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Abstract

The aim of this paper is to introduce Γ-seminearrings and (left/right) simple Γ-seminearrings. Moreover, some re-

lated properties of those are investigated. Finally, necessary and sufficient conditions for being (left/right) simple Γ-

seminearrings are provided.
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1. Introduction

The concept of seminearrings (or nearsemirings in another terminology) was introduced by B. V. Rootselaar in 1962. It

is known that seminearrings are common generalization of nearrings and semirings. In fact, seminearrings appear in a

natural way in computer science. Some papers concerning theory of seminearrings are as follows: W. G. V. Hoorn (1970),

H. J. Weinert (1976) and, recently, M. Shabir and I. Ahmed (2007). The notion of Γ-rings were first introduced by

N. Nobusawa (Nobusawa, N., 1964, p. 81-89) as a generalization of rings. The followings are examples of papers

regarding theory of Γ-rings: W. E. Barnes (1966), S. Kyuno (1978) and S. M. Hong and Y. B. Jun (1995). It is found that

Bh. Satyanarayana (Satyanarayana, Bh., 1984) defined and studied Γ-nearrings. Unsurprisingly, Γ-nearrings are common

generalization of nearrings and Γ-rings. Many results in Γ-nearrings have been developed:– see G. L. Booth (1988),

Y. B. Jun, M. Sapanci and M. A. Öztürk (1998) and, lately, Bh. Satyanarayana and K. P. Syam (2005). M. K. Rao (Rao,

M. K., 1995, p. 49-54) set up Γ-semirings as generalization of semirings and Γ-rings. Further research involving Γ-

semirings are found in T. K. Dutta and S. K. Sardar (2002) and R. Chinram (2008).

In this paper, we first define Γ-seminearrings which are generalization of seminearrings, Γ-nearrings and Γ-semirings

and then Γ-rings. Next, we investigate some general properties of Γ-seminearrings, especially, (left/right) simple Γ-

seminearrings. At the end, necessary and sufficient conditions for being (left/right) simple Γ-seminearrings are provided.

2. Preliminaries

Definition 1. Let R be an additive semigroup and Γ a nonempty set. Then R is called a (right) Γ-seminearring if there

exists a mapping R × Γ × R → R (sending (a, α, b) �→ aαb) satisfying the following conditions:

(i) (a + b)αc = aαc + bαc

(ii) (aαb)βc = aα(bβc)

for all a, b, c ∈ R and α, β ∈ Γ. Conveniently, the condition (i) is called the right distributivity and the condition (ii) the

associativity.

Let R be a Γ-seminearring. If the additive semigroup R has the additive identity, then R is called a Γ-seminearring with
identity. In this paper, 0 denotes the additive identity of the semigroup R.

We can see from Definition 1 that a right Γ-seminearring satisfies the right distributive law while the left distributive law

is not necessary.

Remark 2. Let R be a Γ-seminearring. Then R is also a semigroup. Thus, whenever we would like to emphasize that

124 � www.ccsenet.org



Journal of Mathematics Research September, 2009

R is considered as a semigroup, it will be stated so. If A is a subsemigroup of the semigroup R, then we say that A is a
subsemigroup of R.

It is obvious that for a seminearring (R,+, ·), the semigroup R under the addition + is an R-seminearring under the mapping

R × R × R → R defined by (a, α, b) �→ a · α · b for all a, b, α ∈ R. Moreover, any Γ-nearrings and Γ-semirings are Γ-

seminearrings directly from the definitions. Furthermore, Γ-semirings are generalization of Γ-rings (Dutta, T. K. & Sardar,

S. K., 2002, p. 203-213). Consequently, Γ-seminearrings are generalization of seminearrings, Γ-nearrings and Γ-semirings

and then of Γ-rings.

Definition 3. Let R be a Γ-seminearring under the mapping f : R × Γ × R → R. A subsemigroup A of R is called a sub
Γ-seminearring of R if A is a Γ-seminearring under the restriction of f to A × Γ × A.

Proposition 4. Let A be a nonempty subset of a Γ-seminearring R. Then A is a sub Γ-seminearring of R if and only if

a + b ∈ A and aαb ∈ A for all a, b ∈ A and α ∈ Γ.
Proof. It is enough to show only the reverse direction. Assume that a + b ∈ A and aαb ∈ A for all a, b ∈ A and α ∈ Γ.
Then A ia an additive subsemigroup of R and A × Γ × A ⊆ A. Since A ⊆ R, it follows that (a + b)αc = aαc + bαc and

(aαb)βc = aα(bβc) for all a, b ∈ A and α, β ∈ Γ. Therefore, A is a sub Γ-seminearring of R.

