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Abstract

For the first-order language the compactness theorem was proved by K. Godel and A. I. Mal’cev in 1936. In 1955,
it was proved by J. Los (1955) by means of the method of ultraproducts. Unfortunately, for the usual second-order
language the compactness theorem does not hold. Moreover, the method of ultraproducts is also inapplicable to
second-order models. A possible way out of this situation is to refuse the most vulnerable place in the construction
of ultraproducts connected with the factorization relatively an ultrafilter, i.e., to stay working with the ordinary non
factorized product. It compels us instead of the single usual set—theoretical equality = to use several generalized
equalities ~gr and ~geeong for first and second orders, and instead of the single usual set-theoretical belonging
€ to use several generalized belongings <scond- Following that it is necessary to refuse the usual set-theoretical

interpretation (y(xg),...,¥(xx)) € y(u) of the second basic (after equality) atomic formula (xo,...,x;)u and to
replace it by the generalized interpretation (y(xp), . . ., y(xx))<:y(u), where xl.T’ are variables of the first-order types
7;, u” is a variable of the second-order type 7 = [70, ..., 7] (i.e. predicate), and y is some evaluation of variables

on some mathematical system U.

This paper is devoted to rigorous development of the expressed general idea. For the generalized in such a manner
second-order language the compactness theorem is proved by means of the method of infraproducts consisting in
rejection of the Lo$ factorization. In the end of the paper the method of infraproducts is applied for the construction
of some uncountable models of the second-order generalized Peano—Landau arithmetic.

Keywords: second-order language, generalized equality, generalized belonging, infraproduct, infrafiltration, com-
pactness, Peano—Landau arithmetics

1. Introduction

For the first-order language the compactness theorem was proved by K. Godel and A. I. Mal’cev in 1936 (see,
e.g., Ershov & Palyutin, 1984; §17; Mal’cev, 1970, 8.3; Tourlakis, 2003, 1.5.42). In 1955 it was proved by J. Lo$
(1955) by means of the method of ultraproducts (see also Ershov & Palyutin, 1984, §17; Mendelson, 1997, 2.14).

Unfortunately, for the usual second-order language (see, e.g., Mal’cev, 1970, §6; Mendelson, 1997, Appendix;
Takeuti, 1975, §16) the compactness theorem does not hold (see, e.g., Mendelson, 1997, Appendix; Boolos &
Jeffrey, 1989, §18). Moreover, the method of ultraproducts is also inapplicable to second-order models.

A possible way out of this situation is to refuse the most vulnerable place in the construction of ultraproducts
connected with the factorization relatively an ultrafilter, i.e., to stay working with the ordinary non factorized
product. This refusal compels us instead of the single usual set—theoretical equality = to use several generalized
equalities ~fry and ~gong for first and second orders, and instead of the single usual set-theoretical belonging
€ to use several generalized belongings <cond. Following that it is necessary to refuse the usual set-theoretical
interpretation (y(xp),...,y(xx)) € y(u) of the second basic (after equality) atomic formula (xo,...,x;)u and to
replace it by the generalized interpretation (y(xo), . .., y(xx))<:y(u), where xl.T" are variables of the first-order types
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7;, U is a variable of the second-order type 7 = [1, ..., 7¢] (i.e. predicate), and y is some evaluation of variables
on some mathematical system U.

This paper is devoted to rigorous development of the expressed general idea. A short presentation of this idea was
announced in Zakharov (2008).

In capacity of initial formulas the formulas of the following two forms were taken: the formula y”6,z” for the
generalized equality o, and the formula (xg’, R xZ" )e.u" for the generalized belonging ., where y” and z7 are
the variables of the first- or the second-order type o~ and x' and u" are the variables of the first-order types 7; and
the second-order type 7 = [7y, ..., 7], respectively.

These atomic formulas are interpreted on an evaluated mathematical system (U, y) (with an evaluation y of vari-
ables on U) in the following generalized way: y(y) =, ¥(z) and (y(xo), . . ., y(xx))<:y(u), where = is a generalized
relation of equality (more exactly, an equivalence relation) and <; is a generalized correspondence of belonging.
Generalized equalities and generalized belongings are connected with each other by the initial principle of change
of equals (see axiom E4 from section 4).

More exactly, we introduce a generalized second-order signature 2§ containing, in addition to individual and
predicate constants and variables, the symbols §; and &,;. With respect to this signature formulas ¢ in the language
L(Zg) are defined by usual induction, when we start from the above-mentioned atomic formulas.

To give a semantics of the language L(Zg) we define mathematical systems U of the signature Zg. The satisfaction
of a formula ¢ on a system U with respect to an evaluation of variables y is defined according to the above-
mentioned generalized interpretation of the atomic formulas (in notation U = ¢[y]).

The semantics for the language L(Zg), presented in the given paper, differs both from the standard semantics (see
Mendelson, 1997, Appendix; Takeuti, 1975, §16) and from the Henkin semantics (see Mendelson, 1997, Appendix;
Takeuti, 1975, §21; Rossberg, 2004; Shapiro, 1991; Viidninen, 2001), which restricts the range of values of the
evaluation y(x") for a variable x” of a second-order type 7 by some subset of the power-set P(7(X)) of the terminal
7(X) of the mathematical system U = (X, S).

In the given paper the following generalized compactness theorem is proved:

Let @ be a set of formulas of the language L(Eg). Let for every finite subset f of the set @ there exist a mathematical
system Uy of the signature Zg and an evaluation of variables yy on the system Uy such that Uy | ¢ly/] for every
formula ¢ € f. Then there exist a mathematical system U of the signature Zg and an evaluation of variables y on
the system U such that U = ¢[y] for every formula ¢ € ® (see Theorem 2 in section 8).

This system U is constructed with the help of some ultrafilter starting from the systems Uy by means of the method
of infraproducts consisting in rejection of the L.6s factorization.

The most delicate point in the proof of the compactness theorem is the demonstration of the property of infrafil-
tration for a quantified formula Jx"y for a variable x" of a second-order type 7 = [7¢ ..., Tx], which requires some
preliminary assertions (see Propositions 2 and 4).

In order to enlarge the area of possible applications of the above-mentioned theorem, it is proved in a polygrade
language with basic and auxiliary grades. Therefore interpretations are defined on polygrade domains of the form
[Ag,...,Am; Ko, ..., Ky—1], where Ky, ..., K, are the fixed auxiliary sets (which are absent when n = 0). It allows
to consider in capacity of models modules Ak over the fixed ring K.

The introducing the suite H = [Kj,..., K,—1] of the fixed auxiliary sets requires the introducing the additional
condition of H-concordance of mathematical systems U = (X,S) and V = (Y,T), where S and T are the poly-
grade superstructures over the supports X = [Ag, ..., A, Ko, ..., Ky,—1) and Y = [Bo,..., By, K,, ..., K,-1]. This
condition means the similarity of the systems U and V with respect to all elements of the signature Z‘g connnected
with the fixed auxiliary suite H. Also we use the similar condition of H-concordance of an evaluation y on the
system U and an evaluation 6 on the system V. In turn, this entails the necessity of introducing the additional
condition of H-concordance in defining the satisfactions U = (Ax7¢)[y] and U | (Vx7¢)[y], which is not required
for n = 0, i.e., when the auxiliary suite is absent.

With the exception of the condition of H-concordance and some technical difficulties, the polygrade variant U =
([Ag, ..., Am; Ko, ..., K,—1]; §) considered in this paper does not differ in principal from the purely onegrade variant
(A;S).
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In the end of the paper the method of infraproducts is applied for the construction of models of the second-order
generalized Peano—Landau arithmetic. The supports of these models are the Baire sets N, which are uncountable
in general.

Further in the paper the redesignation of a symbol-string p by a symbol-string o will be denoted by p = o or
o =p.

2. Types

For fixed integers m, n € wq define by induction the semitypes and the types:

1) for any i € m + 1 the symbol-string (i, 1) is the semitype and the type;

2) for any j € n the symbol-string (j, 0) is the semitype and the type;

3) if 7 is a type, then 7 is the semitype;

4) if 7 is a semitype, then [7] is the type;

5)if 1g,..., T are semitypes and k > 1, then (7, ..., T¢) is the semitype.

This definition is a generalization of the corresponding definition from Takeuti (1975, §20).

Further instead of [(7,, ..., ;)] we shall write simply [7,,...,7¢]. So the notation [7,, ..., T;] may be used for
k> 0.

Semantics of semitypes and types will be explained in the next section.

Types (i, 1) and (j, 0) will be called the first-order types. If 1y, . .., Ty are first-order types and k > O then [7y, . .., T¢]
will be called the second-order type.

For atype 7 = [1y, ..., 7] with k > O the types 7y, . .., 7, Will be called the parents of the type T and will be denoted
by pot.,...,pxT, respectively. Consider the set P(T) = {poT, ..., pxT} of all parents of the type .

