Level *n*-Fuzzy Bounded Set and α -Completeness in Fuzzy *n*-Normed Linear Space

Iqbal H. Jebril (Corresponding author)

Department of Mathematics, King Faisal University, Saudi Arabia

E-mail: iqbal501@hotmail.com

Abstract

In the present paper, we introduce α -completeness, level *n*-fuzzy bounded set, and level *n*-fuzzy closed set in a fuzzy n-normed space.

Keywords: Fuzzy n-normed space, α -convergent sequence, α -Cauchy sequence, α -completeness, Level *n*-fuzzy bounded set, Level *n*-fuzzy closed set

AMS Mathematics Subject Classification: 46S40, 03E72.

1. Introduction

A satisfactory theory of 2-norm on linear space has been introduced and developed by Gähler (Gähler, 1964, p.1-43). A systematic development of n-normed linear spaces is due to S. S. Kim and Y. J. Cho. (Kim, 1996, p.739-744), R. Malceski (Malceski, 1997, p.81-102), A. Misiak (Misiak, 1989, p.299-319), and H. Gunawan and M. Mashadi (Gunawan, 2001, p.631–639). A detailed theory of fuzzy normed linear spaces can be found in (Bag, 2003, p.687-705), (Chang, 1994, p.429-436), (Felbin, 1993, p.428-440), (Felbin, 1999, p.117-131), and (Krishna, 1994, p.207-217). Al Narayanan and S. Vijayabalaji (Narayanan, 2005, p.3963-3977) extended the notion of n-normed linear space to fuzzy n-normed linear space.

Convergence and completeness in fuzzy n-normed linear space were discussed by S. Vijayabalaji and N. Thillaigovindan (Vijayabalaji, 2007, p.119-126) by generalizing it for fuzzy n-normed linear space in terms of α -convergence and α -completeness.

In the present paper, after an introduction to fuzzy n-normed linear spaces, we shall introduce the notion of α -convergent sequence and α -Cauchy sequence in fuzzy n-normed linear space. We also introduce the concept of α -completeness which would provide a more general framework to study the α -completeness of the fuzzy n-normed linear space. Then we defined level *n*-fuzzy bounded set and level *n*-fuzzy closed set in a fuzzy n-normed space.

2. Preliminaries

This section is devoted to a collection of basic definitions and results which will be needed in the sequel.

Definition 2.1. (Gunawan, 2001, p.631–639). Let $n \in \mathbb{N}$ (natural numbers) and X be a real vector space of dimension $d \ge n$. A real valued function $\|\bullet, \bullet, ..., \bullet\|$ on $X \times ... \times X = X^n$, satisfying the following properties:

(1) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

(2) $||x_1, x_2, ..., x_n||$ is invariant under any permutation of $x_1, x_2, ..., x_n$,

(3) $||x_1, x_2, ..., \alpha x_n|| = |\alpha| ||x_1, x_2, ..., x_n||$, where $\alpha \in \mathbb{R}$ (set of real numbers),

(4) $||x_1, x_2, ..., x_{n-1}, y + z|| \le ||x_1, x_2, ..., x_{n-1}, y|| + ||x_1, x_2, ..., x_{n-1}, z||,$

 $\|\bullet, \bullet, ..., \bullet\|$ is called an n-norm on X and the pair $(X, \|\bullet, \bullet, ..., \bullet\|)$ is called an n-normed linear space.

Definition 2.2. (Gunawan, 2001, p.631–639). A sequence $\{x_n\}$ in an n-normed linear space $(X, || \bullet, \bullet, ..., \bullet ||)$ is said to be:

i. Converge to an $x \in X$ (in the n-norm), whenever

$$\lim_{n \to \infty} \|x_1, x_2, ..., x_{n-1}, x_n - x\| = 0.$$

ii. Cauchy sequence, if

 $\lim_{n\to\infty} \|x_1, x_2, \dots, x_{n-1}, x_n - x_{n+p}\| = 0, \forall p = 1, 2, 3, \dots$

iii. Complete, if every Cauchy sequence in it is convergent.

Definition 2.3. (Narayanan, 2005, p.3963-3977). Let *X* be a linear space over a real field *F*. A fuzzy subset *N* of $X^n \times \mathbb{R}$ is called a fuzzy n-norm on *X* if and only if:

(N1) For all $t \in \mathbb{R}$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$.:

(N2) For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent.

