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Abstract

Diversity soliton solutions, including breather-type kink two wave solutions, cross-kink two solitary solutions,
breather-type kink three wave solutions, kink three soliton solutions, are obtained for the (2+1)-Dimensional
Boiti-Leon-Manna-Pempinelli Equation by using Hirota’s bilinear form and extended homoclinic test approach,
respectively. Moreover, the properties for some new solutions are shown with some figures.
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1. Introduction

It is well known that exact solution of nonlinear evolution equations play an important role in nonlinear science
fields, especially in nonlinear physical science since they can provide much physical information and more insight
into the physical aspects of the problem and thus lead to further applications. Many effective and powerful methods
to seek exact solutions were proposed, such as the inverse scattering method, the homogeneous balance method,
Hirotas bilinear method, the Darboux transformation method, Wronskian technique and so on [1-6]. Very recently,
Dai et al.[7-9] proposed a new technique called ”the extended homoclinic test approach” to seek solitary wave
solutions for integrable equations, and this method has been used to investigate several equations[10-11]. The
extended homoclinic test technique is an extension of the homoclinic test method, the main difference between the
two methods mentioned above is the test function of constructing exact solution.
In this paper, we consider (2+1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation:

φyt − 3φxφxy − 3φyφxx + φxxxy = 0, (1)

where φ(x, y, t) : Rx × Ry × Rt → R is a real function. It is called potential Boiti-Leon-Manna-Pempinelli (BLMP)
equation. The Painlevé analysis, lax pairs and some exact solutions of Eq. (1) were given in Ref[12-13]. In this
work, we mainly apply extended homoclinic test approach to determine diversity soliton solutions for Eq.(1). As
a result, breather-type kink two wave solutions, cross-kink two solitary solutions and kink three soliton solutions
are obtained.
By using Painlevé analysis, we assume

φ = −2(ln f )x, (2)

where f = f (x, y, t) is unknown real function. Substituting Eq.(2) into Eq.(1) and using the bilinear form, we have

(DyDt + D3
xDy) f · f = 0, (3)
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where the bilinear operator D is defined as

Dm
x Dn

y Ds
t f (x, y, t) · g(x, y, t) = (

∂

∂x
− ∂
∂x′

)m(
∂

∂y
− ∂
∂y′

)n(
∂

∂t
− ∂
∂t′

)s[ f (x, y, t)g(x
′
, y
′
, t′)]|x′=x,,y′=y,t′=t.

2. Breather-type Kink and Kink Two Wave Solutions

Now we choose extended homoclinic test function

f (x, y, t) = e−θ + ξ1 cos(τ) + ξ2eθ, (4)

where θ = α1x + β1y + γ1t, τ = α2x + β2y + γ1t and αi, βi, γi, ξi(i = 1, 2) are some constants to be determined
later. Substituting Eq.(4) into Eq.(3) and equating all the coefficients of different powers of eθ, e−θ, sin(τ), cos(τ)
and constant term to zero yields a set of algebraic equations:

ξ1(β1γ1 − 3α2
1α2β2 − 3α1α

2
2β1 − β2γ2 + α

3
2β2 + α

3
1β1) = 0

ξ1ξ2(β1γ1 − 3α2
1α2β2 − 3α1α

2
2β1 − β2γ2 + α

3
2β2 + α

3
1β1) = 0

ξ1ξ2(3α2
1α2β1 − α3

2β1 + α
3
1β2 − 3α1α

2
2β2 + β2γ1 + β1γ2) = 0

ξ1(3α2
1α2β1 − α3

2β1 + α
3
1β2 − 3α1α

2
2β2 + β2γ1 + β1γ2) = 0

16α3
1β1ξ2 + 4β1γ1ξ2 − β2γ2ξ

2
1 + 4α3

2β2ξ
2
1 = 0.

(5)

Solving the system of Eqs.(5), we obtain the following cases
Case(I):

α2 = − 4ξ2α1β1

ξ21β2
, γ1 =

α3
1(48ξ22β

2
1−ξ41β2

2)
ξ41β

2
2

, γ2 =
4ξ2α3

1β1(3ξ41β
2
2−16ξ22β

2
1)

ξ61β
3
2

, (6)

where α1, β1, β2, ξ1, ξ2 are free real constants. Substituting Eq. (6) into Eq. (4) and taking ξ2 > 0, ξ1 , 0, β2 , 0,
we have

f1 = 2
√
ξ2 cosh(α1x + β1y + E1t + 1

2 ln(ξ2)) + ξ1 cos(I1x − β2y +G1t), (7)

where E1 =
α3

1(48ξ22β
2
1−ξ41β2

2)
ξ41β

2
2

, I1 =
4ξ2α1β1

ξ21β2
,G1 =

4ξ2α3
1β1(3ξ41β

2
2−16ξ22β

2
1)