For any first-order type 7 put formally pt = 7 and P(7) = {p7} = {7}.

With any type 7 we associate the semitype T of the type T as follows:

1) if 7 is a first-order type, then T = T;

2)if T = [7;] and 7, is a semitype, then ¥ = 7.

In other words, the semitype of a type is obtained by omitting the square brackets.
An auxiliary type is defined by induction in the following way:

1) any type of the form (j, 0) is an auxiliary type for every j € n;

2) if 7 is an auxiliary type, then [7] is the auxiliary type;

3)if 1y, ...,7} are auxiliary types and k > 1, then [7y, ..., 7] is an auxiliary type.
A type will be called basic if it is not auxiliary.

Thus for a second-order type t = [7, ..., 7] the index set k + 1 is decomposed on two subsets M(7) and N(7) so
that for any u € M(7) the type 7, is basic and for any v € N(7) the type 7, is auxiliary.

3. Formations and Terminals

Further in the paper Ky, ..., K, are fixed auxiliary sets. If n = 0 then all the fixed sets are absent.

Define the formation G = [Py, ..., Pi—_1] of the rank | € w in the following way:
HG=[Py,...,P1]=forl=0;

2)G =[Py,...,Ppl=Pforl=1;

3G =[Py,....,P.1]=(P;liel)=(Py,...,Pp_y) forl>2.

Further we fix the auxiliary formation H = [K, ..., K,_1] of the rank n € wy.

Define the formation X = [Ao, ..., Au, Ko, - .., K,—1] of the rank m + 1|n over the set H in the following way:
HX=[Ag,....A Ko, ....K,_1] = [Ao,..., Ayl forn =0and m € wy;
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)X =[Ao,....,Am; Ko, ..., K] = ([Ao, ..., Anl, [Ko, . . ., Koy ]) for n > 1 and m € wo.

The sets Ay, ..., A, are called basic in X. A formation X may be without auxiliary sets but should contain at least
one basic set.

Define the terminals T(X) of the semitypes T over the formation X by induction:

D@ IX)=Ay

2) (j.0)(X) = K;;

3) if 7 is a semitype then [7](X) = P(7(X)), where P denotes the operation of taking power-set of the intended set;
4) if 1¢, ..., Tx are semitypes and k > 1 then (79, ..., 7)(X) = 7o(X) X ... X T (X).

Thus for semitypes 7y, ..., T, with k > 1, for the type 7 = [10,..., 7], and for its semitype T = (7p,...,Tx) the
following equalities 7(X) = P(1o(X) X ... X 11(X)) and 7(X) = 79(X) X ... X 1%(X) are fulfilled.

4. Signatures and Formulas

A non-empty set ® of types 7 will be called the type domain of rank m+1|nif T € ® implies pt € © for every parent
pt of the type 7. In a type domain @ select the belonging type subdomain @), = {r € © | Ik € woIryg,..., T} €
O(t = [70,..., 7D}

A collection X, = (X} | T € O) of collections X = (07}, | w € Q.) of constants o, of the types T will be called the
signature of constants of the type domain ©. Sets . may be empty, and then X7 = &.

The constants o7, of the first-order type 7 are called individual or objective ones. Constants of other types are
called predicate.

A collection X, = (8; | T € ®) of binary predicate symbols of (generalized) equalities 6. of the types T will be
called a signature of (generalized) equalities of the type domain @. In follows from the definition of the type
domain that for every equality symbol ¢, the collection X, contains necessarily the equality symbols 6, for every
parent pt of the type 7.

A collection X, = (€ | T € O) of binary predicate symbols of (generalized) belongings €, of the types T will be
called the signature of (general) belongings of the type domain ©.

A collection X, = (£} | 7 € ©O) of denumerable sets X7 of variables x7, yT,...of the type T will be called the
signature of variables of the type domain ©. The sets X7 may be empty. The variables x7,y7, ... of the first-order
types 7 are called individual or objective. The variables of other types are called predicate.

Further we shall always assume that for every type 7 € @ there are either constants or variables of this type.

The quadruple X8 = X |%,|%,|Z, will be called a (polygrade) generalized signature of the rank m+ 1|n or a signature
with generalized equalities and belongings.

The language L(X%) of the generalized signature 8 consists of:
1) all types 7 from the type domain O;

2) all members of all signatures from X$;

3) logical symbols =, V, A, =, ¥, and 3.

4) parenthesis.

If the type domain ® contains first- and second-order types only and at least one second-order type, then we shall
say that the signature X¢ and the language L(X¢) have the second order (see Mendelson, 1997, Appendix; van
Dalen, 1983, p. 4). In this case the notations X5 and L(Z5) will be used.

Constants and variables of a type 7 are called terms of the type T of the language L(Z¥).
The atomic formulas of the language L(X#) are defined in the following way:
1) if ¢ and r are terms of a type 7 € ®, then go.r is an atomic formula;

2) if 79,..., 7 are the types from @ for k > 0, 7 = [10,..., 4] € O, ¢, ..., g;' are terms of types To, ..., T,
respectively, and 7 is a term of the type 7, then (q(T)“, e, qzk)eTrT is an atomic formula; in particular for k = O the
symbol-string g’ €, ™! is an atomic formula.
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The formulas of the language L(X?) are constructed from atomic ones with the use of connectives V, A, =, =,
quantifiers dx7 and Yx™ with respect to variables x", and parenthesis.

The logical axiom schemes of (polygrade) type theory in the language L(X8) of the generalized signature X8 are
schemes of the predicate calculus where variables and terms substituting each other must be of the same type
TeQ.

In addition to these axiom schemes consider the following equality axioms for types T € ®:
El) Vx"(x0.x);

E2) Vx7,y"(x07y = y6:x);

E3) VX7, 7, 27 (x6:y A y6:2 = x6,:2);

E4) Vg, yo's - X5 v uT v (X007, Y0 A oo A XS Yk A udev = (X0, ..., X)€U & (Yo, ..., Yi)&V))), Where 7 =

[TQ, N ,Tk].
Axiom E4 is the initial principle of change of equals.

The inference rules in the depicted type theory are:

o>y (MP) and o(x7)

v gl O

If there are nonlogical axioms or axiom schemes written by second-order formulas, we shall say that a (mathemat-
ical) generalized second-order theory is given.

5. Mathematical Systems of the Signature X8 With Generalized Equalities and Belongings
5.1 Definition of a Mathematical System of the Generalized Signature X8

Let X4 be a fixed signature of the rank m + 1|n defined in the previous section. Fix also a formation X =
[Ao, ..., An Ko, ..., K,_1] of the rank m + 1|n.

For the formation X and the signature X# consider the following collections:

1) the collection S, = (S7 | T € ©) of collections S| = (s], | w € Q) of constant structures s;, € T(X) of the types
T

2) the collection S, = (=] T € O) of generalized equality relations ~.C 7(X) X 7(X) of the types T on the sets

7(X), containing the usual set-theoretic equality relations = on the sets 7(X), i.e., such relations ~, that for every
elements r, s € 7(X) the equality » = s implies the generalized equality r = s;

3) the collection S, = (<; | T € Op) of generalized belonging correspondences <. C ¥(X) X 7(X) of the types
7, containing the usual set-theoretic belonging correspondences € from the sets 7(X) into the sets 7(X), i.e., such
correspondences <; that for every elements p € 7 and P € 7(X) the belonging p € P implies the generalized
belonging p<;P;

4) the collection S, = (7(X) | 7 € ©) of the terminals 7(X) of the types 7 over the formation X.

The quadruple S = (S, S, S5, S,) of the above-mentioned collections will be called a (polygrade) superstructure
of the signature ¥ over the formation X.

The pair U = (X, S) will be called a mathematical system of the generalized signature X8 with the support X and
the superstructure S. This notion is a generalization of the notion of an algebraic system of the signature X (see
Ershov & Palyutin, 1984, §15).

The mathematical system U = (X, S) will be called also an interpretation of the signature X8 on the support X.

Further for a type 7 = [10,..., 7] and elements p = (p(0),..., p(k)),q = (g(0),...,qk)) € T(X) = 7o(X) X --- X
T+(X) along with p(0) =, g(0) A --- A p(k) =7, q(k) we shall also write p =+ q.

5.2 Concordance of Mathematical Systems of the Generalized Second-Order Signature
Two mathematical systems U = (X,S) and V = (¥, T) of the signature Zg will be called H-concordant if:
1) for every auxiliary type 7 € ® and every w € Q; the constants s;, € 7(X) and 7, € 7(Y) = 7(X) coincide, where

by definition of terminals 7(X) = 7(Y);

25



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

2) for every auxiliary type 7 € O the equalities =.C 7(X) X 7(X) and =.C 7(Y) X 7(Y) coincide, where as above
7(Y)x 1Y) = 7(X) X 7(X);

3) for every auxiliary type 7 € ®, the belongings <; C 7(X) X 7(X) and <; C 7(Y) X 7(Y) coincide, where by the
same reason 7(Y) X 7(Y) = 7(X) X 7(X);

4) for every suite p = (p(0),..., p(k)) € s;, C T(X) = 19(X) X - - - X T((X) there exists a suite g = (g(0), ...,q(k)) €
1, CH(Y) = 19(Y) X - - X 71(Y) such that g(v) = p(v), and for every ¢ there exists p such that p(v) = g(v) for every
v € N(7) and every type T = [10, ..., 7] such that M(r) # @ and N(7) # @.

