
solutions.

Envelop period wave solutions of Eq.(1) have the form:

q = a
4

√
b
d

tan
4√
bdξ ei(ωt+θz), (16)

q = a
4

√
b
d

cot
4√
bdξ ei(ωt+θz), (17)

where c = 2
√

bd.

Envelop kink soliton solutions are given by:

q = a
4

√
b
d

tanh
4√
bdξ ei(ωt+θz), (18)

q = a
4

√
b
d

coth
4√
bdξ ei(ωt+θz), (19)

where c = −2
√

bd.

Envelop periodic wave solutions of the form:

q = a

√
−c
d

sec
√
−cξ ei(ωt+θz), (20)

q = a

√
−c
d

csc
√
−cξ ei(ωt+θz), (21)

where b = 0, c < 0, d > 0.
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Envelop bell soliton solutions are given by:

q = a

√
−c
d

sech
√

cξ ei(ωt+θz), (22)

where b = 0, c > 0, d < 0,
and also

q = ±
√

c
d

csch
√

cξ ei(ωt+θz), (23)

where b = 0, c > 0, d > 0.

Envelop rational solution is

q = a
±1
√

dξ
ei(ωt+θz), (24)

where b = c = 0, d > 0, and this is singular at ξ = 0.

In (16)-(24), ξ = µt + αz + ξ0, a, θ, ω, α and µ are given by (15).

3. Conclusions

In summary, Shundong, Z. early considered the exact envelop wave solutions to the high dispersive cubic-quintic
nonlinear Schrödinger equation which describes the propagation of extremely short pulses. Based on the improved
homogeneous balance method, we obtain some exact envelop wave solutions by taking the first elliptic equation as
auxiliary ordinary differential equation, some physical phenomena of extremely short pulses can be better under-
stood with the help of these new solutions.
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