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Abstract

In order to solve the portfolio problem when security returns are bifuzzy variables, firstly we propose a new definition

of risk, then one type of portfolio selection based on expected value and risk is provided according to bifuzzy theory.

Furthermore, a hybrid intelligent algorithm by integrating bifuzzy simulation and genetic algorithm is designed. Finally,

one numerical experiment is provided to illustrate effectiveness of the hybrid intelligent algorithm.
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1. Introduction

The theory of portfolio selection was initially provided by Markowitz (1952, p.77) and has been greatly developed since

then. It is concerned with selecting a combination of securities among portfolios containing large number of securities

to reach the goal of obtaining satisfactory investment return. In his path-break work, Markowitz proposed a principle

that when making investment decision, an investor should always strike a balance between maximizing the return and

minimizing the risk, i.e., the investor maximize return for a given level of risk, or one should minimize risk for a predeter-

mined return level. More importantly, Morkowitz initially quantified investment return as the expected value of returns of

securities, and risk as variance from the expected value. After Maokowitz’s work, scholars have been showing great en-

thusiasm in portfolio management, trying different mathematical approaches to develop the theory of portfolio selection.

Traditionally, returns of individual security were assumed to be stochastic variables, and many researchers were focused

on extending Markowitz’s mean-variance models and on developing new mathematical approaches to solve the problems

of computation. Zhou (2003, p.357) proposed concept of bifuzzy variable and the framework of bifuzzy system theory.

In fact, investors may come across bifuzzy returns in portfolio selection situations. For example, security returns can be

regarded as fuzzy variables in which still contain fuzzy parameter, to deal with this type of uncertainty, we propose the

security returns could be regarded as bifuzzy variables. As a general mathematical description for this kind of fuzzy phe-

nomenon with incomplete information, bifuzzy variable is defined as a mapping from a possibility space to a collection

of fuzzy variables.

In general, there are three types of risk definitions in portfolio selection problems. Variance is the earliest and most

commonly accepted definition of risk for portfolio selection initially proposed by Markowitz (1952, p.77). A variety of

extensions to Markowitz’s mean-variance models has been proposed. Semivariance is the second type of risk definitions,

and was also proposed by Markowitz (1959). Semivariance is an improvement of variance because semivariance only

measures portfolio return below the expected value, many models have been built to minimize semivariance in different

cases. The third popular definition of risk is a probability of a bad outcome initially by Roy (1952 p.431). Much research

has been undertaken to find ways of minimizing the probability of the bad outcome. Recently, Huang (2007 p.5404)

proposed another new definition of risk for portfolio selection in fuzzy and random fuzzy environments. The detailed

exposition on the definition of risk had been recorded in the literature ( Huang, 2007 p.5404), the interested readers may

consult it. We can regard it as the fourth type of risk. Her work has enriched the risk theory for portfolio selection. We try

to do something for portfolio selection in bifuzzy environments, and give a new risk definition in bifuzzy environments

and a model for portfolio selection according to the proposed risk.

The rest of this paper is arranged as follows. After reviewing some necessary knowledge about bifuzzy variable in section

2, in section 3, one type of risk for portfolio selection model under bifuzzy environment is proposed. In section 4, we give

a model for portfolio selection from the point of the new definition of risk. To provide a general method for solving the

new models, in section 5, a hybrid intelligent algorithm integrating genetic algorithm and bifuzzy simulation is designed.

To better illustrate the modeling idea and demonstrate the effectiveness of the proposed algorithm, one numerical example

is provided in section 6.
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2. Preliminaries

Bifuzzy variable theory was introduced by Liu (2002, p.43) and developed by Zhou (2003, p.357). To better understand

the expected value operator and the chance measure of bifuzzy variable, let us briefly review some necessary knowledge

about bifuzzy variable.

Definition 1 A bifuzzy variable ξ is a mapping from a possibility space (Θ, P(Θ),Pos) to a collection of fuzzy variables.

Example 1 Let ξ be a triangle fuzzy variable (ρ − 1, ρ, ρ + 2), where ρ is still a fuzzy variable with membership function

μρ(x) = [1 − |x − 1|] ∨ 0. Then ξ is a bifuzzy variable.

The following are the definitions of the expected value operator and the primitive chance of bifuzzy event.