The property of H-concordance means the identity of the systems U and V with respect to all elements connected
with the auxiliary set H.

The generalized equalities ~, and the generalized belongings <, admit some additional conditions.

A system U will be called balanced, if VP, Q € T(X)(P = Q © Vp € PAg € Q(q =+ p) AN¥q € Qdp € P(p =z q)),
where 79,..., 7, € ®,k>0and 7 = [19,..., 7] € O.

A system U will be called regular, it Vp € T7(X)VP € 1(X)(p<.P & Iq € P(p ~: q)), where 7y, ..., 7, € 0,k >0
and 7 = [1g,..., 7] € O.

A system U will be called normal, if Vp,q € o(X)(p %o g © p =q) NVp € T(X)VP € 1(X)(p<.P & p € P).

A system U will be called extensional, it VP, Q € 1(X)(P ~; Q © Vp(p<.P = p<.0) AVq(g<:0 = gq<.P)),
where 7 € .

5.3 Evaluations and Models

An evaluation on a system U = (X, S) of the signature X8 is a mapping v, defined on the set of all variables of
the signature X% and associating with the variable x* of the type 7 € ® the element y(x7) of the terminal 7(X) (see
Ershov & Palyutin, 1984, §16; Takeuti, 1975, 16.17]). The pair (U, y) consisting of the system U of the signature
>$ and and the evaluation y on U will be called an evaluated mathematical system of the signature 5.

Evaluated mathematical systems (U, y) and (V, 6) of the signature X¢ will be called H-concordant if:
1) the systems U and V are H-concordant;

2) for every auxiliary type 7 € O the evaluations y(x7) € 7(X) and 6(x7) € 7(¥Y) = 7(X) coincide i.e., y(x7) = 6(x7)
(see 4.1);

3) for every suite p = (p(0), ..., p(k)) € y(x7) C T(X) = 1o(X) X - - X1(X) there exists a suite g = (¢(0),...,q(k)) €
o(x") € 1(Y) = 1o(Y) X -+ - X 7(Y) such that g(v) = p(v) and, for every ¢ there exists p such that p(v) = g(v) for
every v € N(7) and every type 7 = [7y, ..., Tx] such that M(7) # @ and N(1) # @.

The property of H-concordance means the identity of the evaluated systems (U,vy) and (V,0) with respect to all
elements connected with the auxiliary set H.

An evaluation y on a system U and an evaluation ¢ on a system V will be called H-concordant if they satisfy
conditions 2) and 3) from the previous definition.

Define the value qly] of a term q relatively the evaluation 'y on the system U in the following way (see Ershov &
Palyutin, 1984, §16; Mal’cev, 1970, §6; Mendelson, 1997, 2.2; Schoenfield, 1967, 3.2):

1) if o7 is a constant of a type 7 € @, then o [y] = s7;
2) if x7 is a variable of a type 7 € O, then x"[y] = y(x").

Define the satisfaction of a formula ¢ of the language L(Zg) on a system U of the signature Zg relatively an
evaluation vy (in designation U [ ¢[y]) by induction in the following way (see Mendelson, 1997, 2.2; Schoenfield,
1967, 3.2; Takeuti, 1975, 16.17):

1) if ¢ and r are terms of a type 7 € ® and ¢ = (gd.r), then U | ¢[y] is equivalent to g[y] ~; r[y];

2)if 1g,..., 7t are types from ® for k > 0, T = [19,...,Tr] € O, qo, . .., g are terms of the types 7, ...,T, respec-
tively, r is a term of the type 7, and ¢ = (qo, . . . , qx )& 7, then U = ¢[y] is equivalent to (go[y], . .., grlyD<-rly];

3)if ¢ = =, then U [ ¢[y] iff U | y[y] is not true;
4 ifo =@ V), thenU [ @yl iff U ylylor U &lyl;
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S5)ifo = Aé),thenU E ¢lyliff U E ¢lyland U E €ly];
6)if ¢ = (Y = &), then U [ ¢[y] iff that U | y[y] implies U E &[y];

7) if ¢ = Ax"Y, then U [ ¢[y] is equivalent to U = y[y’] for some evaluation y* H-concordant with y and such
that v’ (") = y(y”) for every variable y” # x7;

8) if ¢ = VxTy, then U | ¢[y] is equivalent to U = y[y’] for every evaluation y* H-concordant with y and such
that y'(y") = y(y”) for every variable y” # x".

Note that bringing into use in points 7) and 8) of this definition the additional (in comparison with Ershov &
Palyutin, 1984, §16; Mendelson, 1997, 2.2; Shoenfield, 1967, 3.2) property of H-concordance of the evaluations
v and v’ is stipulated by the initial polygrade structure of considered mathematical systems and by the presence of
the fixed auxiliary formation H = [Ky, ..., K,-1].

Let @ be a set of formulas of the language L(Zg). An evaluated mathematical system (U, y) of the signature 23 will
be called a model for the set © if U [ ¢[y] for every formula ¢ € ® (see Ershov & Palyutin, 1984, §17).

A model (U, y) for ® will be called a model of the second order if at least one formula from ® contains at least one
second order variable.

A model (U, y) will be called balanced, regular, normal, extensional etc., if the system U is the same.

A model (U, ) for a set ® will be called second-order, if at least one formula from ® contains at least one second-
order variable.

Remark that if a system U = [X,S] is considered in an axiomatic set theory, then the satisfaction of a closed
formula ¢ of the language L(Ei) under any evaluation vy is reduced to correctness of the relativization ¢" of ¢ on
the corresponding terminal of the support X in this set theory.

In particular, since equality axioms E1 — E4 are closed formulas, their relativizations E1” — E4” take the following
forms:

E1") Vxet(X)(x =; x);
E2") VYx,yet(X)(x =y =y~ X);
E3") VYx,y,zetX)(x = yAY = 2= X 7 2);

E4") Vxp,y0 € 70(X) ... VX, ¥k € X))V, v € T(X)(x0 =y Ao o A Xk Ry, Ve AUt e v = (X0, ..., X<l ©
00, -+ - s Y)<v)), Where T = [10,..., 7], kK > 0 and all types are in ©.

The satisfaction of formulas E1" — E3" means that all generalized equalities ~, are equivalence relations on cor-
responding sets 7(X), and the satisfaction of formula £4” means the property of replacing of equals in the atomic
formula with the generalized belonging <;.

Further we shall say that a system U of the signature Eg has true generalized equalities and belongings, if axioms
E1 — E4 from section 3 are satisfied on U with respect to some (and consequently to any) evaluation y. It means
that formulas E1" — E4” are correct for the system U in the used set theory.

5.4 The Generalized Equality of Values of Evaluations and Satisfiability

For every formula ¢ of the language L(Zg) we define the formula ¢* by means of induction:
1) ¢* = ¢ for every atomic formula ¢;

D WA =Yt AEY

3) ()" =~y

4) AxTyY)T = Y

5 WV = (=t ALY,

6) W = &) = (" A&,

) (YxTY)" = =(3xT(=y")).

Say that a formula ¢ is normalizable, if for every mathematical Zg-system U and every evaluation y on U the
following condition holds: U E ¢[y] © U E ¢*[y].
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Lemma 1 Let formulas  and & be normalizable. Then formulas N & =, WV & = & Yx"y and AxX"Y are
normalizable too.

A proof of this lemma uses the definition of satisfiability and some well known tautologies only, so it is omitted.
Proposition 1 Every formula of the language L(Zg) of the generalized second—order signature Zg is normalizable.

Proof. Denote by © the set of all formulas of the language L(Z‘;). The subset of the set ® consisting o formulas
containing at most n € wy logical symbols =, A, =, V, 3, ¥, denote by ®,. It is clear that ® = [ J(D, | n € wy).

Prove by the complete induction principle the following assertion A(n): every formula ¢ € @ is normalizable.

If n = 0, then the formula ¢ is atomic, and so by the definition, of the operation ¢ — ¢ we have ¢* = ¢.
Consequently the assertion A(0) is true.

Suppose for all m < n the assertion A(m) is true. Letp € ©,. f o = Y A&, o=, o= XY, o =Y VE o=y = &
or ¢ = Yx7y, then y, ¢ € @,_;. Therefore by the induction hypothesis the formulas y and £ are normalizable. By
the previous Lemma 1 the formula ¢ is normalizable. Hence the assertion A(n) is true. 0.

