Vol. 1, No. 2 September 2009 # ω -Connectedness and Local ω -Connectedness on an $L\omega$ -Space Zhaoxia Huang School of Science, Jimei University Xiamen, Fujian 361021, China E-mail: zxhuang@jmu.edu.cn The project is supported by the Foundation for Talented Youth with Innovation in Science and Technology of Fujian Province, China under grant 2009J05009. #### **Abstract** In this paper, the concepts of the ω -coincidence neighborhood, local ω -connected set and local ω -connected space on an $L\omega$ -space are introduced. The characterizations of the concepts are given, such as topological invariant property and good extension. **Keywords:** $L\omega$ -space, ω -remote neighborhood, ω -connectedness, Local ω -connectedness #### 1. Introduction The connectedness is one of the most important notions in topology. In 1988, Wang introduced the concept of the remote-neighborhood and studied the connectedness on an LF topology space (Wang, 1988). In 2002, Chen and Dong further generalized the above notions on an LF order-preserving operator space (or on an $L\omega$ -space) (Chen and Dong, 2002, pp.36-41), then the author discussed the ω -connectedness (Huang, 2003, pp.165-168), the quasi ω -Lindelöf property (Huang, 2004, pp.34-38) and the ω -separation (Huang, 2005, pp.383-388) on an $L\omega$ -space respectively. In this paper, some characterizations with respect to the local ω -connectedness on an $L\omega$ -space are given. ## 2. Preliminary definitions Throughout this paper, L denotes the fuzzy lattice, M denotes the set consisting of all nonzero irreducible element(i.e. so-called molecule) in L. X denotes nonempty crisp set, L^X denotes the set of all L-fuzzy sets on X. A' denotes the pseudocomplement of A. A_X and A_X denote the greatest and the least elements in A_X , respectively. A_X (A_X) = A_X (A_X) Other notions and symbols can be obtained from references. **Definition 2.1** Let X be a nonempty set, $\omega: L^X \to L^X$ is called an LF order-preserving operator if (1) $\omega(1_X) = 1_X$; (2) For each $A, B \in L^X$, if $A \leq B$, then $\omega(A) \leq \omega(B)$; (3) For each $A \in L^X$, then $A \leq \omega(A)$. Meanwhile, A is called an ω -set in L^X if $A = \omega(A)$. Let $\Omega = \{A \in L^X | A = \omega(A)\}$, then (L^X, Ω) is called an LF order-preserving operator space, or an $L\omega$ -space. **Definition 2.2** Let (L^X, Ω) be an $L\omega$ -space, $x_\alpha \in M^*(L^X)$, $P, A \in L^X$. - (1) P is called an ω -remote neighborhood of x_{α} if there exists a $Q \in \Omega$, such that $x_{\alpha} \nleq Q$ and $P \leq Q$. Let $\omega \eta(x_{\alpha})$ be the set of all ω -remote neighborhood of x_{α} . - (2) x_{α} is called an ω -adherence point of A if for each $P \in \omega \eta(x_{\alpha})$, we have $A \nleq P$. Let A_{ω}^- be the set of all ω -adherence point of A. A is called an ω -closed set of (L^X, Ω) if $A = A_{\omega}^-$. A is called an ω -open set of (L^X, Ω) if A' is an ω -closed set. **Definition 2.3** Let (L^X, Ω) be an $L\omega$ -space, $A, B \in L^X$. If $A_{\omega}^- \wedge B = A \wedge B_{\omega}^- = 0_X$, then A and B are called the ω -separated sets. **Definition 2.4** Let (L^X, Ω) be an $L\omega$ -space, $A \in L^X$. If there do not exist two nonzero ω -separated sets B and C, such that $A = B \vee C$, then A is called an ω -connected set. Particularly, (L^X, Ω) is called an ω -connected space if 1_X is an ω -connected set. **Definition 2.5** Let (L^X, Ω) be an $L\omega$ -space, A is called the maximal ω -connected set if B is an ω -connected set and B = A with $A \le B$. A is also called an ω -connected component of (L^X, Ω) . **Lemma 2.1** Let $A, B \in L^X$, if $A \nleq B$, then $A' \lor B \neq 1_X$. **Proof** There exists $x \le A$, $x \not\le B$, then we have $x \not\le A'$ and $x \not\le B$, this means $x \not\le A' \lor B$, hence $A' \lor B \ne 1_X$. **Lemma 2.2** (Huang, 2003, pp.165-168) If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then A is an ω -connected set if and only if for >> www.ccsenet.org/jmr 87 Vol. 1, No. 2 any two molecules a, b of A and for the ω -remote neighborhood P(x) of x in A, there exist finite molecules x_0 , x_1 , \cdots , x_n in A, such that $x_0 = a, x_n = b \text{ and } A \nleq P(x_i) \lor P(x_{i+1}), (i = 0, 1, \dots, n)$ or $P(x_i) \vee P(x_{i+1}) \vee A' \neq 1_X \ (i = 0, 1, \dots, n).