

Vol. 1, No. 2 September 2009

ω -Connectedness and Local ω -Connectedness on an $L\omega$ -Space

Zhaoxia Huang School of Science, Jimei University Xiamen, Fujian 361021, China E-mail: zxhuang@jmu.edu.cn

The project is supported by the Foundation for Talented Youth with Innovation in Science and Technology of Fujian Province, China under grant 2009J05009.

Abstract

In this paper, the concepts of the ω -coincidence neighborhood, local ω -connected set and local ω -connected space on an $L\omega$ -space are introduced. The characterizations of the concepts are given, such as topological invariant property and good extension.

Keywords: $L\omega$ -space, ω -remote neighborhood, ω -connectedness, Local ω -connectedness

1. Introduction

The connectedness is one of the most important notions in topology. In 1988, Wang introduced the concept of the remote-neighborhood and studied the connectedness on an LF topology space (Wang, 1988). In 2002, Chen and Dong further generalized the above notions on an LF order-preserving operator space (or on an $L\omega$ -space) (Chen and Dong, 2002, pp.36-41), then the author discussed the ω -connectedness (Huang, 2003, pp.165-168), the quasi ω -Lindelöf property (Huang, 2004, pp.34-38) and the ω -separation (Huang, 2005, pp.383-388) on an $L\omega$ -space respectively. In this paper, some characterizations with respect to the local ω -connectedness on an $L\omega$ -space are given.

2. Preliminary definitions

Throughout this paper, L denotes the fuzzy lattice, M denotes the set consisting of all nonzero irreducible element(i.e. so-called molecule) in L. X denotes nonempty crisp set, L^X denotes the set of all L-fuzzy sets on X. A' denotes the pseudocomplement of A. A_X and A_X denote the greatest and the least elements in A_X , respectively. A_X (A_X) = A_X (A_X) Other notions and symbols can be obtained from references.

Definition 2.1 Let X be a nonempty set, $\omega: L^X \to L^X$ is called an LF order-preserving operator if (1) $\omega(1_X) = 1_X$; (2) For each $A, B \in L^X$, if $A \leq B$, then $\omega(A) \leq \omega(B)$; (3) For each $A \in L^X$, then $A \leq \omega(A)$. Meanwhile, A is called an ω -set in L^X if $A = \omega(A)$. Let $\Omega = \{A \in L^X | A = \omega(A)\}$, then (L^X, Ω) is called an LF order-preserving operator space, or an $L\omega$ -space.

Definition 2.2 Let (L^X, Ω) be an $L\omega$ -space, $x_\alpha \in M^*(L^X)$, $P, A \in L^X$.

- (1) P is called an ω -remote neighborhood of x_{α} if there exists a $Q \in \Omega$, such that $x_{\alpha} \nleq Q$ and $P \leq Q$. Let $\omega \eta(x_{\alpha})$ be the set of all ω -remote neighborhood of x_{α} .
- (2) x_{α} is called an ω -adherence point of A if for each $P \in \omega \eta(x_{\alpha})$, we have $A \nleq P$. Let A_{ω}^- be the set of all ω -adherence point of A. A is called an ω -closed set of (L^X, Ω) if $A = A_{\omega}^-$. A is called an ω -open set of (L^X, Ω) if A' is an ω -closed set.

Definition 2.3 Let (L^X, Ω) be an $L\omega$ -space, $A, B \in L^X$. If $A_{\omega}^- \wedge B = A \wedge B_{\omega}^- = 0_X$, then A and B are called the ω -separated sets.

Definition 2.4 Let (L^X, Ω) be an $L\omega$ -space, $A \in L^X$. If there do not exist two nonzero ω -separated sets B and C, such that $A = B \vee C$, then A is called an ω -connected set. Particularly, (L^X, Ω) is called an ω -connected space if 1_X is an ω -connected set.

Definition 2.5 Let (L^X, Ω) be an $L\omega$ -space, A is called the maximal ω -connected set if B is an ω -connected set and B = A with $A \le B$. A is also called an ω -connected component of (L^X, Ω) .

Lemma 2.1 Let $A, B \in L^X$, if $A \nleq B$, then $A' \lor B \neq 1_X$.

Proof There exists $x \le A$, $x \not\le B$, then we have $x \not\le A'$ and $x \not\le B$, this means $x \not\le A' \lor B$, hence $A' \lor B \ne 1_X$.