(N3) $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, x_2, ..., x_n$.

(N4) For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., cx_n, t) = N(x_1, x_2, ..., cx_n, t/|c|)$ if $c \neq 0, c \in F$.

(N5) For all $s, t \in \mathbb{R}$, $N(x_1, x_2, ..., x_n + x'_n, s + t) \ge \min \{N(x_1, x_2, ..., x_n, s), N(x_1, x_2, ..., x'_n, t)\}$.

(N6) $N(x_1, x_2, ..., x_n, t)$ is a non-decreasing function of $t \in \mathbb{R}$ and $\lim_{t \to \infty} N(x_1, x_2, ..., x_n, t) = 1$.

Then (X, N) is called a fuzzy n-normed linear space.

Theorem 2.4. (Narayanan, 2005, p.3963-3977). Let (X, N) be a fuzzy n-normed linear space. Assume further that

(N7) For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., x_n, t) > 0$,

implies that $x_1, x_2, ..., x_n$ are linearly dependent.

Define $||x_1, x_2, ..., x_n||_{\alpha} = \inf \{t : N(x_1, x_2, ..., x_n, t) \ge \alpha\}, \alpha \in (0, 1).$

Then $\{\|\bullet, \bullet, ..., \bullet\|_{\alpha} : \alpha \in (0, 1)\}$ is an ascending family of n-norms on X. These n-norms are called α -n-norms on X corresponding to fuzzy n-norm on X.

Definition 2.5. (Menger, 1942, p.535-537). A binary operation $* : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ is a continuous t-norm if * satisfies the following conditions:

(1) * is commutative and associative.

(2) * is continuous.

(3) a * 1 = a, for all $a \in [0, 1]$.

(4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ and $a, b, c, d \in [0, 1]$.

In (Vijayabalaji, 2007, p.119-126) redefine the notion of fuzzy n-normed linear space using t-norm.

Definition 2.6. (Vijayabalaji, 2007, p.119-126). Let *X* be a linear space over a real field *F*. A fuzzy subset *N* of $X^n \times \mathbb{R}$ is called a fuzzy n-norm on *X* if and only if:

(N1') For all $t \in \mathbb{R}$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$.:

(N2') For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent.

(N3') $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, x_2, ..., x_n$.

(N4') For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., cx_n, t) = N(x_1, x_2, ..., cx_n, t/|c|)$ if $c \neq 0, c \in F$.

(N5') For all $s, t \in \mathbb{R}$, $N(x_1, x_2, ..., x_n + x'_n, s + t) \ge N(x_1, x_2, ..., x_n, s) * N(x_1, x_2, ..., x'_n, t)$.

 $(N6') N(x_1, x_2, ..., x_n, t)$ is left continuous and non-decreasing function such that $\lim N(x_1, x_2, ..., x_n, t) = 1$.

To strengthen the above definition, see the following examples.

Example 2.7. (Narayanan, 2005, p.3963-3977) Let $(X, ||\bullet, \bullet, ..., \bullet||)$ be an n-normed space, where $(x_1, x_2, ..., x_n) \in X \times ... \times X$.

Define $a * b = \min \{a, b\}$ and

 $N(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t + \|x_1, x_2, ..., x_n\|}, & \text{when } t > 0, \ t \in \mathbb{R}, \\ 0, & \text{when } t \le 0. \end{cases}$

Then (X, N) is an f-n-NLS.

Example 2.8. For $(x_1, x_2, ..., x_n) \in \underbrace{X \times ... \times X}_n$, we define $a * b = \min \{a, b\}$ and

$$N(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t+k||x_1, x_2, ..., x_n||}, \text{ when } t > 0, \ t \in \mathbb{R}, \ k > 0\\ 0, \text{ when } t \le 0. \end{cases}$$

Then (X, N) is an f-n-NLS.

Proof:

(N1') For all $t \in \mathbb{R}$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$.