Proposition 2 Let U be a mathematical system of the second—order signature Eg with true generalized equalities
and belongings. Then for every formula ¢ of the language L(Zi) and every H-concordant evaluations 'y and 6 on
the system U such that y(x7) =; 6(x") for every variable x* of every type T € O the properties U | ¢[y] and
U k= ¢[6] are equivalent.

Proof. The set of all formulas ¢ of the language L(Zg) constructed by induction from the atomic formulas with the
use of connectives — and A and quantifier 9 denote by 'P'. The subset of the set ¥ consisting of formulas containing
at most n € wy logical symbols —, A, and 3 denote by ¥, It is clear that ¥ = (J(W¥,, | n € wy).

Prove by the complete induction principle the assertion of Proposition 2 A(n): for every formula ¢ € ¥, and every
mentioned evaluations y and & Proposition 2 is true.

Let n = 0 and ¢ € Wy. Then ¢ is an atomic formula. At first consider the atomic formula ¢ of the form ¢"6,7".
Suppose that g* = x™ and " = o,. Then U | ¢[y] is equivalent to y(x) ~; s, and U [ ¢[d] is equivalent to
o(x) =, s;,. Since, by our condition y(x) ~; d(x), assuming U | ¢[y] and using axioms E2" and E3" we infer
U E ¢[d]. The inverse inference is checked in the same way. For the terms g* and " of other forms the reasons
are quite similar.

Now consider the atomic formula ¢ of the form (g, ..., qzk)srrk for 7 = [10,..., 7] € Op. Assume that 7' = x}'
and r* = u" for some variables x,; and u. Then U [ ¢[y] is equivalent to (y(xo), ..., y(xx))<y(u) and U | ¢[d] is
equivalent to (6(xp), . . . , 0(xx))<0(u).

Suppose U E ¢[y]. Since, by our condition, y(x;*) 2 6(x;‘), assuming U [ ¢[y] and using axiom E4” we infer
U E ¢[6]. The inverse inference is checked in the same way. For the terms ¢} and r* of other kinds the reasons
are quite similar.

Assume that assertion A(m) is true for every m < n. Let ¢ = dx"y. Then ¢ € ¥,_;. Let be given some H-
concordant evaluations y and ¢ such that y(x7) =, §(x7).

Suppose U [ ¢[y]. It is equivalent to U | y[y’] for some evaluation y’, H-concordant with y and such that
Y' () = y(y) for any y” # xT.

Define an evaluation ¢’ on U setting §’(y) = 6(y) for every y7 # x7 and ¢'(x) = y/(x). Then &’ (y) = 6(y) =, y(y) =
Y'(y) and ¢’ (x) = y'(x), i.e., 8" (x) & ¥/ ().

Check that the evaluations ¢’ and y’ are H-concordant. If o is an auxiliary first-order type, then ¢’(y”) = 6(y) =
y(y) = ¥'(y). If 7 is an auxiliary first-order type, then ¢’ (x7) = y/(x7).

Let o and 7 be second-order types. Let p € ¢'(y7) = d6(y). Since § and y are H-concordant, for p there exists
q € y(y) such that g(v) = p(v) for every v € N(o). Since y and y’ are H-concordant, there exists r € y’(y) such
that r(v) = g(v). So for p there is r € y’(y) such that #(v) = p(v) for every v € N(o). The inverse property can be
established in the same way. , The property of H-concordancy for x” holds automatically because ¢’ (x7) = y'(x7).

Since ¢’ and y’ are H-concordant and ¢’(x7) = /(x") then by our condition, U | y[y’] & U E y[d’]. Consequently
we obtain the property U [ ¢[¢']. By construction, ¢’(y) = d(y) for every y7 # x".

Check that the evaluations ¢ and §” are H-concordant. If o is an auxiliary first-order type, then 6’(y”) = 6(y). If 7
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is an auxiliary first-order type, then ¢’ (x7) = y'(x) = y(x) = d(x).

Let o and 7 bee second-order types. Since ¢’(y”) = d(y), the property of H-concordancy obviously holds. Let
p € 6(x). Since ¢ and y are H-concordant, we see that there exists ¢ € y(x) such that g(v) = p(v). Since y and
v" are H-concordant, there exists r € y'(x) = ¢’(x) such that r(v) = g(v). So r(v) = p(v) for every v € N(7). The
inverse property is established in the same way.

By the definition of satisfiability, we conclude that U  ¢[d]. The inverse inference of U [ ¢[y] from U [ ¢[d] is
established quite analogously.

Now let ¢ = ¢ A €. Then ¢, & € W,—;. Consequently, U E ¢[y] & U E y[d6] and U E é[y] & U E £[6]. From
here (U E ylyl&U E &ly]) © (U E yll&U E &[6]). So U E ¢ly] & U E ¢[6].

Finally, let ¢ = —¢. Then ¢ € ¥,_;. Consequently, U E y[y] & U E ¢[d]. From here U E ¢[y] < —(U E
YlyD) © ~(U Eyld]) « U E ¢[6].

This proves that the assertion A(n) is true. By the complete induction principle, the assertion A(n) is true for every
natural number 1 € wy, i.€., the assertion of Proposition 2 holds for every formula ¢ € .

Now let ¢ be an arbitrary formula of the language L(Zg). In virtue of Proposition 1 we have U | ¢[y] < U [ ¢'[y]
and U E ¢[0] & U E ¢*[6]. By the definition of the operation ¢ — ¢*, we have ¢* € ¥. As proved above
U E ¢*[y] & U E ¢*[6]. In result, we obtain the equivalence U  ¢[y] & U E ¢[d]. U

5.5 An Example of a Good Model for the Second-Order Equality Axioms
Construct for axioms E1 — E4 a regular, balanced, extensional, second-order model.

Takem =0,n=0,p=(0,1),0 =[p],® = {p,0},Q, = T, Q, = T, Ef =@, and X7 = &. Then X, = (6,,6),
O = {0}, Zp = (&- | T € Oy), i.e., T consists of the symbol &, = g, only, and the collection X, = (X} | T € ©)
consists of a denumerable set X} of variables x*,)*, ... of the first-order type p and a denumerable set X7 of
variables u”,v7, ... of the second-order type o.

Consider the one grade signature Xy = 2. | £, | £, | X, of the rank 1]0, and its language L(X,). This language
contains three atomic formulas: x0,)°, u?6,v" and x’g,u’.

Take the set of all closed segments of straight lines on the plane as a set A = Ag. Then X = A. Since Q, = Q, = &,
there are no constants. For segments p,g € A put p =, g, if g is obtained from p by some parallel transfer. For
sets P, Q € P(A) of segments put P =, Q,if (Vp € PIq € Q(p =, 9)) A (Vg € Qdp € P(q =, p)). For a segment
p € A and a set of segments P € P(A) put p<,P, if and only if g € A(g =, p A g € P), i.e., the segment p can be
transferred into the set P with some parallel transfer.

The collection of terminals S, = (7(X) | 7 € ®) consists of the terminal p(X) = A and the terminal o(X) = P(A).

The constructed collections form the one grade superstructure S over the set X = A. Consider the mathematical
system U = [A, §] of the signature X.

Proposition 3 The above-constructed mathematical system U together with any evaluation 'y of variables of the
language L(Xy) on the system U form the regular, balanced, extensional, second-order model for equality axioms
El1 - F4.

Proof. The correctness of the equality axioms follows from the definition. The same is true for the balance property.

Check the extensionality property. Assume p € P. Then p<,P. Suppose the right side of the extensionality
formula. By condition we conclude p<,Q. By the regularity property there exists an element g € Q such that
q =, p. The inverse finding of an element p € P for a given element g € Q such that p ~, g is established quite
similarly. In accordance with the definition of the equality ~, we conclude that P =, Q. So, we have inferred the
left side of the extensionality formula. It follows from the correctness of axiom E4" that the left side implies the
right one. ]

6. Infraproducts of Collections of Evaluated Mathematical Systems of the Generalized Second-Order Sig-
nature X5
2

Let (Uy | f € F) be a pairwise H-concordant collection of mathematical systems of the second-order signature Zg
with true generalized equalities and belongings.

By definition, Uf = (Xf, Sf), where Xf = [A()f, . ,Amf, Ky,...,K,_1].
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Consider the sets A; = [[(Air | f € F) and the formation X = [Ao, ..., A, Ko, ..., K,_1] = prod(Xy | f € F).
Let 7 = [19, ..., T«] be a second-order type and k > 0.