Let R be a Γ-seminearring. If A and B are nonempty subsets of R, we denote by AΓB the subset of R consisting of all finite

sums of the form
∑

aiαibi where ai ∈ A, bi ∈ B and αi ∈ Γ, i.e.,

AΓB =

⎧⎪⎪⎨⎪⎪⎩ m∑
i=1

aiαibi

∣∣∣∣ m ∈ N, ai ∈ A, bi ∈ B, αi ∈ Γ for all i

⎫⎪⎪⎬⎪⎪⎭ ;

moreover, for each x ∈ R, we write xΓB and AΓx instead of {x}ΓB and AΓ{x}, respectively. Similarly, we write AαB
instead of A{α}B for each α ∈ Γ.
In particular, by the right distributivity, Rαx = {rαx | r ∈ R} for all x ∈ R and α ∈ Γ. However, it is not true in general that

xαR = {xαr | r ∈ R} where x ∈ R and α ∈ Γ.
Proposition 5. Let A and B be nonempty subsets of a Γ-seminearring R. Then AΓB is a subsemigroup of R.

Proof. Since A, Γ and B are nonempty sets, AΓB � ∅. For each x =
∑m

i=1 riαi si, y =
∑n

j=1 u jβ jv j ∈ AΓB, we see that

x + y =
∑m

i=1 riαi si +
∑n

j=1 u jβ jv j ∈ AΓB which implies that x + y ∈ AΓB. Therefore, AΓB is a subsemigroup of R.

Theorem 6. Let R be a Γ-seminearring. If A, B and C are nonempty subsets of R, then (AΓB)ΓC ⊆ AΓ (BΓC).

Proof. Let x ∈ (AΓB)ΓC. Then x =
∑n

i=1

(∑m
j=1 a jβ jb j

)
αici where m, n ∈ N, a j ∈ A, b j ∈ B, ci ∈ C and αi, β j ∈ Γ for

all i, j. This implies that

x =
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝ m∑
j=1

a jβ jb j

⎞⎟⎟⎟⎟⎟⎟⎠αici

=

n∑
i=1

m∑
j=1

( (
a jβ jb j

)
αici

)
because of the right distributivity

=

n∑
i=1

m∑
j=1

(
a jβ j

(
b jαici

) )
because of the associativity

∈ AΓ (BΓC) since a jβ j

(
b jαici

)
∈ AΓ (BΓC) for all i, j.

In general, if A, B and C are nonempty subsets of a Γ-seminearring R, then it is not necessary that AΓ (BΓC) is contained

in (AΓB)ΓC because it may not be true that
∑m

i=1 aiαi
(∑n

j=1 b jβ jc j
)
=
∑m

i=1

∑n
j=1 aiαi(b jβ jc j) for any element∑m

i=1 aiαi
(∑n

j=1 b jβ jc j
) ∈ AΓ(BΓC).

Definition 7. A subset I of a Γ-seminearring R is called a left (right) ideal of R if I is a subsemigroup of R and rαx ∈ I
(xαr ∈ I) for all r ∈ R, x ∈ I and α ∈ Γ. If I is both a left and a right ideal of R, then I is called an ideal of R.

We see that if I is an ideal of a Γ-seminearring R, then I is a sub Γ-seminearring of R.

Proposition 8. Let I be a subsemigroup of a Γ-seminearring R. Then I is a left (right) ideal of R if and only if RΓI ⊆ I
(IΓR ⊆ I).

Proof. It is clear that if I is a left (right) ideal of R, then RΓI ⊆ I (IΓR ⊆ I).

Next, assume that RΓI ⊆ I. For each r ∈ R, x ∈ I and α ∈ Γ, we see that rαx ∈ RΓI ⊆ I. Thus I is a left ideal of R. The

proof for the case of right ideals is obtained similarly.

Theorem 9. Let R be a Γ-seminearring.
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(i) For each a ∈ R and α ∈ Γ, Rαa (aαR) is a left (right) ideal of R.

(ii) If A is a nonempty subset of R and B is a right ideal of R, then AΓB is a right ideal of R.

(iii) If A and B are left (right) ideals of R such that A ∩ B � ∅, then A ∩ B is a left (right) ideal of R.

Proof. (i) Let a ∈ R and α ∈ Γ. Then Rαa and aαR are subsemigroups of R. Obviously, if x, r ∈ R and β ∈ Γ, then rβ(xαa)

= (rβx)αa ∈ Rαa. Thus Rαa is a left ideal of R.