Definition 2 Let ξ be a bifuzzy variable defined on the possibility space (Θ, P(Θ), Pos). Then the expected value of

bifuzzy variable ξ is defined as

E[ξ] =

∫ ∞

0

Cr{θ ∈ Θ|E[ξ(θ)] ≥ t}dt −
∫ 0

−∞
Cr{θ ∈ Θ|E[ξ(θ)] ≤ t}dt

Provided that at least one of the above two integrals is finite.

Here, Cr denotes the credibility degree of fuzzy event and E[ξ(θ)] represents the expected value of fuzzy variable ξ(θ).

Definition 3 Let ξ = (ξ1, ξ2, · · · , ξn) be an n-dimensional bifuzzy vector defined on (Θ, P(Θ), Pos), and B be a set of Rn.

Then the primitive chance of bifuzzy event ξ ∈ B is a function from (0, 1] to [0, 1], defined as

Ch{ξ ∈ B}(δ) = sup{β|Cr{θ ∈ Θ|Cr{ξ(θ) ∈ B} ≥ β} ≥ δ}

Theorem 1 Let ξ = (ξ1, ξ2, · · · , ξn) be a bifuzzy vector on (Θ, P(Θ), Pos), and f : Rn → Rm a function. Then the chance

Ch f (ξ) ≤ 0 is a decreasing and left-continuous function of α.

Theorem 2 Let ξ be a bifuzzy variable and α a given number in (0, 1], then the chance distribution Ch{ξ ≥ x}(α) is a

decreasing and left-continuous function of x.

3. New definition of risk

In reality, some investors are only sensitive to one preset bad case. They regard as safe those securities whose chance of

this bad case occurring is lower than the investors’ tolerance level. Other investors consider all the possible unfavorable

cases, and only those securities whose chance of every unfavorable case occurring is lower than the investors’ tolerance

level are regarded as safe. We will define the risk from this perspective.

Definition 4 Let ξ be a bifuzzy variable on the possibility space (Θ, P(Θ), Pos), and δ the preset confidence level and b
the target return. Then the curve

f (δ, r) = Ch{b − ξ ≥ r}(δ), ∀r ∈ R

is called the risk curve of an investment in the portfolio, and r the loss severity indicator.

The greater the indicator r, the more severe the loss b − ξ. the risk curve f (δ, r) gives the chance of the occurrence of all

events when the bifuzzy return ξ is r less than the target return b.

From theorem 1 and theorem 2 we can derive that the risk curve f (δ, r) is a decreasing function with respect to δ and r,

that is, the greater the δ, the smaller the f (δ, r) value, the greater the r, the smaller the f (δ, r).

To determine whether a portfolio selection is risky, an investor must first decide what is his or her maximum tolerance

level of each bad event occurring. Usually, the worse the event, the lower the tolerance level. Then for every loss severity

indicator r0 ∈ R, the investor always can give a confidence level corresponding α(r0), thus the confidence level α(r) is a

function of the loss severity indicator r, the function α(r) is called the confidence curve.

Let ξ be a bifuzzy return of a portfolio A, and α(r) the confidence curve. We can say that A is safe if f (δ, r) = Ch{b − ξ ≥
r}(δ) ≤ α(r) for every r ∈ R, where b is the target return and δ the preset credibility level. The number r denotes all

possible loss severity indicator. If the investor is only concern with one special loss severity indicator r0, then the risk

becomes the chance Ch{b − ξ ≥ r0}(δ), which is exactly the ordinary chance measure of bifuzzy variable.

4. Bifuzzy portfolio selection

Let us select a portfolio according to the definition of risk in the preceding content. Let xi denotes the investment propor-

tions in security i, ξi the bifuzzy return for the ith security, i = 1, 2, · · · , n, respectively. Let r denote the loss severity

indicator, and α(r) the confidence curve preset by the investor. To obtain the maximum investment return and avoid risk,

the investor should select an optimal combination of securities from the portfolio safe point. We use the expected value of

the securities to express the investment return. Thus we should set a goal of maximizing the expected return of a portfolio,
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and require that the risk curve f (δ, r) is not larger than the confidence curve α(r). Let b be the target return and δ the

preset credibility level. Then the model is formulated as follows:

max
x

E[

n∑
i=1

xiξi]

subject to

Ch{b −
n∑

i=1

xiξi ≥ r}(δ) ≤ α(r), ∀r ∈ R (1)