ξ61β
3
2

. Substituting Eq. (7) into Eq. (2), we obtain the
breather-type kink two-wave solutions for BLMP equation as follows(see Fig (a))

φ1 =
2ξ2β1 sin(τ)−4α1(ξ1β2

√
ξ2 sinh(θ+ 1

2 ln(ξ2)))
ξ1β2(2

√
ξ2 cosh(θ+ 1

2 ln(ξ2)))+ξ1 cos(τ)
, (8)

where θ = α1x+β1y+E1t, τ = I1x−β2y+G1t. The solution represented by Eq.(8) is a breather-type kink two-wave
which has breather effect when wave along with straight line I1x− β2y+G1t = d and it also is a kink solitary wave
as it along with straight line I1x − β2y +G1t = d, where d are constants.

Case(II):
β1 = β2i, γ1 = −3α2

2α2i + 3α2
2α1 − α3

1 + α
3
2i − γ2i, ξ2 =

ξ21 (γ2−4α3
2)

4(3α2
2α1i+3α3

1i+3α2
1α2+γ2−α3

2) , (9)

where α1, α2, β2, γ2, ξ1 are free real constants. Substituting Eq. (9) into Eq. (4) and taking α2 = A2i, β2 = B2i, γ2 =

C2i and M > 0, we have

f2 = 2
√

M cosh(α1x − B2y + E2t + 1
2 ln(M)) + ξ1 cosh(A2x + B2y +C2t), (10)

where E2 = 3α2
1A2 − 3A2

2α1 − α3
1 + A3

2 + C2,M =
ξ21 (4α3

2+γ2)
4(3α2

1A2−3α1A2
2+3α3

1+A3
2+γ2) . Substituting Eq. (10) into Eq. (2), we

obtain the cross-kink two-solitary wave solutions for BLMP equation as follows(see Fig (b))

φ2 = −
2(2α1

√
M sinh(θ+ 1

2 ln(M))+ξ1A2 sinh(τ))

2
√

M cosh(θ+ 1
2 ln(M))+ξ1 cosh(τ)

, (11)

where θ = α1x − B2y + E2t, τ = A2x + B2y +C2t.

3. Breather-type Kink and Kink Three Wave Solutions

If we choose extended homoclinic test funtion as

f = e−θ + ξ1 cos(τ) + ξ2 sinh(ω) + ξ3eθ, (12)
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where θ = α1x + β1y + γ1t, τ = α2x + β2y + γ2t, ω = α3x + β3y + γ3t and αi, βi, γi, ξi(i = 1, 2, 3) are some constants
to be determined later. Substituting Eq. (12) into Eqs. (3), and equating all the coefficients of different powers of
eθ, e−θ, sin(τ), cos(τ), sinh(ω), cosh(ω) and constant term to zero yields a set of algebraic equations:

ξ1(α3
2β2 − α3

1β1 − β2γ2 − 3α2
1α2β2 + β1γ1 − 3α2

2α1β1) = 0
ξ2(α3

3β1 + β1γ3 + β3γ1 + 3α2
1α3β1 + α

3
1β3 + 3α1α

2
3β3) = 0

ξ2(β3γ3 + 3α2
3α1β1 + β1γ1 + α

3
3β3 + 3α2

1α3β3 + α
3
1β1) = 0

ξ1ξ2(α3
2β2 + α

3
3β3 − 3α2α

2
3β2 + β3γ3 − β2γ2 − 3α2

2α3β3) = 0
ξ1ξ3(−α3

2β1 + α
3
1β2 + β1γ2 + β2γ1 + 3α2

1α2β1 − 3α1α
2
2β2) = 0

ξ1ξ3(α3
2β2 + α

3
1β1 − β2γ2 − 3α2

1α2β2 + β1γ1 − 3α2
2α1β1) = 0

ξ2ξ3(β3γ3 + 3α2
3α1β1 + β1γ1 + α

3
3β3 + 3α2

1α3β3 + α
3
1β1) = 0

ξ1(−α3
2β1 + α

3
1β2 + β1γ2 + β2γ1 + 3α2

1α2β1 − 3α1α
2
2β2) = 0

ξ1ξ2(−β3γ2 + 3α2
2α3β2 + α

3
2β3 − 3α2

3α2β3 − α3
3β2 − β2γ3) = 0

ξ2ξ3(α3
3β1 + β1γ3 + β3γ1 + 3α2

1α3β1 + α
3
1β3 + 3α1α

2
3β3) = 0

4ξ21α
3
2β2 − ξ21β2γ2 + 16ξ3α3

1β1 + 4ξ3β1γ1 + 4ξ22α
3
3β3 + ξ

2
2β3γ3 = 0,

(13)