$ ## 3. ω -connectedness on an $L\omega$ -space **Theorem 3.1** If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then the followings are equivalent: - (1) A is an ω -connected set. - (2) There do not exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$. - (3) There do not exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \wedge Q_1 \neq 0_X$, $A \wedge Q_2 \neq 0_X$, $A \wedge Q_1 \wedge Q_2 = 0_X$, $A' \vee Q_1 \vee Q_2 = 1_X$. - **Proof** (1) \Rightarrow (2): Suppose that there exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$, then for any molecule x of A, only one of $x \nleq F_1$, $x \nleq F_2$ holds, otherwise we get $A \nleq F_1 \lor F_2$, and this contradicts $A' \lor F_1 \lor F_2 = 1_X$. For any molecule x of A, let $P(x) = F_1$ if $x \nleq F_1$ and $P(x) = F_2$ if $x \nleq F_2$. Since $A \nleq F_1$, $A \nleq F_2$, there exist two molecules a, b of A, such that $a \nleq F_1$, $b \nleq F_2$, hence for arbitrary finite molecules x_0, x_1, \dots, x_n with $x_0 = a, x_n = b$, there exists $i(0 \le i \le n)$, such that $P(x_i) = F_1$, $P(x_{i+1}) = F_2$. This means that $A' \lor P(x_i) \lor P(x_{i+1}) = 1_X$, or A is not an ω -connected set. - (2) \Rightarrow (3): Let F_1 , F_2 be two nonzero ω -closed sets, such that $A \nleq F_1$, $A \nleq F_2$, $A \wedge F_1 \wedge F_2 = 0_X$, $A' \vee F_1 \vee F_2 = 1_X$, then F'_1 and F'_2 are two nonzero ω -open sets, and for lemma 2.1, we have $A \wedge F'_1 \neq 0_X$, $A \wedge F'_2 \neq 0_X$, $A \wedge F'_1 \wedge F'_2 = 0_X$, $A' \vee F'_1 \vee F'_2 = 1_X$. Let $Q_1 = F'_1$, $Q_2 = F'_2$, then we have (3). - (3) \Rightarrow (2): Suppose that there exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$, let $Q_1 = F'_1$, $Q_2 = F'_2$, then we get $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$. At the same time, by lemma 2.1, we have $A \land Q_1 \neq 0_X$, $A \land Q_2 \neq 0_X$. This means that there exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \land Q_1 \neq 0_X$, $A \land Q_2 \neq 0_X$, $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$, this contradicts (3). - (2) \Rightarrow (1): Suppose that A is not an ω -connected set, then there exist two molecules a, b of A and for the ω -remote neighborhood P(x) of x in A, for arbitrary finite molecules x_0, x_1, \dots, x_n with $x_0 = a, x_n = b$, there exists i (0 $\leq i \leq n$), such that $$P(x_i) \vee P(x_{i+1}) \vee A' = 1_X.$$ We call that a and b cannot connect finitely, let $W_a = \{x | x \text{ is a molecule which can connect with } a \text{ in } A \text{ finitely}\},$ $W_b = \{x | x \text{ is a molecule of } A \text{ which does not belong to } W_a\}.$ Then for any $c \in W_a$, $d \in W_b$, we have $$P(c) \vee P(d) \vee A' = 1_X$$. Let $F_1 = \land \{P(c) | C \in W_a\}$, $F_2 = \land \{P(d) | d \in W_b\}$, then one can get $A' \lor F_1 \lor F_2 = \bigwedge_{\substack{c \in W_a \\ d \in W_c}} \{P(c) \lor P(d) \lor A'\} = 1_X$, Obviously, we have $A \wedge F_1 \wedge F_2 = 0_X$. Because of $a \in W_a$, $b \in W_b$, hence $A \nleq F_1$, $A \nleq F_2$, this contradicts (2). Similarly, we have **Theorem 3.2** If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then the followings are equivalent: - (1) A is an ω -connected set. - (2) There do not exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \not\leq Q_1$, $A \not\leq Q_2$, $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$. - (3) There do not exist two nonzero ω -closed sets F_1 , F_2 , such that $A \wedge F_1 \neq 0_X$, $A \wedge F_2 \neq 