n∑
i=1

xi = 1 xi ≥ 0, i = 1, 2, · · · , n

when the bifuzzy returns degenerate to fuzzy, the chance constraint becomes Cr{b −∑m
i=1 ξi xi ≥ r} ≤ α(r), ∀r ∈ R, for any

given δ ∈ (0, 1]. Thus the model is the following

max
x

E[

n∑
i=1

xiξi]

subject to

Cr{b −
n∑

i=1

xiξi ≥ r} ≤ α(r), ∀r ∈ R (2)

n∑
i=1

xi = 1 xi ≥ 0, i − 1, 2, · · · , n

Furthermore, if the investor only concerns one preset loss severity level r0, then the model (2) can be converted into the

formulation:

max
x

E[

n∑
i=1

xiξi]

subject to

Cr{b −
n∑

i=1

xiξi ≥ r0} ≤ α(r0) (3)

n∑
i=1

xi = 1 xi ≥ 0, i = 1, 2, · · · , n

5. Hybrid intelligent algorithm

Since the two-fold uncertainty of bifuzzy variable, it is difficult to analytically solve the models (1), (2) and (3). To provide

a general solution to the models, we design a hybrid intelligent algorithm integrating genetic algorithm (GA) and bifuzzy

simulation. Roughly speaking, in the proposed hybrid intelligent algorithm, the technique of bifuzzy simulation is applied

to compute the expected value and the chance measure, then bifuzzy simulation and GA are integrated for solving the

bifuzzy models.

5.1 Bifuzzy simulation

In this section, we first discuss the calculation of the expected value and the chance measure of bifuzzy variables. Let ξi
be bifuzzy variables and xi decision variables, i = 1, 2, · · · , n, respectively. Write f (x, ξ) =

∑n
i=1 xiξi,

where x = (x1, x2, · · · , xn), ξ = (ξ1, ξ2, · · · , ξn). Let b be the target return and δ the preset credibility level. The number

r denotes all possible loss severity indicator. In order to solve the proposed models, we must handle the following two

types of uncertain function:

U1 : x → E{ f (x, ξ)}
U2 : x → Ch{b − f (x, ξ) ≥ r}(δ) ≤ α(r), ∀r ∈ R

A bifuzzy simulation will be introduced to compute the expected value E[ f (x, ξ)]. We randomly sample θk from Θ such

that Pos{θk} ≥ ε, and Write νk = Pos{θk}, k = 1, 2, · · · , N, respectively, where ε is a sufficiently small number. Then for

any number c ≥ 0, the credibility Cr{θ ∈ Θ|E[ f (x, ξ(θk))] ≥ c} can be estimated by
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[( max
1≤k≤N

{νk |E[ f (x, ξ(θk))] ≥ c} + max
1≤k≤N

{1 − νk |E[ f (x, ξ(θk))] < c}]/2

and for any number c < 0, the credibility Cr{θ ∈ Θ|E[ f (x, ξ(θ))] ≤ c} can be estimated by

[( max
1≤k≤N

{νk |E[ f (x, ξ(θk))] ≤ c}) + max
1≤k≤N

{1 − νk |E[ f (x, ξ(θk))] > c}]/2

Provided that N is sufficiently large, and E[ f (x, ξ(θk))], k = 1, 2, · · · , N, may be estimated by the fuzzy simulation. We

describe the process as follows.

Algorithm 1 (bifuzzy simulation for U1(x))

Step 1. Set E = 0

Step 2. Randomly sample θk from Θ such that Pos{θk} ≥ ε, k = 1, 2, · · · , N, where ε is a sufficiently small number.

Step 3. Compute E[ f (x, ξ(θk))] by fuzzy simulation for k = 1, 2, · · · , N, respectively.

Step 4. Let α = min
1≤K≤N

E[ f (x, ξ(θk))] and b = max
1≤k≤N

E[ f (x, ξ(θk))].

Step 5. Randomly generate c from [a, b].

Step 6. If c ≥ 0, then E ← E + Cr{θ ∈ Θ|E[ f (x, ξ(θk))] ≥ c}, where fuzzy simulation is used to calculate Cr{θ ∈
Θ|E[ f (x, ξ(θk))] ≥ c}. If c < 0, then E ← E − Cr{θ ∈ Θ|E[ f (x, ξ(θk))] ≤ c}, where fuzzy simulation is also used to

calculate Cr{θ ∈ Θ|E[ f (x, ξ(θk))] ≤ c}.
Step 7. Repeat the fifth to the seventh steps for N times.