If u € M(7), then 7, = (i, 1) for some i. So 7,(X) = A; = [[(Aiy | f € F) = [[(z.(Xp) | f € F). If v € N(1)
then 7, = (j,0) for some j. So 7,(X) = K; = 7,(Xy) for every f € F. This means that the terminals of different
parent types of the type T over the formation X have quite different constitutions. Therefore it is convenient to
introduce the following notation. For elements p € 7(X) = 79(X) X --- X 7(X) and f € F define the element

p(f) € T(Xy) = 70(Xy) X - - - X T(Xy) setting p(f)(u) = p(u)(f) for every u € M(7) and p(f)(v) = p(v) for every
v € N(1)).

For elements P C ¥(X) and f € F define the element P(f) C T(X/) setting P(f) = {£ € T(Xy) | Ap € P(p(f) = &)}.
Let O be a subset of the power-set P(F). Define the superstructure S of the signature E‘g over the formation X.
At first define the constant structures s;, € 7(X) for v € ® and w € Q.

If 7 is a basic first-order type, then 7(X) = [[((Xy) | f € F). Therefore define s;, € 7(X) setting s;,(Xy) = s, p

for every f € F. If 7 is an auxiliary first-order type, then 7(X) = 7(Xy) and s7 ; does not depend on the index f.
Therefore put 57, = 57, ; for some (and then for every) f € F.

If T = [70, ..., 7] is a second-order type, then put sfuf ={petX)|VfeF(p(f) € sy

In result we obtain the collections ST = (s7, | w € Q.) and the collection S, = (S | 7 € ©).

Now define the generalized equalities ~,C 7(X) X 7(X).

If 7 is a basic first-order type, then for p, g € 7(X) put p =; q iff G € DIg € G(p(g) =, q(g)). If 7 is an auxiliary
first-order type, then the equality ~. ; does not depend on the index f. Therefore for p,q € 7(X) put p =~ g iff
D =+ q for some (and then for every) f € F.

If 7 = [y, ..., 7] is a second-order type, then for P, Q C ¥(X) put P =, Q iff AG € DVg € G(P(g) =, O(g)).
In result we obtain the collection S, = (x| T € ©).

Now define the generalized belongings <; C #(X) X 7(X). Let 7 € ®,. By definition, 7 = [7y,..., ;] for some
70,...,Tx € ®. For p € #(X) and P C 7(X) put p<.P iff 3G € DVg € G(p(g)<,P(g)) (Note 1).

In result we obtain the collection S, = (<. | T € ©p).
Consider also the collection S, = (7(X) | T € ®) consisting of the T-terminals of the formation X.

The constructed collections compose the superstructure S = (S, S.,S5,S5,) over the formation X. Therefore we
can consider the mathematical system U = (X, S) of the signature Zg. It will be called the infra-D-product of the
collection of mathematical systems (Uy | f € F) of the generalized second-order signature Z§ and will be denoted
by infra-D-prod(Uy | f € F).

Further we assume that D is a filter.

Now let ((Uy,yy) | f € F) be a pairwise H-concordant collection of evaluated mathematical systems of the
second-order signature E‘; with true generalized equalities and belongings.

Define the evaluation y on the system U = infra-D-prod(Uy | f € F) in the following way.

Let x be a variable of a type 7. If 7 is a first-order basic type, then define y(x) € 7(X) setting y(x)(f) = y(x) for
every f € F. If 7 is an auxiliary first-order type, then put y(x) = y(x) for some (and then for every) f € F.

If T = [70, ..., 74] is a second-order type, then put y(x) = {p € ¥(X) | Vf € F(p(f) € vr(x))}.

The evaluation y will be called the crossing of the collection of evaluations (yy | f € F) and will be denoted by
> (yr | f€F).

Lemma 2 Let (Uy | f € F) be a pairwise H-concordant collection of mathematical systems of the second-order
signature 2‘; and let every evaluated mathematical system (Uy,yy) be a model for equality axioms E1 — E4. Then
the pair (infra-O-prod(Uy | f € F),>< (ys | f € F)) is also a model for axioms E1 — E4.

Proof. Letty, 1 € T0(X), ..., i, t; € Tu(X), P, P' C #(X) = 1o(X) X ... X 7((X), p = (to, ..., 1), P = (t(s-- -5 1)),
p=~zp and P~ P'.

Assume that p<.P. By the definition of the belonging AG; € DVg € G(p(q)<.,P{q)). By the definition of the
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first-order equalities, 3G, € DVg € Ga(p(g) =z, p’'(g)). Finally, by the definition of the second order equalities
dG; € DVg € G3(P(g) =4 P'(g)). Since every system (U, y,) satisfies £4, we see that p’(g)<.,P’'(g) for every
g €G =G NGy,NGs. So p'<.P'. Hence, p<,P = p'<.P’. The inverse implication is checked quite similarly.
This proves axiom E4. The validity of axioms E1, E2, E3 is obvious. A

Further for a formula ¢ € L(X) the set {f € F | Us E ¢[y,]} will be denoted by G,,.

Lemma 3 Let T = [19,...,Tx] be a second-order type. Let s], be the constants constructed above for the support
X = prod(Xy | f € F). Then s;(f) = s;ffor every f € F.

Proof. Let & € s, (f), i.e., ¢ = p(f) for some p € s7,. By definition, & = p(f) € sz)f. Consequently, s;,(f) C s;f.

Conversely, let 7 € 57, y Since the collection of systems (U | f € F) is H-concordant, using the axiom of choice
we can find a collection (§, | g € F \ {f}) such that §; € 57, and &(v) = &¢(v) for every v € N(1). Define the
element p € 7(X) setting p(u)(g) = &,(u) for every g € F and every u € M(7) and p(v) = &;(v) for every v € N(7).
Then p(g) = &; € s, for every g € F implies p € s;,. Since & = p(f), we have & € s;(f). Hence, s:)f C s
A

Lemma 4 Let T = [19,...,Ti] be a second-order type. Let x be a variable of the type T and y(x) be the evaluation
constructed above for the system U = (X, S). Then y(x)(f) = ys(x) for every f € F.

The proof is completely similar to the proof of the previous lemma.

7. Infrafilteration of Formulas of the Second-Order Language L(Eg) of the Generalized Second-Order Sig-
nature X5
2

Consider a non-empty set F' and a filter D on F.

By analogy with the first order language (Ershov & Palyutin, 1984, §17; Mal’cev, 1970, 8.2) a formula ¢ of
the language L(X5) of the second-order signature X5 with generalized equalities and belongings will be called
infrafiltrated with respect to the filter O if for every pairwise H-concordant collection (Us,yy) | f € F) of
evaluated mathematical systems of the second-order signature 2§ with true generalized equalities and belongings
the property infra-D-prod(Uy | f € F) | @[> (y; | f € F)] is equivalent to the property {g € F' | U, E ¢ly,]} € D.

Lemma 5 Every atomic formula is infrafiltered with respect to any filter D on the set F.

Proof. At first consider an atomic formula ¢ of the form g"¢.r7. Assume that ¢g" = x" and r* = o7,. Then U kE ¢[y]
is equivalent to y(x) =; s;,, and analogously for the pair (U, yy).

Let 7 be a first-order type. Let G, € D, i.e., yg(x) Rrg Su forevery g € G, € D. If 7 is a basic type, then
vq(x) = y(x)(g) and swg implies 7(x)(g) R S¢,(g) for every g € G, € D. So v(x) =, s,. If T is an auxiliary
type, then y,(x) = y(x) and s;,, = s;,. Besides, ~., coincides with ~.. Hence y(x) =, s{,. In both cases we have
obtained the property U | cp[y].

Conversely, let U = ¢[y], i.e., y(x) = s;,. If 7 is a basic type, then there exists G € D such that y(x)(g) ~r¢ s,(8)
for every g € G. But it means that y,(x) ~, wg,, ie., Uy F ¢lyg] for every g € G € D. Since G C G, we have
G, € O. If 7 is an auxiliary type then y(x) = s s, for every f € F. Consequently, G, € G again.

Now let 7 = [1y, ..., T¢] be a second-order type. Let Gy, €D, ie., Ve(X) =pg s wg for every g € G, € D. According
to Lemmas 3 and 4 the equalities s’ = s5;(g) and 7g(x) = y(x){g) are correct. Therefore y(x)(g) Rrg So(g) for
every G, € D. Consequently, y(x) z, sg,, 1.e., U E olyl.

Conversely, let U [ ¢ly], ie., y(x) = s;,. By the definition of the second-order equality y(x){g) =g s;,(g) for
some G € D and every g € G. Using Lemmas 3 and 4 we obtain y,(x) ¢ S, .., Uy [ ¢ly,] for every g € G.
Since G C G, we infer that G, € D.

For terms ¢” and " of other forms the reasons are quite similar.

Now consider an atomic formula ¢ of the form (q(T)", A qkk)sTr for 7 = [10,...,Tt] € ®p. Assume that g7 = x;’l
and " = u" for some variables x, and u. Then U [ ¢[y] is equivalent to (y(xo), ..., Y(xx))<y(u) and analogously

for the pair (Uy,yy).