(N2') For all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$

 $\iff \frac{t}{t+k||x_1, x_2, ..., x_n||} = 1 \iff ||x_1, x_2, ..., x_n|| = 0 \iff x_1, x_2, ..., x_n \text{ are linearly dependent.}$

(N3') As $||x_1, x_2, ..., x_n||$ is invariant under any permutation of $x_1, x_2, ..., x_n$, it follow that $N(x_1, x_2, ..., x_n, t)$ is invariant

under any permutation of $x_1, x_2, ..., x_n$. under any permutation of $x_1, x_2, ..., x_n$.

 $\begin{aligned} & (N4') \text{ For all } t \in \mathbb{R} \text{ with } t > 0 \text{ and } c \in \mathbb{R} \setminus \{0\}, \\ & N(x_1, x_2, ..., cx_n, t/|c|) = \frac{t/|c|}{t/|c|+k||x_1, x_2, ..., x_n||} = \frac{t/|c|}{\frac{t+k|c|||x_1, x_2, ..., x_n||}{|c|}} \\ & = \frac{t}{t+k|c|||x_1, x_2, ..., x_n||} = \frac{t}{t+k||x_1, x_2, ..., x_n||} = N(x_1, x_2, ..., cx_n, t/|c|). \\ & \text{Thus } N(x_1, x_2, ..., cx_n, t/|c|) = N(x_1, x_2, ..., cx_n, t/|c|). \\ & (N5') \text{ For all } s, t \in \mathbb{R}, \\ & \text{ If } s + t < 0, s = t = 0, \text{ and } s + t > 0; (s > 0, t < 0 \text{ or } s < 0, t > 0), \text{ then } \\ & N(x_1, x_2, ..., x_n + x'_n, s + t) \ge N(x_1, x_2, ..., x_n, s) * N(x_1, x_2, ..., x'_n, t). \\ & \text{ If } s > 0, t > 0, s + t > \text{ then assume that} \end{aligned}$

 $N(x_1, x_2, ..., x'_n, t) \le N(x_1, x_2, ..., x_n, s)$

$$\Rightarrow \frac{t}{t+k||x_1, x_2, ..., x_n'||} \le \frac{s}{s+k||x_1, x_2, ..., x_n||} \Rightarrow t (s+k ||x_1, x_2, ..., x_n||) \le s (t+k ||x_1, x_2, ..., x_n'||) \Rightarrow t ||x_1, x_2, ..., x_n|| \le s ||x_1, x_2, ..., x_n'|| \Rightarrow ||x_1, x_2, ..., x_n|| \le \frac{s}{t} ||x_1, x_2, ..., x_n'||$$

Therefore,

$$\begin{aligned} \|x_1, x_2, \dots, x_n\| + \|x_1, x_2, \dots, x'_n\| &\leq \frac{s}{t} \|x_1, x_2, \dots, x'_n\| + \|x_1, x_2, \dots, x'_n\| \\ &\leq \left(\frac{s}{t} + 1\right) \|x_1, x_2, \dots, x'_n\| = \left(\frac{s+t}{t}\right) \|x_1, x_2, \dots, x'_n\|. \end{aligned}$$

But,

$$\|x_1, x_2, ..., x_n + x'_n\| \le \|x_1, x_2, ..., x_n\| + \|x_1, x_2, ..., x'_n\| \le \left(\frac{s+t}{t}\right) \|x_1, x_2, ..., x'_n\|$$

Then,

$$\begin{split} 1 + \frac{k \|x_{1,x_{2},...,x_{n}+x'_{n}}\|}{s+t} &\leq 1 + \frac{k \|x_{1,x_{2},...,x'_{n}}\|}{t} \Rightarrow \frac{s+t}{s+t+k \|x_{1,x_{2},...,x_{n}+x'_{n}}\|} \leq \frac{t}{t+k \|x_{1,x_{2},...,x'_{n}}\|} \\ \Rightarrow N(x_{1},x_{2},...,x_{n}+x'_{n},s+t) \geq N(x_{1},x_{2},...,x_{n},s) * N(x_{1},x_{2},...,x'_{n},t). \end{split}$$