To show that aαR is a right ideal of R, let r ∈ R, x ∈ aαR and β ∈ Γ. Then x =
∑

aαri where the sum is finite and ri ∈ R
for all i. Then xβr = (

∑
aαri)βr =

∑
aα(riβr) ∈ aαR. Thus aαR is a right ideal of R.

(ii) Let A be a nonempty subset of R and B a right ideal of R. Then AΓB is a subsemigroup of R. Let r ∈ R, x ∈ AΓB
and β ∈ Γ. Then x =

∑
aiαibi where the sum is finite and ai ∈ A, bi ∈ B and αi ∈ Γ for all i. So xβr = (

∑
aiαibi)βr

=
∑

aiαi(biβr) ∈ AΓB. Thus AΓB is a right ideal of R.

(iii) Assume that A and B are left ideals of R with A ∩ B � ∅. Clearly, A ∩ B is a subsemigroup of R. Let r ∈ R, x ∈ A ∩ B
and α ∈ Γ. Then rαx ∈ A and rαx ∈ B since A and B are left ideals of R so that rαx ∈ A ∩ B. Hence A ∩ B is a left ideal

of R.

The proof for the case right ideal is obtained similarly.

Corollary 10. Let R be a Γ-seminearring and a ∈ R. Then aΓR, (aΓR)ΓR and (RΓa)ΓR are right ideals of R.

Proof. This follows directly from Theorem 9.

Let R be a Γ-seminearring and a ∈ R. Generally, RΓa need not be a left ideal of R. Nevertheless, if R satisfies the left

distributivity, then RΓa is, definitely, a left ideal of R.

However, we can weaken the condition that R satisfies the left distributivity and still obtain the same result.

Definition 11. Let R be a Γ-seminearring under the mapping from R × Γ × R into R, say f , and D be the set of all

distributive elements of R, i.e., D = {d ∈ R | dα(a + b) = dαa + dαb for all a, b ∈ R and α ∈ Γ}. Then R is called

distributively generated (d.g. for short) if the set D is a nonempty subset of R which f|D×Γ×D : D × Γ × D → D and(〈D〉,+) = (R,+) where 〈D〉 = {∑m
i=1 αidi | m, αi ∈ N and di ∈ D for all i

}
.

In fact, 〈D〉 = {∑n
i=1 di | n ∈ N and di ∈ D

}
where all di’s in

∑
di may not be distinct. In addition,

(〈D〉,+) = (R,+) means

that every element in R can be written as a finite sum of distributive elements.

Theorem 12. Let R be a distibutively generated Γ-seminearring.

(i) If A is a left ideal of R and B is a nonempty subset of R, then AΓB is a left ideal of R.

(ii) If A is a left ideal and B is a right ideal of R, then AΓB is an ideal of R.

Proof. (i) Let A be a left ideal of R and B be a nonempty subset of R. Then AΓB is a subsemigroup of R. Let r ∈ R,

x ∈ AΓB and β ∈ Γ. Then x =
∑

i aiαibi where the sum is finite and ai ∈ A, bi ∈ B and αi ∈ Γ for all i. Since R
is d.g., we have r =

∑
k dk where the sum is finite and dk is a distributive element for all k. So rβx = rβ(

∑
i aiαibi)

= (
∑

k dk)β(
∑

i aiαibi) =
∑

k
(
dkβ(

∑
i aiαibi)

)
=
∑

k
∑

i
(
dkβ(aiαibi)

)
because each dk is a distributive element of R. Then

rβx =
∑

k
∑

i
(
dkβ(aiαibi)

)
=
∑

k
∑

i
(
(dkβai)αibi

) ∈ AΓB since A is a left ideal of R. Thus AΓB is a right ideal of R.

(ii) This is a consequence of (i) and Theorem 9.

Corollary 13. Let R be a distibutively generated Γ-seminearring and a ∈ R. Then RΓa and RΓ(RΓa) are left ideals of R.

Furthermore, RΓR, (RΓa)ΓR and RΓ(aΓR) are ideals of R.

Proof. This follows directly from Theorem 12 and Corollary 10.

The following theorem shows another importance of the distributively generated property on the associative property of a

Γ-seminearring.

Theorem 14. Let R be a distributively generated Γ-seminearring, and B,C be nonempty subsets of R. Then RΓ (BΓC) =

(RΓB)ΓC.