Let G, € D, i.e., (Yo(X0), - .., Ve(Xk))<r oV, (u) forevery g € Gp € O. Consider the elements &7 = (yp(xo), ..., vr(xx)
and p = (y(xo),...,y(xx) € ¥(X). Let f € F. Then p(f)(n) = p)(f) = y(x)(f) = yr(xu) = §p(w) for every
1€ M(7) and p(f)(v) = p(v) = y(x,) = yr(x,) = & (v) for every v € N(7). Consequently, p(f) = £¢. By Lemma
3 y(u) = y(u)f). Inresult we obtain p(g)<,y(u)g) for every g € G, € D. By definition, it means that p<:y(u),
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ie., U E olyl].

Conversely, let U E ¢[yl], i.e., (y(xo0),...,Y(xx))<:y(u). By the definition of the second-order belonging for p =
(y(x0), . .., y(xx)) there exists G € D such that p(g)<..y(u)(g) for every g € G. By Lemma 4 y(u){g) = v,(x). By
the previous paragraph &, = p(g). Consequently, &,<;,¥,(u), i.e., U, F ¢ly,] for every g € G. Since G C G, we
infer that G, € D.

For terms ¢ and r” of other forms the reasons are quite similar. |

A proof of the property of infrafiltration for the quantified formula Jx"¢ for the polygrade language L(Eg) of the
generalized second-order signature Zg is more delicate than for the first-order language. Therefore we begin it with
a subsidiary proposition.

Let (Uys,ys) | f € F) be a pairwise H-concordant collection of evaluated mathematical systems of the second-
order signature E§ with true generalized equalities and belongings. Let S be an evaluation on the system U =
infra-D-prod(Uy | f € F), H-concordant with the evaluation y =< (y; | f € F).

With respect to the evaluation 8 for every f € F define the evaluation ¢, on the system U/ in the following way.
Let x be a variable of a type 7. If 7 is a basic first-order type, then put 6 (x) = B(x)(f). If 7 is an auxiliary first-order
type, then put 6 ¢(x) = B(x). If 7 is a second-order type, then put 6 (x) = B(x){f).

Proposition 4 1) The collection (Us,6¢) | f € F) of the evaluated mathematical systems (U, ) of the second-
order signature Ei with true generalized equalities and belongings is pairwise H-concordant;

2) the evaluated systems (Uy,ys) and (U, 6 ) are H-concordant;
3) for the evaluation 6 =» (07 | f € F) the equalities 6(x7) ~. B(x") hold for any variable x*;
4) the evaluations 6 and B are H-concordant.

Proof. 1) Let x be a variable of a type 7. If 7 is an auxiliary first-order type, then 6 ,(x) = B(x) = ,(x) for every
f.g€F.

Let T = [0, ..., 7«] be a second-order type. Fix some f, g € F. Consider an arbitrary element & € 07(x) = B(x){f).
By definition, & = p(f) for some p € B(x) C T(X) = 79(X) X...X7K(X). Consider the element n = p(g) € B(x){g) =
0g(x). Then n(v) = p(g)(v) = p(v) and £(v) = p(f)(v) = p(v) implies n(v) = &(v) for every v € N(r). The inverse
finding the element & corresponding to the given element 7 is realized in the similar manner.

2) If 7 is an auxiliary first-order type, then §,(x") = B(x7) and y(x") = y,(x7). By condition, S(x7) = y(x7).
Consequently, 6 7(x7) = yp(x7).

Let 7 = [7g,..., 7] be a second-order type. Consider an arbitrary element £ € y(x). In virtue of Lemma 4 we
have y¢(x) = y(x)(f). Since & € y(x){f), by definition there exists p € y(x) such that ¢ = p(f). By condition, for
p € y(x) there is g € B(x) such that g(v) = p(v) for any v € N(7). Consider the element n = g(f) € B(x){f) = 6 7(x).
Then n(v) = q(f)(v) = q(v) = p(v) = p(f)(v) = £&(v). The inverse condition is checked in the same way.

3) Let x be a variable of a type 7. If 7 is a basic first-order type, then by the definition of the evaluations ¢ and
0y we obtain 6(x)(f) = 07(x) = B(x)(f) for any f € F,i.e., 6(x) = B(x). If 7 is an auxiliary first-order type, then
0(x) = 67(x) = B(x) for some f € F.

Let 7 be a second-order type. Then 6(x) = [[(67(x) | f € F). In virtue of Lemma 4 6(x){f) = ¢ 7(x) = B(x){f) for
any f € F. By the definition of the second-order equality, we conclude that 6(x) = (8)(x).

4) Let 7 be an auxiliary first-order type. Then 6(x7) = 6(x7) for some f € F. By definition, d7(x7) = B(x").
Consequently, 6(x7) = B(x7).

Let 7 = [79,..., 7] be a second-order type. Let p € S(x). By the definition of the cut, p(f) € B(xX){f) = d,(x)

for every f € F. By the definition of the crossing, p € 6(x). So for p € B(x) there exists ¢ = p € d6(x) such that
q(v) = p(v) for every v € N(7).

Conversely, let g € 6(x7). By the definition of the crossing, g(f) € 6(x) = B(x)(f) for every f € F. Fix some
element fy € F. By the definition of the cut, there is p € B(x) such that p(fy) = ¢q(fo). If v € N(1), then

p(fo)) = q(fo)(v). However p(fo)(v) = p(v) and q(fo)(v) = g(v). Therefore p(v) = q(v) for every v € N(r). U

Proposition 5 Let a formula  be infrafiltrated with respect to the filter D. Then the formula Ax is infrafiltrated
by D too.
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Proof. Denote the formula Ix"y by ¢. Let G, € D, i.e., U, E ¢ly,] for every g € G, € D. Further we shall write
simply G instead of G,.

The presented satisfaction property means that U, = ¢/[y,] for some evaluation y,, H-concordant with the evalu-
ation y, and such that y,(y) = y,(y) for every y” # x* . For every f € F define the evaluation ¢ setting 67 = yy
if f€ F\Ganddy =y} if f € G. Check that the evaluated systems (Uy,dy) and (U, 6,) are H-concordant for
every f,g € F. If f,g € F\ G, then 6y = y; and 6, = y,. Since the evaluations y, and y, are H-concordant, our
assertion is true. Let f,g € G. Then ¢, = y} and 6, = y,. Let x be a variable of a type 7.

For an auxiliary first-order type 7 we have y}(x) = y7(x) and yy(x) = y¢(x). Since the evaluations y and y, are
H-concordant, we infer that y(x) = y,(x). Consequently & (x) = y’f(x) = Yg(%) = ().

Let 7 be a second-order type. Let p € 64(x) = y}(x). Then there exists g € y,(x) such that g(v) = p(v) for every
v € N(7). Since the evaluations y, and vy, are H-concordant, there is r € v,(x) such that r(v) = g(v). Since the
evaluations 7y, and y, are H-concordant as well, there exists s € y,(x) = J,(x) such that s(v) = r(v) = g(v) = p(v)
for any v € N(7). The inverse condition is checked in the same way.

In the cases whenf € F'\ G and g € G or conversely the arguments are similar.

So the collection (Uy,dy) | f € F) of evaluated mathematical systems of the signature Zg with true generalized
equalities and belongings is pairwise H-concordant. Consider the evaluation 6 =< (67 | f € F).

Check that 6(y) = y(y) for every y7 # x7. Let o be a basic first-order type. If g € G, then 6(y)(g) = 6,(y) = y;(y) =
Ye() =v(Q). If f € F\ G, then 6(y)(f) = 67(y) = y7(y) = y()(f). Consequently, 6(y) = y(y).

Let o be an auxiliary first-order type. Then 6(y) = 67(y) = vs(y) = y(y) for some f € F\ G.

Let o be a second-order type. Then 6(y) = [[(6;(y) | f € F). If f € G, then 64(y) = y}(y) =yi(y). I fe F\G,
then 6,(y) = y,(y). So 6(y) = [1(ys() | f € F) = y(y).

Thus for every y # x we have 6(y) = y(y).

Check that the evaluations y and ¢ are H-concordant. Let y7 # x.

If o in an auxiliary first-order type, then 5(y) = y(y).

Let o be a second-order type. It was proved above that 6(y) = y(y). Consequently for every p € 6(y) there is
q = p € y(y) such that g(v) = p(v) for any v € N(0).

If 7 is an auxiliary first-order type, then 6(x) = ¢ 7(x) = ys(x) = y(x) for some f € F'\ G.

Let 7 be a second-order type. Let p € y(x7) = [[(yy(x) | f € F). If f € F\G, then 6y =yy. If g € G, then 6, =y,
and the evaluations y, and y, are H-concordant.

Consider the nonempty set A = [J(y,(x) | g§ € G). Define the mapping @: G — P(A) \ {} setting a(g) = {n €
yé(x) CA|VYveNTMnw) = p(g)()}. According to the point 3 of the definition of H-concordant systems the set
a(g) is non-empty.