(N6') Clearly $N(x_1, x_2, ..., x_n, t)$ is left continuous function. Suppose that $t_2 > t_1 > 0$ with $t_1, t_2 \in [0, 1)$ then,

$$\frac{t_2}{t_2+k||x_1,x_2,\dots,x_n||} - \frac{t_1}{t_1+k||x_1,x_2,\dots,x_n||} = \frac{k||x_1,x_2,\dots,x_n||(t_2-t_1)}{(t_2+k||x_1,x_2,\dots,x_n||)(t_1+k||x_1,x_2,\dots,x_n||)} \ge 0$$

or all $(x_1, x_2,\dots,x_n) \in X^n$

for all $(x_1, x_2, ..., x_n) \in X^n$

$$\Rightarrow \frac{t_2}{t_2 + k \|x_1, x_2, \dots, x_n\|} \ge \frac{t_1}{t_1 + k \|x_1, x_2, \dots, x_n\|} \Rightarrow N(x_1, x_2, \dots, x_n, t_2) \ge N(x_1, x_2, \dots, x_n, t_1)$$

Thus $N(x_1, x_2, ..., x_n, t)$ is non-decreasing function of $t \in [0, 1)$.

Also,

 $\lim_{n \to \infty} N(x_1, x_2, ..., x_n, t) = \lim_{n \to \infty} \frac{t}{t + k ||x_1, x_2, ..., x_n||} = \lim_{n \to \infty} \frac{t}{t} \left(1 + \frac{1}{t k ||x_1, x_2, ..., x_n||} \right) = 1.$ Hence (X, N) is called f-n-LNS.

Definition 2.9. (Vijayabalaji, 2007,p.119-126). Let (X, N) be a f-n-NLS and $\{x_n\}$ be a sequence in X then $\{x_n\}$ is said to be convergent if given r > 0, t > 0, 0 < r < 1, there exists an integer $n_0 \in \mathbb{N}$ such that $N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > 1 - r$ for all $n \ge n_0$. In this case x is called the limit of the sequence $\{x_n\}$.

Definition 2.10. (Vijayabalaji, 2007, p.119-126). Let (X, N) be a f-n-NLS and $\{x_n\}$ be a sequence in X. The sequence $\{x_n\}$ is said to be convergent if and only if

 $N(x_1, x_2, \dots, x_{n-1}, x_n - x, t) \rightarrow 1 \text{ as } n \rightarrow \infty.$

Definition 2.11. (Vijayabalaji, 2007, p. 119-126). Let (X, N) be a f-n-NLS and $\{x_n\}$ be a sequence in X then $\{x_n\}$ is said to be a Cauchy sequence if given $\varepsilon > 0$ with $0 < \varepsilon < 1$, t > 0, there exists an integer $n_0 \in \mathbb{N}$ such that $N(x_1, x_2, ..., x_{n-1}, x_n - x_k, t) > 1 - \varepsilon$ for all $n, k \ge n_0$.

Definition 2.12. (Vijayabalaji, 2007, p.119-126). A f-n-NLS is said to be complete if every Cauchy sequence in it is convergent.

3. *α*-Completeness in f-n-NLS

In this section we generalize the notions of convergence and completeness in f-n-NLS by introducing the notions of

 α -convergence, α -Cauchyness and α -completeness in f-n-NLS and studying the α -completeness of fuzzy n-normed linear space.

Definition 3.1. Let (X, N) be a f-n-NLS and $\alpha \in (0, 1)$. A sequence $\{x_n\}$ in X is said to be α -convergent to x if $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > \alpha$, for all t > 0.

Theorem 3.2. Let (X, N) be a f-n-NLS satisfying (N7). If $\{x_n\}$ is an α -convergent sequence in (X, N), then

 $\lim ||x_1, x_2, ..., x_{n-1}, x_n - x||_{\alpha} = 0, \forall \alpha \in (0, 1).$

Proof: Let $\{x_n\}$ be an α -convergent sequence in (X, N) and suppose that it converges to x. Thus

 $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > \alpha, \forall t > 0, .\alpha \in (0, 1).$

 $\implies \forall t > 0, \exists n_0(t) \text{ such that } N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > \alpha, \forall t > 0.$

 $\implies \forall t > 0, \exists n_0(t) \text{ such that } ||x_1, x_2, ..., x_{n-1}, x_n - x||_{\alpha} \le t, \forall n \ge n_0(t).$

Since t > 0 is arbitrary, then

 $\lim \|x_1, x_2, ..., x_{n-1}, x_n - x\|_{\alpha} = 0, \, \forall \alpha \in (0, 1).$