Proof. It suffices to show only that RΓ (BΓC) ⊆ (RΓB)ΓC as a result of Theorem 6. Let x ∈ RΓ (BΓC). Then x =∑n
i=1 riαi

(∑m
j=1 b jβ jc j

)
for some m, n ∈ N, ri ∈ R, b j ∈ B, c j ∈ C and αi, β j ∈ Γ for all i, j. Since R is d.g., each ri can be

written as
∑li

k=1
dik where all dik’s are distributive elements of R. Then
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x =
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝ li∑
k=1

dik

⎞⎟⎟⎟⎟⎟⎟⎠αi

⎛⎜⎜⎜⎜⎜⎜⎝ m∑
j=1

b jβ jc j

⎞⎟⎟⎟⎟⎟⎟⎠
=

n∑
i=1

li∑
k=1

(
dikαi(

m∑
j=1

b jβ jc j)
)

=

n∑
i=1

li∑
k=1

m∑
j=1

(
dikαi

(
b jβ jc j

) )
since each dik is a distributive element

=

n∑
i=1

li∑
k=1

m∑
j=1

( (
dikαib j

)
β jc j

)
∈ (RΓB)ΓC since

(
dikαib j

)
β jc j ∈ (RΓB)ΓC for all i, j, k.

Definition 15. Let R be a Γ-seminearring. An element x ∈ R is called a left (right) zero if xαy = x (yαx = x) for all y ∈ R
and α ∈ Γ. Furthermore, if x is both a left and a right zero of R, then x is called a zero of R.

Moreover, if all elements of R are left (right) zeros, then R is called a left (right) zero Γ-seminearring.

Theorem 16. Let R be a Γ-seminearring.

(i) If R has a left zero and a right zero, then R has a zero.

(ii) If R has a zero, then that zero is unique.

Proof. (i) Let e and f be a left zero and a right zero of R, respectively. Fix an element α ∈ Γ. Then e = eα f = f implies

that R has a zero.

(ii) This is obvious from the proof of (i) that the zero is unique.

If R is a Γ-seminearring with additive identity 0, then, in general, 0 is not necessary a left zero and a right zero of R.

However, if the semigroup R also satisfies either the left cancellation or the right cancellation, then 0 is a left zero of R but

need not be a right zero of R.

Definition 17. A Γ-seminearring R with additive identity 0 is called zero-symmetric if 0αx = 0 = xα0 for all x ∈ R and

α ∈ Γ.
If R is a zero-symmetric Γ-seminearring, then it follows directly from the definition that 0 is the zero of R.

Proposition 18. Let R be a Γ-seminearring. Then Ris zero-symmetric if and only if {0} is an ideal of R.

Proof. It is clear that {0} is a subsemigroup of R. Moreover, {0} is an ideal of R because 0 is the zero of R. On the other

hand, it is obvious that if {0} is an ideal of R, then R is zero-symmetric.

3. Main Results

Definition 19. A Γ-seminearring R is called left (right) simple if the only left (right) ideal of R is itself. Furthermore,

R is called simple if the only ideal of R is itself.

It is clear that if a nonzero Γ-seminearring R is zero-symmetric, then R is neither left simple nor right simple.

Definition 20. A zero-symmetric Γ-seminearring R with more that one element is called left (right) 0-simple if RΓR � {0}
and R has no left (right) ideals other than {0} and itself. Furthermore, R is called 0-simple if RΓR � {0} and R has no

ideals other than {0} and itself.

Note that, in the above definition, the zero-symmetric property is compulsory otherwise {0} may not be an ideal of R
according to Proposition 18.

Theorem 21. Let R be a Γ-seminearring. If R is left (right) zero, then R is left (right) simple.

Proof. Let R be left zero, A a left ideal of R and x ∈ R. Fix a ∈ A and α ∈ Γ. Then x = xαa ∈ A since A is a left ideal of R.

Thus R = A. As a result, R is left simple.

Theorem 22. Let R be a Γ-seminearring.

(i) If RΓx = R for all x ∈ R, then R is left simple.

(ii) xΓR = R for all x ∈ R if and only if R is right simple.

(iii) If (RΓx)ΓR = R for all x ∈ R, then R is simple.

Proof. (i) Assume that RΓx = R for all x ∈ R. Let L be a left ideal of R and a ∈ L. Then R = RΓa ⊆ RΓL ⊆ L so that
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R = L.

(ii) First, assume that xΓR = R for all x ∈ R. Let A be a right ideal of R and a ∈ A. Then R = aΓR ⊆ AΓR ⊆ A so that

R = A.

Conversely, assume that R is right simple. For each x ∈ R, we know from Corollary 10 that xΓR is a right ideal of R so

that xΓR = R.

(iii) Assume that (RΓx)ΓR = R for all x ∈ R. Let I be an ideal of R and a ∈ I Then R = (RΓa)ΓR ⊆ IΓR ⊆ I so that R = I.