By the axiom of choice there exists a function ch: P(A) \ {&} — A such that chP € P. Consider the function
B =choa: G — A and the corresponding collection 8 = (7, € A | g € G). Since 1, = B(g) = ch(a(g)) € a(g)
then, we have 17,(v) = p(g)(v) = p(v) for every v € N(1).

Define the element g € 7(X) setting g(u)(f) = p(u)(f) for every f € F\ G, q(u)(g) = n,(u) for every g € G and
every u € M(7), and g(v) = n,(v) = p(v) for every v € N(7) and every g € G.

Then g()(1) = g()(f) = pa(f) = p(f)p) for every p € M(r) and g()(¥) = q(v) = p(v) = p(f)(¥) for every
v € N(r) implies ¢(f) = p(f) € y7(x) = 6;(x) for every f € F\ G. If g € G, then q(g)() = q(u)(g) = n,(u) for
every u € M(t) and g(g)(v) = q(v) = ny(v) for every v € N(7) implies g(g) = 1 € y4(x) = d4(x). Consequently,
q € [100s(x) | f € F) = 6(x7). Besides, g(v) = p(v) for every v € N(r). The inverse finding the element p
corresponding to the given element g is realized in the similar manner.

So the evaluations y and ¢ are really H-concordant.

By condition and construction, U, [ ¥[d,] for every ¢ € G € D. Since the formula ¢ is infrafiltered, the
obtained property implies the property U = ¢[d]. Since the evaluation ¢ is H-concordant with the evaluation y and
o0(y7) = y(y”) for every y7 # x7, we obtain the property U [ ¢[y].
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Conversely, let U | ¢[y]. It is equivalent to U = [f] for some evaluation 8, H-concordant with the evaluation y
and such that 8(y) = y(y) for every y7 # x7.

Consider the evaluation 6 = »< (67 | f € F) from Proposition 4, corresponding to the evaluation 3. According
to Proposition 4 the evaluations ¢ and g are H-concordant and 6(z") =, S(z") for every variable z°. It follows
from Proposition 2 that the property U E ¥[B] is equivalent to the property U E ¢[d]. Since the formula y is
infrafiltrated, the property U [ y[6] is equivalent to the property G = {g € F' | U, | ¢[6.]} € D.

By Proposition 4 the evaluations d, and y, are H-concordant. Let y” # x. If o is a basic first-order type, then

05(y) = B()(8) = v(¥)(8) = v,(y). If o is an auxiliary first-order type, then 6¢(y) = B(y) = ¥(y) = ¥¢(y). Finally, if
o is a second-order type, then 6,(y) = B(y){g) = ¥(y){g). Since by Lemma 4 y(y){g) = v¢(y), we have §,(y) = y,(y).
Consequently in all the cases 6,(y) = ,(y) for every y” # x7. Therefore the property U, | ¥[d,] is equivalent to
the property U, = ¢[y,]. So{g € F | Uy E ¢[y,]} = G € D. This implies G, € D. O

The following two lemmas are the same as ones for the first-order language.

Lemma 6 Let formulas  and & be infrafiltered with respect to the filter D. Then the formula y A & is infrafiltered
by D too.

Proof. Denote the formula ¥ A& by ¢. Let G, € D, i.e., U, E ¢lyg] forall g € G, € D. This property is equivalent
to conjunction of the properties U, = ¥/[y,] and U, | &[y,]. Since these formulas are infrafiltered, it is equivalent
to conjunction of the properties U = ¢[y] and U k= £[y], but it is equivalent to the property U  ¢[vy].

Conversely, let U | ¢[y]. It is equivalent to the conjunction of the properties U | ¢[y] and U [ &[y]. Then
Gy € D and G¢ € D. Consider G = Gy N G¢. Then Uy E ¢yl and Uy E €[y, ] implies U, | ¢[y,] for every
g €G e D. Hence, G, € D. |

Lemma 7 Let a formula  be infrafiltered with respect to the ultrafilter D. Then the formula — is infrafiltered by
D too.

Proof. Denote the formula = by ¢. By assumption, the properties G, € O and U [ y[y] are equivalent.

By definition, F'\ G, = {g € F | the property U,  ¢[y,] does not hold}. But U, E ¢[y,] is equivalent to the
assertion that the property U, F ¢[y,] does not hold. Consequently the property U, = ¥[y,] is equivalent to the
assertion that the property U, F ¢[y,] does not hold. It implies F' \ G, = Gy.

Let G, € O. Since D is an ultrafilter, we have G, = F \ G, ¢ O. So the property U k /[y] does not hold. By the
definition of the satisfiability, it means that U = ¢[y].

Conversely, let U | ¢[y]. Then the property U [ ¢/[y] does not hold. Therefore G, ¢ O. Since D is an ultrafilter,
we have G, = F'\ Gy € D. O

Theorem 1 Every formula ¢ of the language L(Zg) of the second-order signature Z’-; with generalized equalities
and belongings is infrafiltered with respect to any ultrafilter D on the set F.

Proof. The set of all formulas ¢ of the language L(Zg), constructed by induction from atomic formulas by means
of the connectives — and A and the quantifier 3, will be denoted by . The subset of the set ¥, consisting of all
formulas containing at most n logical symbols —, A, and 3, will be denoted by¥,,. Obviously, ¥ = J(\Y,, | n € wy).

Using the complete induction principle (see Mendelson, 1997, 3.1, Proposition 3.9) we shall prove the following
assertion A(n): every formula ¢ € P, is infrafiltered.

If n = 0, then ¢ is an atomic formula. By Lemma 5 it is infrafiltered. Consequently, A(0) holds.

Assume that for every m < n the assertion A(m) holds. Let ¢ € ¥,,. If ¢ = =, then ¢ € W,_;. Therefore, y
is infrafiltered. By Lemma 7 the formula ¢ is infrafiltered too. If ¢ = ¥ A &, then ¢, & € W¥,_;. Therefore, by
the inductive assumption, the formulas ¢ and & are infrafiltered. By Lemma 6 the formula ¢ is infrafiltered too.
Finally, if ¢ = JAx7y, then ¢ € ¥,_,. Consequently as above the formula ¢ is infrafiltered. By Proposition 5 the
formula ¢ is infrafiltered too. So the assertion A(n) holds.

By the complete induction principle the assertion A(n) holds for every n € wy. This means that any formula ¢ € ¥
is infrafiltered.

Let ¢ be an arbitrary formula of the language L(Zg). Consider for ¢ the accompanying formula ¢* defined in section
4. By the definition of the operation ¢ — ¢*, we have ¢* € ¥. As proved above the formula ¢* is infrafiltered, i.e.,
(g€ F U E ¢yl € D < U E ¢"[y]. Proposition 1 implies the equivalences U F ¢*[y] < U k ¢[y] and
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Ug E ¢yl © Ug E ¢ly,]. Inresult we get the following chain of equivalences: {g € F | U, F ¢lyel} € D <
geF|U, E¢@'lyel € Do UE ¢yl © U E ¢[yl. It means that the formula ¢ is infrafiltered. L.

This theorem has one important corollary. Let ® be some set of formulas of the language L(Ei) of the generalized
second-order signature Zg. Let the set @ has a model (Uy, y) of the signature Z§ with true generalized equalities
and belongings. Take an arbitrary set F and an arbitrary ultrafilter O on F. Consider the collection of the models
((Ug,yp) | f € F)such that (Uy,yy) = (U, yo). The infra-D-product infra-D-prod(Uy | f € F) of the collection
Uy | f € F) will be called the infra-D-power of the system Uy with the exponent F and will be denoted by
infra-D-power(Uy, F). The crossing > (ys | f € F') of the collection (y; | f € F) will be called the crossing of the
evaluation vy in the quantity F and will be denoted by »< (o, F).

Corollary Let @ be some set of formulas of the language L(Zg). If the set ® has a model (Uy,yy) of the signature Z§
with true generalized equalities and belongings, then for every set F and every ultrafilter D on F the set © has also
the model (infra-D-power(Uy, F), > (yo, F)) of the signature Eg with true generalized equalities and belongings.

It implies that if a set ® of formulas of the language L(Eg) has a model with true generalized equalities and
belongings, then it has the same model of an arbitrary large power. Therefore the generalized second-order logic
has the upper Lovengame—Skolem property, in contrast with the standard second-order logic, which does not have
this property (see Mendelson, 1997, Appendix, (III)).

8. Compactness Theorem for Formulas of the Language L(Zg) of the Generalized Second-Order Signature

Theorem 2 Let O and ¥ be some sets of formulas of the language L(E‘;) of the generalized second-order signature
25. Let for every finite subset f of the set @ the set of formulas f+(E1-E4)+Y has a model (U, ) of the signature
E§ such that collection (Uy,vy) | f € F) is pairwise H-concordant. Then the set of formulas ® + (E1-E4) + ¥
has a model (U, ) of the signature Zg.