Theorem 3.3. Let (X, N) be a f-n-NLS satisfying (N7) and $\{x_n\}$ be a sequence in (X, N). Then $\{x_n\}$ is convergent to x (see Definition 2.9) if and only if

 $\lim_{n \to \infty} \|x_1, x_2, ..., x_{n-1}, x_n - x\|_{\alpha} = 0, \, \forall \alpha \in (0, 1).$

Proof: Let $\{x_n\}$ be a convergent sequence in (X, N) to x. Choose $\alpha \in (0, 1)$. There exists $n_0 \in \mathbb{N}$ such that $N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > 1 - \alpha$ for all $n \ge n_0$.

It follows that

 $||x_1, x_2, ..., x_{n-1}, x_n - x||_{1-\alpha} \le t, \forall n \ge n_0.$

Thus

 $\lim \|x_1, x_2, ..., x_{n-1}, x_n - x\|_{1-\alpha} = 0, \, \forall \alpha \in (0, 1) \,.$

Conversely, let

 $\lim ||x_1, x_2, ..., x_{n-1}, x_n - x||_{\alpha} = 0$, for every $\alpha \in (0, 1)$. Fix $\alpha \in (0, 1)$ and t > 0. There exists $n_0 \in \mathbb{N}$ such that

 $\inf \{r : N(x_1, x_2, ..., x_{n-1}, x_n - x, r) \ge 1 - \alpha \} < t,$

i.e. the sequence $\{x_n\}$ is convergent to *x*.

Definition 3.4. Let (X, N) be a f-n-NLS and $\alpha \in (0, 1)$. A sequence $\{x_n\}$ in X is said to be α -Cauchy if

 $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t) \ge \alpha, \text{ for all } t > 0, p = 1, 2,$

Theorem 3.5. Let (X, N) be a f-n-NLS satisfying (N7). Then every Cauchy sequence in $(X, ||\bullet, \bullet, ..., \bullet||_{\alpha})$ is an α -Cauchy sequence in (X, N), where $||\bullet, \bullet, ..., \bullet||_{\alpha}$ denotes the α -n-norm of $N, \forall \alpha \in (0, 1)$.

Proof: Let $\alpha_0 \in (0, 1)$ and $\{x_n\}$ be a Cauchy sequence in $(X, ||\bullet, \bullet, ..., \bullet||_{\alpha_0})$.

Then,

 $\lim_{n \to \infty} \|x_1, x_2, \dots, x_{n-1}, x_n - x_{n+p}\|_{\alpha_0} = 0, \ p = 1, 2, 3, \dots$

Thus for a given $\varepsilon > 0$, there exist a positive integer $N(\varepsilon)$ such that

 $||x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}||_{\alpha_0} < \varepsilon, \forall n \ge N(\varepsilon), p = 1, 2, 3, ...$

 $\Longrightarrow \inf \left\{ t > 0 : N(x_1, x_2, \dots, x_{n-1}, x_n - x_{n+p}, t) \ge \alpha_0 \right\} < \varepsilon, \forall n \ge N(\varepsilon), p = 1, 2, 3, \dots$

 $\implies \forall n \geq N(\varepsilon), p = 1, 2, 3, ..., \exists t(n, p, \varepsilon) < \varepsilon \text{ such that } N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t(n, p, \varepsilon)) \geq \alpha_0$

 $\implies N(x_1, x_2, \dots, x_{n-1}, x_n - x_{n+p}, \varepsilon) \ge \alpha_0, \forall n \ge N(\varepsilon), p = 1, 2, 3, \dots$

Since $\varepsilon > 0$ is arbitrary, then

 $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, \varepsilon) \ge \alpha_0, \, \forall t > 0.$

 \implies { x_n } is an α_0 -Cauchy sequence in (X, N).

Since $\alpha_0 \in (0, 1)$ is arbitrary, then every Cauchy sequence in $(X, ||\bullet, \bullet, ..., \bullet||_{\alpha})$ is an α -Cauchy sequence in (X, N) for each $\alpha \in (0, 1)$.

Definition 3.6. In f-n-NLS (X, N), every α -convergent sequence is an α -Cauchy sequence.