Solving the system Eqs.(13), we obtain the following cases
Case(III):

α3 = −α1, β3 = β1, γ1 = α1(3α2
2 − α2

1), γ2 = α2(α2
2 − 3α2

1), γ3 = α1(α2
1 − 3α2

2), ξ3 =
α1β1ξ

2
2−α2β2ξ

2
1

4α1β1
, (14)

where α1, α2, β1, β2, ξ1, ξ2 are free real constants. Substituting Eq.(14) into Eq.(4) and and taking M > 0, we have

f3 = 2
√

M cosh(α1x + β1y − E3t + 1
2 ln(M)) + ξ1 cosh(α2x + β2y + I3t) − ξ2 sinh(α1x − β1y − E3t), (15)

where E3 = α1(3α2
2 − α2

1), I3 = α2(α2
2 − 3α2

1),M = α1β1ξ
2
2−α2β2ξ

2
1

4α1β1
. Substituting Eq. (15) into Eq. (2), we obtain the

breather-type kink three wave solutions for BLMP equation as follows(see Fig (c))

φ3 = −
2(2α1

√
M sinh(θ+ 1

2 ln(M))−ξ1α2 sin(τ)−ξ2α1 cosh(ω))

2
√

M cosh(θ+ 1
2 ln(M))+ξ1 cos(τ)−ξ2 sinh(ω)

, (14)

where θ = α1x + β1y − E3t, τ = α2x + β2y + I3t, ω = α1x − β1y − E3t. The solution represented by Eq.(14) is a
breather-type kink three wave which has breather effect when wave along with straight line α2x+β2y+ I3t = d and
also is a two-solitary wave as α2x + β2y + I3t = d, where d is a constant.

Case(IV):

α2 = (2α1 − α3)i, β1 = β2i, β3 = −β2i, γ1 = −4α3
1, γ2 = −(5α3

1 − 3α2
1α3 + 3α2

3α1 − α3
3)i,

γ3 = 3α2
3 − α3

3 − 3α2
1α3 − 3α3

1, ξ1 =
ξ2(α1+α3)
α3−3α1

.
(15)

where α1, α3, β2, γ2, ξ2, ξ3 are free real constants. Substituting Eq.(15) into Eq.(4) and taking δ3 > 0, we have

f4 = 2
√
ξ3 cosh(α1x − B2y − 4α3

1t + 1
2 ln(ξ3)) + M cosh(E4x + B2y + I4t) + ξ2 sinh(α3x + B2y +G4t), (16)

where M = ξ2(α1+α3)
α3−3α1

, E4 = 2α1 − α3, I4 = 3α2
1α3 + α

3
3 − 5α3

1 − 3α2
3α1,G4 = 3α2

3 − α3
3 − 3α2

1α3 − 3α3
1. Substituting

Eq. (16) into Eq. (2), we obtain the kink three soliton solutions for BLMP equation as follows

φ4 = −
2(2α1

√
ξ3 sinh(θ+ 1

2 ln(ξ3))−M(α3−2α1) sinh(τ)+ξ2α3 cosh(ω))
2
√
ξ3 cosh(θ+ 1

2 ln(ξ3))+M cosh(τ)+ξ2 sinh(ω)
, (17)

where θ = α1x − B2y − 4α3
1t, τ = E4x + B2y + I4t, ω = α3x + B2y +G4t.

4. Conclusion

In summary, successfully applying the extended homoclinic test method to the (2+1)-Dimensional Boiti-Leon-
Manna-Pempinelli equation, we obtain new breather soliton and cross-kink soliton solutions. With the aid of
Maple, this method provides a powerful mathematical tool to obtain exact solutions. The extended homoclinic test
approach can also be applied to solve other types of higher dimensional integrable and non-integrable systems.

87



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014

–1
–0.5

0
0.5

1

x

–2

0

2
y

–10

–5

0

5

10

u

–4
–2

0
2

4
6

8
x –4

–2
0

2
4

y

–2

–1

0

1

2

u
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