Proof. Consider the set F = {f € ® | 0 < |f] < wp} of all finite non-empty subsets from O.

For an element f € F consider the set Fy = {g € F | f C g}. Since f € Fy, we have F; # @. The set
¢ ={Fy | f € F} has the finite intersection property. So there is some ultrafilter D on the set F including the set €.

Consider the system U = infra-D-prod(Uy | f € F), constructed in Section 6. Consider the evaluation y = »
(yf | f € F) on the system U, constructed in Section 6. By Lemma 2 from Section 6 U is a system with the true
generalized equalities and belongings.

Prove that the evaluated system (U, y) is a model for the set ®.

Suppose ¢ € ®. Consider the set Fi,y. By condition, Uy, F ¢[y(,]. Consider the set G, = {g € F' | U, F ¢ly,l}.
If g € Fy,), then {¢} C g implies ¢ € g. Therefore U, | ¢[y,]. Consequently, F', C G,. Since Fi,) € D, we have
G, €D.

By Theorem 1 from Section 7 we infer the property U = ¢[y]. So (U,7y) is a model for the set ®. The fact that
(U, ) is a model for the set ¥ follows immediately from Theorem 1. O

9. Uncountable Models of the Second-Order Generalized Peano-Landau Arithmetic

At first we describe the Peano-Landau arithmetic in the generalized second-order language of the onegrade signa-
ture of the rank 1]0.

Putm = 0 and n = 0, i.e., we shall consider the single basic first-order type of the form 7 = (0, 1) without auxiliary
first-order types. Consider the second-order types s = [r] and p = [, 7] and the type domain © = (-D/Z{r2 = {m, s, p}
of the rank 1|0 with the belonging type subdomain ®, = {, p}.

Put Q, =1, Q,, = @, Q, = 1, and consider collections X7 = (07, | w € Q) = 03, X = (0, | w € Q,.) = T,
and 2 = (0%, |w € Q) = 0’6. They compose the signature of constants of the type domain ® of the form X, =
(Xt | 7€) =(0g,9, o‘g) containing the constant o7}, which is an objective first-order constant for denoting the
natural number 0, and the constant 0'8, which is a predicate second-order constant for expressing of the succession
relation of Peano between a natural number a and it’s successor a + 1.

Further along with o7 and o-p0 we shall simply write 0 and o, respectively.

Take the signature of the generalized equalities of the type domain @ of the form X, = (6: | 7 € ©) = (0x, 0., 6,)
containing the first-order equality ¢, and the second-order equalities () and o, 7].

Take the signature of the generalized belongings of the type domain ® of the form X, = (g, | 7 € ©)) = (&,., &p).
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Finally, take a denumerable set X7 of objective variables x™,y”, ... of the first-order type 7 and denumerable sets
X7 and X of predicate variables u”*,v*, ... and u,V*, ... of the second-order types 5 and p, respectively.

They form the signature T, = (X7 | 7 € ©) = (X¥, X, X)) of variables of the type domain ©.

Consider the one grade generalized signature Z/gm = X |Z.|Zp|%, of the rank 1|0 and its language L(me). Terms

p>q,1, ... of this language are constants and variables only, the atomic equality formulas have the forms ¢"d,r",
q”0,.r”, and ¢°0,r°. Respectively, the atomic belonging formulas have the forms ¢"¢,.r* and (p”, g")g, 1’ .

Further along with x*,y”, ... and 6, we shall simply write x, y, ... and 6.

The axioms of the second-order generalized Peano—Landau arithmetic are the following ones:

Al)  Vxi, x2, Y((x1,)€,0 A (X2, Y)E,07 = X10X2);

A2)  Yx,y1,y2((x, y1)E,0° A (X, ¥2)Ep0" = y16Y2);

A3)  Yx, y(x, )00 = =(y60));

Ad)  VYu”(0e,.u™ AVx, y(xe,.u™ A (X,¥)8,0 = y&,.u”™) = Vz(ze,.u™)).

Consider the following generalized extensionality properties:

PE 1) VYu” v*(u”0,v”* & Vx(xe, u”* & xe,.v>));

PE2) YuP Vv (uPo,° © Y, y((x,y)eu’ & (x,¥)gp00)).

Consider the set Ny = wy of all natural numbers, which was constructed in the theory NBG of sets and classes.

For the formation Ny of the rank 1]0 and of the signature X5 , consider the following collections S7 = (s7, | w €
Q) =55, 857 =55 | weQ,) =, and SP=() |wEe Q) = spo. They compose the collection of constant
structures S. = (S7 | 7 € ©) = (57, T, sg), containing the constant structure sg € n(Nog) = Ny, which is the initial
natural number, and the constant structure 5’6 € p(Np) = P(Ny x Np), which is the set of all pairs of natural numbers
of the form {a,a + 1).

Further along with 57 and sg we shall write simply 0 and s, respectively.

Consider the collection of the equality relations of the form S, = (=;| 7 € O) = (=7, %11, %) = (= IN2, = |P(Ny)?, =
|P(Ny x Np)?), containing in the capacity of the first-order equality relation =, and of the second-order equality
relations ~,, and =, the restrictions on the indicated sets one and the same set-theoretical equality = in the theory
NBG.

Consider the collection of the belonging correspondences of the form §;, = (<, | 7 € 0) = (<,,<,) = (€
INo xP(Np), € [(Ng xNp) xP(NoxNp)), containing in the capacity of the belonging correspondences <. and <, the
restrictions on the indicated sets one and the same set-theoretical belonging correspondence € in the theory NBG.

Finally, take the collection of the terminals over the formation Ny of the form S, = (7(Ny) | 7 € ©) = (7(Ny), 2(Ny),
p(Np)) = (No, P(Np), P(No X Np)).

These collections compose the one grade superstructure S 4,0 = (S¢, Se, S5, 5,) of the signature ZirZ of the rank
110 over the formation Nj.

The system Ar2 = (Ny, S 4,2) of the signature ZirZ can be called the natural series of Peano—Landau of the second-
order in the set theory NBG, because it models the following Peano—Landau postulates:

Pl) Vaj,a,b({ay,b) € s AN{ay,b) € s = a) = ar);

P2) Va,by,by({a,b;) € s AN{a,by) € s = b) = by);

P3) Va,b({a,b) € s = b + 0);

P4) VPO e PAVa,b(ae PA{a,b)yes=beP)=Vc(ceP)).

Consider an evaluation y on the system Ar2 such that y(x) € n1(Ny) = Ny, y(u*) € »(Ny) = P(Ny), and y(u”) €
p(Np) = PNy X No).

For the evaluated system (Ar2, ) the following assertion holds.

Lemma 8 The evaluated system (Ar2,y) is the standard model for the set of formulas E1, E2, E3, E4, Al, A2, A3,

A4, PE1, and PE2 of the language L(Eiﬂ).
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Proof. The satisfactions Ar2 E Al[y], Ar2 E A2[y], Ar2 E A3[y], and Ar2 | A4[y] follow from the correctness
for the system Ar2 of Peano—Landau postulates P1, P2, P3, and P4, respectively. The other satisfactions are
checked immediately. ]

Therefore the evaluated system (Ar2,y) can be called the generalized natural series of Peano—Landau of the
second-order in the set theory NBG.

Now construct an uncountable model. Take an arbitrary set F' and an arbitrary ultrafilter  on F. Consider the
system infra-D-power(Ar2, F) and the evaluation »< (y, F'), defined in section 7.

Theorem 3 The evaluated system (infra-D-power(Ar2, F),> (y, F)) is the generalized model for the set of formu-
las E1, E2, E3, E4, Al, A2, A3, A4, PE1, and PE?2 of the language L(Zf\rz). The support of the model is the Baire
set Ng . Af|F| = wy, then the support is uncountable.

Proof. The assertion follows from the preceding lemma and Theorem 1. 0.
10. Conclusion

The compactness theorem for the generalized second-order logic allows us to build unusual, but interesting models
of such classical theories as the arithmetic, the theory of real numbers, and so on.

For example, if we shall add to the axioms of Section 9 the countable set of axioms dx"—(xd7), where 7 denotes the
n-th numeral (see Mendelson, 1997, p. 160), then using the compactness theorem from Section 8 we can construct
a generalized model of the second-order generalized Peano—Landau arithmetic with infinite elements.

For the similar set of axioms there exists a generalized model of the generalized second-order theory of real
numbers with infinitely large and infinitely small elements.

The limited frames of the article did not allow the authors to present these ideas in more details. However they
illustrate that the material, presented in the given paper, shows a new interesting direction in constructing some
generalized models of classical second-order theories.
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Notes

Note 1. Note that use a generalized belonging was explored in the forcing method in the form x €, y (see e.g.,
Shoenfield, 1967, 9.8).
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