Proof: Suppose that $\{x_n\}$ is α -convergent to x and $\alpha \in (0, 1)$, then we have

$$\lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x, t) > \alpha, \text{ for all } t > 0.$$

Now, for all p = 1, 2, 3, ...

 $N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t) = N(x_1, x_2, ..., x_{n-1}, x_n - x + x - x_{n+p}, t/2 + t/2) \ge N(x_1, x_2, ..., x_{n-1}, x_n - x, t/2) * N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) \ge N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) + N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) \ge N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) + N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) \ge N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) + N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) + N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) \ge N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t/2) + N(x_1, x_2, ..., x_{n+p}, t/2) + N(x_1, x_2, ...,$

Therefore,

 $\lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t) \ge \lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x, t/2) *$

 $\lim N(x_1, x_2, ..., x_{n-1}, x - x_{n+p}, t/2) > \alpha.$

Hence $\{x_n\}$ is an α -Cauchy sequence in (X, N).

The converse of the above theorem is not necessarily true. This is justified by the following example.

Example 3.7. Let $(X, ||\bullet, \bullet, .., ., \bullet||)$ be an n-normed space and define $a * b = \min \{a, b\}$, for all $a, b \in [0, 1]$. Define

$$N(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t+k||x_1, x_2, ..., x_n||}, & \text{when } t > 0, \ t \in \mathbb{R} \\ 0, & \text{when } t \le 0, \end{cases}$$

where k > 0. Then (X, N) is an f-n-NLS (see Example 2.8). We now show that

a){ x_n } is a Cauchy sequence in $(X, ||\bullet, \bullet, ..., \bullet||)$ if and only if { x_n } is an α -Cauchy sequence in (X, N).

b){ x_n } is a convergent sequence in (X, $||\bullet, \bullet, ..., \bullet||$) if and only if { x_n } is an α -convergent sequence in (X, N).

Proof: a) Let $\{x_n\}$ be a Cauchy sequence in $(X, ||\bullet, \bullet, ..., \bullet||)$

$$\Leftrightarrow \lim_{n \to \infty} \left\| x_1, x_2, ..., x_{n-1}, x_n - x_{n+p} \right\| = 0, \text{ for all } p = 1, 2, 3,$$

 $\Leftrightarrow \lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}) =$

 $\lim_{n \to \infty} \frac{t}{t+k ||x_1, x_2, \dots, x_{n-1}, x_n - x_{n+p}||} = 1 > \alpha, \text{ for all } t, k > 0.$

- $\Leftrightarrow \lim_{n \to \infty} N\left(x_1, x_2, ..., x_{n-1}, x_n x_{n+p}\right) > \alpha$
- \Leftrightarrow {*x_n*} is an α -Cauchy sequence in (*X*, *N*).

b) { x_n } is a convergent sequence in (X, $||\bullet, \bullet, ..., \bullet||$)

- $\Leftrightarrow \lim_{n \to \infty} ||x_1, x_2, \dots, x_{n-1}, x_n x|| = 0$
- $\Leftrightarrow \lim N(x_1, x_2, ..., x_{n-1}, x_n x) =$

 $\lim_{n\to\infty}\frac{t}{t+k||x_1,x_2,\dots,x_{n-1},x_n-x||} = 1 > \alpha, \text{for all } t, k > 0.$

 $\Leftrightarrow \lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x) > \alpha,$

 \Leftrightarrow {*x_n*} is an α -convergent sequence in (*X*, *N*).

Remark 3.8. If there exist a Cauchy sequence in n-normed linear space which is not convergent then there may exist a Cauchy sequence in R-n-LNS which is not convergent. Thus if there exists an n-normed linear space $(X, ||\bullet, \bullet, ..., \bullet||)$ which is not complete then the fuzzy n-norm induced by such a crisp n-norm $||\bullet, \bullet, ..., \bullet||$ on an incomplete n-normed linear space *X* is an α -incomplete f-n-NLS

Theorem 3.9. In f-n-LNS (*X*, *N*) in which every α -Cauchy sequence has an α -convergent subsequence is α -complete, where $a * b = \min \{a, b\}$ and $\alpha \in (0, 1)$.