Step 8. E[ f (x, ξ)] = a ∨ 0 + b ∧ 0 + E(b − a)/N.

For any given confidence level δ and given b, r x, we design a bifuzzy simulation to compute the α − chance L = Ch{b −
f (x, ξ) ≥ r}(δ). Equivalently, we should estimate L = sup{β|Cr{θ ∈ Θ|Cr{b − f (x, ξ(θ)) ≥ r} ≥ β} ≥ δ}. We randomly

generate θk from Θ such that Pos{θk} ≥ ε, and write νk = Pos{θk}, k = 1, 2, · · · , N, respectively, where ε is a sufficiently

small number. For any number θk, by using fuzzy simulation, we can estimate the credibility h(θk) = Cr{ f (x, ξ(θk)) ≥ r}.
For any number c, we have

L(c) = [
(

max
1≤k≤N

{νk(θk) ≥ c} + min
1≤k≤N

{1 − νk |h(θk) < c})]/2 (4)

It follows from monotony that we may use bisection search to find the maximal value c such that L(c) ≥ α. This value is

an estimate of L. We summarize this process as follows.

Algorithm 2 (bifuzzy simulation for U2(x))

Step 1. Set l = 1.

Step 2. Randomly generate a real number r according to the confidence curve α(r) given by the investor.

Step 3. Generate θk from Θ such that Pos{θk} ≥ ε, and write νk = Pos{θk}, k = 1, 2, · · · , N, respectively, where ε is a

sufficiently small number.

Step 4. Compute h(θk) = Cr{ f (x, ξ(θk)) ≥ R} by fuzzy simulation, k = 1, 2, · · · , N, respectively.

Step 5. Find the maximal value c such that L(c) ≥ α holds, where L(c) is defined by (4).

Step 6. Return c.

Step 7. If c is no larger than α(r), then l = l ∗ 1, else l = l ∗ 0.

Step 8. repeat the second to the fifth steps for a given number times.

Step 9. If l = 1, then return YES, else return NO.

Remark: here YES means that the investment proportion x is feasible; NO means that x is infeasible.

5.2 Genetic algorithm

Representation structure: A solution x = (x1, x2, · · · , xn) is represented by the chromosome V = (ν1, ν2, · · · , νn), where

the genes ν1, ν2, · · · , νn are randomly generated in the interval [0, 1], and the relation between x and V are formulated as

follows: xi = νi/(ν1 + ν2 + · · · + νn), i = 1, 2, · · · , n, which ensures that x1 + x2 + · · · + xn = 1, xi ≥ 0, i = 1, 2, · · · , n
always holds.

Initialization process: pop size number of chromosomes are initialized randomly by generating points (ν1, ν2, · · · , νn)

from the hypercube [0, 1]n pop-size times. Since the constraint required that x = (x1, x2, · · · , xn) satisfy x1+x2+· · ·+xn =

1, based on the relation between x and V , the feasibility of the randomly generated chromosomes is obvious.
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Evaluation function: Evaluation function, denoted by Eva(V), is to assign a probability of reproduction to each chro-

mosome V so that its likelihood of being selected is proportional to its fitness relative to the other chromosomes in

the population. That is, the chromosomes with higher fitness will have more chance to produce offspring by using

roulette wheel selection. One well-known evaluation function is based on allocation of reproductive trial according to

rank rather than actual objective values. We can rearrange the pop-size chromosomes according to their objective val-

ues to make better chromosome take smaller ordinal number. That is, after rearrange, among pop-size chromosomes

V1, V2, · · · ,Vpop size, V1, is the best chromosome, and Vpop size the worst one, then a parameter α ∈ (0, 1) in the genetic

system is given. We can define the rank-based evaluation function as follows: Eva(Vi) = a(1−a)i, i = 1, 2, · · · , pop size.

Note that i = 1 means the best individual, i = pop size the worst one.

Selection process: Firstly, calculate the cumulative probability qi for each chromosome Vi,

q0 = 0, qi =

i∑
j=i

Eva(Vj), i = 1, 2, · · · , pop size

Secondly, generate a random number r in (0, qpop size], and select the chromosome Vi if r satisfies qi−1 < r ≤ qi. Repeat

the second and third steps pop size times and obtain pop size copies of chromosome.