If a Γ-seminearring R is distributively generated, then the converse of (i) and (iii) in Theorem 22 hold.

Theorem 23. Let R be a distributively generated Γ-seminearring.

(i) RΓx = R for all x ∈ R if and only if R is left simple.

(ii) (RΓx)ΓR = R for all x ∈ R if and only if R is simple.

Proof. (i) It suffices to show the converse direction only. Assume that R is left simple. Since R is d.g., RΓx is a left ideal

of R for all x ∈ R by Corrollary 13. Thus RΓx = R for all x ∈ R.

The proof of (ii) is obtained similarly to that of (i).

Theorem 24. Let R be a zero-symmetric Γ-seminearring such that |R| > 1.

(i) If RΓx = R for all x ∈ R\{0}, then R is left 0-simple.

(ii) xΓR = R for all x ∈ R\{0} if and only if R is right 0-simple.

(iii) If (RΓx)ΓR = R for all x ∈ R\{0}, then R is 0-simple.

Proof. (i) Assume that RΓx = R for all x ∈ R\{0}. Let x ∈ R\{0}. Then {0} � R = RΓx ⊆ RΓR, i.e., RΓR � {0}. Let L be a

nonzero left ideal of R and a ∈ L\{0}. Then R = RΓa ⊆ RΓL ⊆ L so that R = L.

(ii) Note that R is right 0-simple provided that xΓR = R for all x ∈ R\{0} can be proved in the same way as the proof of (i).

Conversely, assume that R is right 0-simple. Let L = {x ∈ R | xαr = 0 for all r ∈ R and α ∈ Γ}. Since R is zero-symmetric,

0 ∈ L so that L � ∅. We show that L is a right ideal of R. Let x, y ∈ L. Then, for each r ∈ R and α ∈ Γ, we see that

xαr = 0 = yαr so that (x + y)αr = xαr + yαr = 0 + 0 = 0 since 0 is the additive identity of R. Thus x + y ∈ L. Next,

(xβs)αr = 0αr = 0 for all r, s ∈ R and α, β ∈ Γ and then xβs ∈ L. This implies that L is a right ideal of R. If L = R, then

RΓR = LΓR = {0} which is a contradiction because R is right 0-simple. Thus L = {0}. Finally, let x ∈ R\{0}. Then x � L.

So xαr � 0 for some r ∈ R and α ∈ Γ. This implies that xΓR � {0}. Recall that xΓR is a right ideal of R. Hence xΓR = R
because R is right 0-simple.

(iii) The proof is similar to the proof of (i).

The following Theorem shows that the converse of (i) and (iii) in Theorem 24 hold if the distributively generated property

is given.

Theorem 25. Let a Γ-seminearring R be zero-symmetric and distributively generated with |R| > 1.

(i) RΓx = R for all x ∈ R\{0} if and only if R is left 0-simple.

(ii) (RΓx)ΓR = R for all x ∈ R\{0} if and only if R is 0-simple.

Proof. (ii) Assume that R is 0-simple. Frist, we show that (RΓR)ΓR = R. Since RΓR is an ideal of R, this implies

that RΓR � {0} and then RΓR = R. Thus (RΓR)ΓR = RΓR = R. Next, let I = {x ∈ R | (rαx)βs = 0 for all r, s ∈ R and

α, β ∈ Γ}. Since R is zero-symmetric, 0 ∈ I. We claim that I is an ideal of R. Let r, s, t ∈ R, x, y ∈ I and α, β, γ ∈ Γ. Then

r =
∑m

i=1 di where all di’s are distributive elements of R. Then
(
rα(x+y)

)
βs =

((∑m
i=1 di

)
α(x+y)

)
βs =

(∑m
i=1(diαx+diαy)

)
βs

=
∑m

i=1

(
(diαx)βs + (diαy)βs

)
= 0. Thus x + y ∈ I. We then verify that xγt, tγx ∈ I. Since x, y ∈ I and 0 is the zero of R,

we obtain that (rα(xγt))βs = ((rαx)γt)βs = 0βs = 0 and (rα(tγx))βs = rα((tγx)βs) = rα0 = 0. Thus xγt, tγx ∈ I. Since

R is 0-simple, I = {0} or I = R. If I = R, then R = (RΓR)ΓR = {0} which is absurd. Thus I = {0}. Finally, let x ∈ R\{0}.
Then x � I. This implies that (rαx)βs � 0 for some r, s ∈ R, α, β ∈ Γ. Then (RΓx)ΓR � {0}. Hence (RΓx)ΓR = R since

(RΓx)ΓR is an ideal of R.

The proof of (i) is obtained similarly to that of (ii).
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