Proof: Let $\{x_n\}$ be a α -Cauchy sequence in (X, N) and $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ that α -converges to x. We prove that $\{x_n\} \alpha$ -converges to x. Since $\{x_n\}$ is an α -Cauchy sequence, there exists an integer $n_0 \in \mathbb{N}$ such that

 $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x_{n+p}, t) \ge \alpha$, for all t > 0, p = 1, 2, ...

Since $\{x_{n_k}\}$ α -converges to x, then

 $\lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_{n_{i_k}} - x, t/2) > \alpha, \text{ for all } t > 0.$

Now,

$$\begin{split} N(x_1, x_2, ..., x_{n-1}, x_n - x, t) &= N(x_1, x_2, ..., x_{n-1}, x_n - x_{n_{i_k}} + n_{i_k} - x, t/2 + t/2) \\ &\geq N(x_1, x_2, ..., x_{n-1}, x_n - x_{n_{i_k}}, t/2) * N(x_1, x_2, ..., x_{n-1}, n_{i_k} - x, t/2) \Longrightarrow \\ &\lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x, t) \geq \lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x_{n_{i_k}}, t/2) * \end{split}$$

 $\lim_{k \to \infty} N(x_1, x_2, ..., x_{n-1}, n_{i_k} - x, t/2) > \alpha * \alpha = \alpha.$

Therefore $\{x_n\} \alpha$ -converges to x in (X, N) and hence it is α -complete.

4. Level Fuzzy bounded sets in f-n-NLS

In this section, we define level n-fuzzy bounded set and level n-fuzzy closed set in a fuzzy n-normed space.

Definition 4.1. Let (X, N) be a f-n-NLS. X is said to be level n-fuzzy bounded (l - n-fuzzy) if for any $\alpha \in (0, 1)$, there exist $t(\alpha)$ such that $N(x_1, x_2, ..., x_{n-1}, x_n, t(\alpha)) > \alpha$, for all $(x_1, x_2, ..., x_n) \in X^n$.

Theorem 4.2. Let (X, N) be a f-n-NLS satisfying (N7). Then X is l - n-fuzzy bounded iff X is bounded with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$ for all $\alpha \in (0, 1)$, where $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$ denotes the $\alpha - n - norm$ of N.

Proof: If X is an l - n-fuzzy bounded then for any $\alpha \in (0, 1)$, there exist $t(\alpha)$ such that $N(x_1, x_2, ..., x_{n-1}, x_n, t(\alpha)) > \alpha$, for all $(x_1, x_2, ..., x_n) \in X^n$.

Therefore $||x_1, x_2, ..., x_n||_{\alpha} \le t(\alpha)$, for all $(x_1, x_2, ..., x_n) \in X^n$ and $\alpha \in (0, 1)$. This implies that X is bounded with respect to $||\bullet, \bullet, ..., \bullet||_{\alpha}$ for all $\alpha \in (0, 1)$.

Conversely, let *X* be bounded with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$ for all $\alpha \in (0, 1)$

 $\implies ||x_1, x_2, ..., x_n||_{\alpha} \le t(\alpha) \text{ for all } (x_1, x_2, ..., x_n) \in X^n,$

 $\implies \|x_1, x_2, ..., x_n\|_{\alpha} \le t(\alpha) \le t(\alpha) + 1, \text{ for all } \alpha \in (0, 1),$

 $\implies N(x_1, x_2, ..., x_{n-1}, x_n, t(\alpha)) > \alpha, \text{ for all } (x_1, x_2, ..., x_n) \in X^n,$

 \implies X is l - n-fuzzy bounded.

Definition 4.1. Let (X, N) be a f-n-NLS. A subset A of X is said to be l - n-fuzzy closed if for any $\alpha \in (0, 1)$ and $\{x_n\}$ in X, for all $(x_1, x_2, ..., x_n) \in X^n$, $\lim_{n \to \infty} N(x_1, x_2, ..., x_n - x, t) \ge \alpha, \forall t > 0 \Longrightarrow x \in A$.

Theorem 4.2. Let (X, N) be a f-n-NLS satisfying (N7) and $A \subset X$. Then A is l-n-fuzzy closed iff A is closed with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$ for all $\alpha \in (0, 1)$.

Proof: Let $\alpha_0 \in (0, 1)$ and $\{x_n\}$ be a sequence in $(X, ||\bullet, \bullet, ..., \bullet||_{\alpha_0})$.