0_X$, $A \wedge F_1 \wedge F_2 = 0_X$, $A' \vee F_1 \vee F_2 = 1_X$. **Theorem 3.3** If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then A is an ω -connected set if and only if $A_0 = \{x \in X | A(x) > 0\}$ is an ω -connected set. **Proof** It is obvious that for any $A, B \in L^X$, $A \wedge B = \phi$ is equivalent to $A_0 \wedge B = \phi$, by theorem 3.1 or theorem 3.2, we have the conclusion. ### 4. Local ω -connectedness on an $L\omega$ -space **Definition 4.1** Let (L^X, Ω) be an $L\omega$ -space, $x_\alpha \in M^*(L^X)$, $Q \in \Omega$. (1) Q is called the ω -open coincidence neighborhood of x_{α} , if Q' is the ω -closed remote neighborhood of x_{α} . 88 ➤ www.ccsenet.org (2) $P \in L^X$ is called the ω -coincidence neighborhood of x_α , if P' is the ω -remote neighborhood of x_α . **Definition 4.2** (L^X, Ω) is called a local ω -connected space, if for any $x_\alpha \in M^*(L^X)$ and for any ω -coincidence neighborhood Q of x_α , Q includes an ω -connected coincidence neighborhood P of x_α . It is obvious that (L^X, Ω) is a local ω -connected space if and only if for any $x_\alpha \in M^*(L^X)$, the ω -coincidence neighborhood base (Chen, 2004, pp.11-16) of x_α is composed of all of the ω -connected coincidence neighborhood of x_α . **Theorem 4.1** If (L^X, Ω) is an $L\omega$ -space, then the followings are equivalent: - (1) (L^X, Ω) is a local ω -connected space; - (2) If B is an open ω -connected component, then B is an ω -open set; - (3) (L^X, Ω) includes an ω -base which elements are ω -connected. **Proof** (1) \Rightarrow (2): Let $A \in \Omega$ and B is an ω -connected component of A. Now we will prove that B' is an ω -closed set, therefore B is an ω -open set. Let $x_{\alpha} \in M^*(L^X)$ and $x_{\alpha} \nleq B'$, then $x_{\alpha} \nleq A'$, by definition 4.1, A is an ω -coincidence neighborhood of x_{α} . And for (1), A includes an ω -connected coincidence neighborhood P of x_{α} . We notice that $x_{\alpha} \nleq (B \wedge P)'$, that is to say $B \wedge P \neq \phi$. Since B is an ω -connected component of A, $B \wedge P \leq B$, hence $P \leq B$, $B' \leq P'$, so we have $x_{\alpha} \nleq (B')_{\omega}^{-}$, this is $B' = (B')_{\omega}^{-}$, or B is an ω -open set. (2) \Rightarrow (3): Let $A \in \Omega$, then A is the union of all ω - connected components of A, by (2) all of the ω - connected components are ω -open sets, therefore the ω -base of (L^X, Ω) is composed of all of the open ω -connected components. (3) \Rightarrow (1): Let μ is the ω -base of (L^X, Ω) which elements are ω -connected. It obvious that for any $x_\alpha \in M^*(L^X)$, $\mu(x_\alpha) = \{B \in \mu | x_\alpha \nleq B'\}$ is the ω -coincidence neighborhood of x_α , hence (L^X, Ω) is an local ω -connected space. Using theorem 3.4 on (Huang, 2003, pp.165-168), we have **Corollary 4.1** Each ω - connected component of local ω -connected space (L^X, Ω) is not only an ω -open set but also an ω -closed set. **Theorem 4.2** Let $(L_i^{X_i}, \Omega_i)(i=1, 2)$ be two $L\omega$ -spaces, $f: L_1^{X_1} \to L_2^{X_2}$ is an (ω_1, ω_2) -continuous, open, full order homomorphism (Chen and Dong, 2002, pp.36-41). If $(L_1^{X_1}, \Omega_1)$ is a local ω_1 -connected space, then $(L_2^{X_2}, \Omega_2)$ is a local ω_2 -connected space. **Proof** We can suppose that β is an ω_1 -base of $(L_1^{X_1}, \Omega_1)$ by theorem 4.1, which elements are ω_1 -connected. For each $B \in \beta$, f(B) is ω_2 -connected (Huang, 2003, pp.165-168). At the same time, since f is an open, full order homomorphism, $f(L_1^{X_1}) = L_2^{X_2}$ is an ω_2 -open set, this means that the family $\tilde{\beta} = \{f(B)|B \in \beta\}$ is composed of the ω_2 -connected open sets of $(L_2^{X_2}, \Omega_2)$. Now we will prove that $\tilde{\beta}$ is an ω_2 -base of $(L_2^{X_2}, \Omega_2)$. If U is an ω_2 -open set of $(L_2^{X_1}, \Omega_1)$, so there exists $\beta_1 \subset \beta$, such that $f^{-1}(U) = \vee_{B \in \beta_1} B$, hence we have $$U = f(f^{-1}(U)) = \vee_{B \in \beta_1} f(B),$$ This means that $(L_2^{X_2}, \Omega_2)$ is a local ω_2 - connected space. Corollary 4.2 Local ω - connectedness on an $L\omega$ -space has the invariant property of homoeomorphism. **Definition 4.3** Let X be an non-empty set, P(X) is the power set of X. If the operator $\omega: P(X) \to P(X)$ which satisfies the followings: (1) $\omega(X) = X$; (2) For any $A, B \in P(X)$, if $A \subset B$, then $\omega(A) \subset \omega(B)$; (3) For any $A \subset X$, $A \subset \omega(A)$, then ω is called the order-preserving operator of X. Meanwhile, A is called an ω -set of X if $A = \omega(A)$. Let $\Delta = \{A \in P(X) | A = \omega(A)\}$, then (X, Δ) is called an ω -order-preserving operator space, or an ω -space. **Theorem 4.3** Let (X, \triangle) be an ω -space, $(L^X, \omega_L(\triangle))$ is an $L\omega$ -space generated topologically by (X, \triangle) (Huang, 2005, pp.383-388), then $(L^X, \omega_L(\triangle))$ is local ω -connected if and only if (X, \triangle) is local ω -connected. **Proof** Let $(L^X, \omega_I(\Delta))$ be local ω -connected, then there exists an ω -base μ which elements are ω -connected, let $$S = \{A_0 | A \in \mu\}$$. It is obvious that *S* is an ω -base of \triangle . By theorem 3.3, the elements in *S* are ω -connected in $(L^X, \omega_L(\triangle))$, therefore they are ω -connected in (X, \triangle) (Huang, 2005, pp.383-388), this means that (X, \triangle) is local ω -connected. Conversely, if (X, Δ) is local ω -connected, then there exists an ω -base S in Δ which elements are ω -connected, so the elements of S are ω -connected in $(L^X, \omega_L(\Delta))$ (Huang, 2005, pp.383-388). It is obvious that $\mu = \{\lambda \wedge A | \lambda \in L, A \in S\}$ is an ω -base of $\omega_L(\Delta)$, when $\lambda \neq 0$, we notice $(\lambda \wedge A)_0 = A_0$, so all the elements of μ are ω -connected by theorem 3.3, hence $(L^X, \omega_L(\Delta))$ is local ω -connected by theorem 4.1. >> www.ccsenet.org/jmr Vol. 1, No. 2 ISSN: 1916-9795 Corollary 4.3 Local ω -connectedness on an $L\omega$ -space has good extension. #### 5. Conclusions In this paper, starting with the unified operator which is called an $L\omega$ -space containing various closure operators such as θ -closure operator (Chen, 1992), δ -closure operator (Cheng, 1997, pp.38-41), we introduce the concept of the ω -operator, ω -remote neighborhood, ω -coincidence neighborhood and local ω -connected space, discuss the basic properties of the $L\omega$ -space, such as the ω -connectedness, the local ω -connectedness and the invariant property of homeomorphism. All the discussions will offer a theoretical foundation in fuzzy operator. #### References Chen, Shuili and Dong, Changqing. (2002). L-fuzzy Order-preserving Operator Spaces. *Fuzzy System and Mathematics*, 16(special issue), 36-41. Chen, Shuili. (2004). ω -countability on L-order-preserving Operator Spaces. Fuzzy System and Mathematics, 18(3), 11-16. Chen, Shuili. (1992). Moore-Smith θ -convergence Theory on Topological Molecular Lattices. Proc. Fuzzy Mathematics and Systems, Hunan Science and Technology Press, Changsha. Cheng, Jishu. (1997). Some properties of δ -continuous Order-homomorphism. Fuzzy System and Mathematics, 11(4), 38-41. Huang, Zhaoxia. (2003). The Connectedness on L-fuzzy Order-preserving Operator Spaces. *Proceeding of International Conference on Fuzzy Information Processing Theories and Applications*. Tsinghua University Press & Springer, Beijing, Vol., 165-168. Huang, Zhaoxia. (2004). The Quasi ω -Lindelöf Properties on L-fuzzy Order-preserving Operator Spaces. Fuzzy System and Mathematics, 18(3), 34-38. Huang, Zhaoxia and Chen, Shuili. (2005). The ω -separations on L-fuzzy Order-preserving Operator Spaces. *Mathematics Magazine*, 25(4), 383-388. Wang, Guojun. (1988). L-fuzzy Topology Space Theory. Xi'an: Shanxi Normal University Press.