Crossover operation: A parameter pc of a genetic system as the probability of crossover is defined first. The parents for

crossover operation are selected by doing the following process repeatedly from i = 1 to popsize: Generating a random

number r from the interval [0, 1], the chromosome Vi is selected as a parent if r < pc, the selected parents are denoted

by V ′
1, V ′

2, V ′
3, · · · and divided into the pairs: (V ′

1, V ′
2), (V ′

3, V ′
4), (V ′

5
, V ′

6
), · · · . The crossover operation on each pair is

illustrated by (V ′
1, V ′

2). At first, we generate a random number c from the open interval (0, 1), then the operator on V ′
1 and

V ′
2 will product two children X and Y as follows: X = cV ′

1 + (1 − c)V ′
2, Y = (1 − c)V ′

1 + cV ′
2.

If both children are feasible, then we replace the parents with them. If not, we keep the feasible one if it exists, and then

redo the crossover operator by regenerating a random number c until two feasible children are obtained or a given number

of cycles is finished. In this case, we only replace the parents with the feasible children .

Mutation operation: A parameter pm of a genetic system as the probability of mutation is defined first. This probability

gives us the expected number of pm · pop size of chromosomes undergoing the mutation operations. We repeat the

following steps from i = 1 to pop size: Generating a random number r from the interval [0, 1], the chromosome Vi is

selected as a parent if r < pm. For each selected parents Vi, we mutate it in the following way. Let M be an appropriate

large positive number. We choose a mutation direction d in Rn randomly. If V + M · d is not feasible, then we set M as a

random number between 0 and M until it is feasible. If the above process cannot find a feasible solution in a predetermined

number of iterations, then we set M = 0. Anyway, we replace the parent Vi with its feasible child V + M · d.

The following is the hybrid intelligent algorithm integrating bifuzzy simulation and genetic algorithm.

Algorithm 3 (hybrid intelligent algorithm)

Step 1. Initialize pop size chromosomes.

Step 2. Calculate the objective values for all chromosomes by bifuzzy simulation.

Step 3. Given the rank order of the chromosomes according to the objective values, and the values of the rank-based

evaluation function of the chromosomes.

Step 4 . Mpute the fitness of each chromosome according to the rank-based evaluation function.

Step 5. lect the chromosomes by spinning the roulette wheel.

Step 6. Update the chromosomes by crossover and mutation operations.

Step 7. Repeat the second step to the sixth step for a given number of cycles.

Step 8. Take the best chromosome as the solution of portfolio selection.

6. Numerical example

To illustrate the modeling idea and to test the effectiveness of the designed hybrid intelligent algorithm, let us consider

one numerical example. The example is performed on a personal computer by using C + + programming language. The

parameters in the HIA are set as follows: the probability of crossover pc = 0.3, the probability of mutation pm = 0.2, the

parameter a = 0.05 in the rank-based evaluation function.

Example 2 Assume that there are 5 securities, the returns of securities are all bifuzzy variables.

max
x

E[

5∑
i=1

xiξi]
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subject to

Ch{b −
5∑

i=1

xiξi ≥ r}(δ) ≤ α(r), ∀r ∈ R

5∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , 5

where

ξ1 = (ρ1 − 1, ρ1, ρ1 + 1) with ρ1 = (0, 1, 2), ξ2 = (ρ2 − 1, ρ2, ρ2 + 1) with ρ2 = (1, 2, 3)

ξ3 = (ρ3 − 1, ρ3, ρ3 + 1) with ρ3 = (2, 3, 4), ξ4 = (ρ4 − 1, ρ4, ρ4 + 1) with ρ4 = (3, 4, 5)

ξ5 = (ρ5 − 1, ρ5, ρ5 + 1) with ρ5 = (4, 5, 6)

Suppose that the investor has given the confidence curve and other parameters: α(r) = 1
r2+1
, r ≥ 0. b = 0.9, δ = 0.9.

A run of the hybrid intelligent algorithm with 3000 generations shows that among 5 securities, in order to gain maximum

expected value of the total securities return the investor should assign his money according to the optimal solution:

x∗
i = 0, x∗

2 = 0.1325, x∗
3 = 0.2536, x∗

4 = 0.2792, x∗
5 = 0.3347
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