Then,

 $\lim_{n \to \infty} ||x_1, x_2, ..., x_{n-1}, x_n - x||_{\alpha_0} = 0,$

Thus for a given $\varepsilon > 0$, there exist a positive integer $N(\varepsilon)$ such that

 $||x_1, x_2, ..., x_{n-1}, x_n - x||_{\alpha_0} < \varepsilon, \forall n \ge N(\varepsilon).$

 $\Longrightarrow N(x_1, x_2, ..., x_{n-1}, x_n - x, \varepsilon) \ge \alpha_0.$

 $\implies \lim_{n \to \infty} N(x_1, x_2, ..., x_{n-1}, x_n - x, t) \ge \alpha_0, \forall t > 0 \text{ (since } \varepsilon \text{ is arbitrary).}$

$$\implies x \in A$$

 \implies *A* is closed with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$ for all $\alpha \in (0, 1)$.

Since $\alpha_0 \in (0, 1)$ is arbitrary, it follows that A is closed with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$, $\alpha \in (0, 1)$.

Conversely, suppose that A is closed with respect to $\|\bullet, \bullet, ..., \bullet\|_{\alpha}$, for each $\alpha \in (0, 1)$.

Choose an arbitrary $\beta_0 \in (0, 1)$. Let $\{x_n\}$ be a sequence in A such that

 $\lim N(x_1, x_2, ..., x_{n-1}, x_n - x, t) \ge \beta_0, \forall t > 0.$

Then for a given $\varepsilon > 0$ with $\beta_0 - \varepsilon > 0$ and for a given t > 0. There exist a positive integer $N(\varepsilon, t)$ such that,

 $N(x_1, x_2, ..., x_{n-1}, x_n - x, t) \ge \beta_0 - \varepsilon, \forall n \ge N(\varepsilon, t).$

 $\implies ||x_1, x_2, ..., x_{n-1}, x_n - x||_{\beta_0 - \varepsilon} \le t, \forall n \ge N(\varepsilon, t).$

 $\implies \lim ||x_1, x_2, \dots, x_{n-1}, x_n - x||_{\beta_0 - \varepsilon} = 0.$

$$\implies x \in A.$$

Since $\beta_0 \in (0, 1)$ is arbitrary, it follows that *A* is l - n-fuzzy closed

Acknowledgment

It is a pleasure to thank Prof. Dr. S. Vijayabalaji and Prof. Dr. N. Thillaigovindan for their valuable comments and suggestions in rewriting the paper in the present form.

References

Bag, T. & Samanta, S. K. (2003). Finite dimensional fuzzy normed linear spaces. *The Journal of Fuzzy Mathematics*, 11(3), 687-705.

Chang, S. C. & Mordesen, J. N. (1994). Fuzzy linear operators and fuzzy normed linear spaces. *Bull. Cal. Math. Soc.*, 86, 429-436.

Felbin, C. (1993). The completion of fuzzy normed linear space. *Journal of Mathematical Analysis and Applications*, 174(2), 428-440.

Felbin, C. (1999). Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, 7, 117-131.

Gähler, S. (1964). Lineare 2-normierte Raume. Math. Nachr. 28, 1-43.

Gunawan, H. & Mashadi, M. (2001). On n-normed space. Int. J. Math. Math. Sci., 27(10), 631-639.

Kim, S. S. & Cho, Y. J. (1996). Strict convexity in linear n-normed spaces. Demonstratio Math., 29(4), 739-744.

Krishna, S. V. & Sarma, K. K. M. (1994). Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems, 63, 207-217.

Malceski, R.(1997). Strong n-convex n-normed spaces. Mat.Bilten, 21, 81-102.

Menger, K. (1942). Statistical metrics space. Proc. Nat. Acad. Sci. USA, 28, 535-537.

Misiak, A. (1989). n-inner product spaces. Math. Nachr., 140, 299-319.

Narayanan, A. & Vijayabalaji, S. (2005). Fuzzy n-normed linear space. Int. J. Math. Math. Sci., 24, 3963-3977.

Vijayabalaji, S. & Thillaigovindan, N. (2007). Complete fuzzy n-normed linear space. *Journal of Fundamental Sciences*, 3, 119-126.