Lemma 2.2 (Huang, 2003, pp.165-168) If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then A is an ω -connected set if and only if for

>> www.ccsenet.org/jmr 87

Vol. 1, No. 2

any two molecules a, b of A and for the ω -remote neighborhood P(x) of x in A, there exist finite molecules x_0 , x_1 , \cdots , x_n in A, such that

 $x_0 = a, x_n = b \text{ and } A \nleq P(x_i) \lor P(x_{i+1}), (i = 0, 1, \dots, n)$ or

 $P(x_i) \vee P(x_{i+1}) \vee A' \neq 1_X \ (i = 0, 1, \dots, n).$

3. ω -connectedness on an $L\omega$ -space

Theorem 3.1 If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then the followings are equivalent:

- (1) A is an ω -connected set.
- (2) There do not exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$.
- (3) There do not exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \wedge Q_1 \neq 0_X$, $A \wedge Q_2 \neq 0_X$, $A \wedge Q_1 \wedge Q_2 = 0_X$, $A' \vee Q_1 \vee Q_2 = 1_X$.
- **Proof** (1) \Rightarrow (2): Suppose that there exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$, then for any molecule x of A, only one of $x \nleq F_1$, $x \nleq F_2$ holds, otherwise we get $A \nleq F_1 \lor F_2$, and this contradicts $A' \lor F_1 \lor F_2 = 1_X$. For any molecule x of A, let $P(x) = F_1$ if $x \nleq F_1$ and $P(x) = F_2$ if $x \nleq F_2$. Since $A \nleq F_1$, $A \nleq F_2$, there exist two molecules a, b of A, such that $a \nleq F_1$, $b \nleq F_2$, hence for arbitrary finite molecules x_0, x_1, \dots, x_n with $x_0 = a, x_n = b$, there exists $i(0 \le i \le n)$, such that $P(x_i) = F_1$, $P(x_{i+1}) = F_2$. This means that $A' \lor P(x_i) \lor P(x_{i+1}) = 1_X$, or A is not an ω -connected set.
- (2) \Rightarrow (3): Let F_1 , F_2 be two nonzero ω -closed sets, such that $A \nleq F_1$, $A \nleq F_2$, $A \wedge F_1 \wedge F_2 = 0_X$, $A' \vee F_1 \vee F_2 = 1_X$, then F'_1 and F'_2 are two nonzero ω -open sets, and for lemma 2.1, we have $A \wedge F'_1 \neq 0_X$, $A \wedge F'_2 \neq 0_X$, $A \wedge F'_1 \wedge F'_2 = 0_X$, $A' \vee F'_1 \vee F'_2 = 1_X$. Let $Q_1 = F'_1$, $Q_2 = F'_2$, then we have (3).
- (3) \Rightarrow (2): Suppose that there exist two nonzero ω -closed sets F_1 , F_2 , such that $A \nleq F_1$, $A \nleq F_2$, $A \land F_1 \land F_2 = 0_X$, $A' \lor F_1 \lor F_2 = 1_X$, let $Q_1 = F'_1$, $Q_2 = F'_2$, then we get $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$. At the same time, by lemma 2.1, we have $A \land Q_1 \neq 0_X$, $A \land Q_2 \neq 0_X$. This means that there exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \land Q_1 \neq 0_X$, $A \land Q_2 \neq 0_X$, $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$, this contradicts (3).
- (2) \Rightarrow (1): Suppose that A is not an ω -connected set, then there exist two molecules a, b of A and for the ω -remote neighborhood P(x) of x in A, for arbitrary finite molecules x_0, x_1, \dots, x_n with $x_0 = a, x_n = b$, there exists i (0 $\leq i \leq n$), such that

$$P(x_i) \vee P(x_{i+1}) \vee A' = 1_X.$$

We call that a and b cannot connect finitely, let

 $W_a = \{x | x \text{ is a molecule which can connect with } a \text{ in } A \text{ finitely}\},$

 $W_b = \{x | x \text{ is a molecule of } A \text{ which does not belong to } W_a\}.$

Then for any $c \in W_a$, $d \in W_b$, we have

$$P(c) \vee P(d) \vee A' = 1_X$$
.

Let $F_1 = \land \{P(c) | C \in W_a\}$, $F_2 = \land \{P(d) | d \in W_b\}$, then one can get $A' \lor F_1 \lor F_2 = \bigwedge_{\substack{c \in W_a \\ d \in W_c}} \{P(c) \lor P(d) \lor A'\} = 1_X$, Obviously,

we have $A \wedge F_1 \wedge F_2 = 0_X$. Because of $a \in W_a$, $b \in W_b$, hence $A \nleq F_1$, $A \nleq F_2$, this contradicts (2).

Similarly, we have

Theorem 3.2 If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then the followings are equivalent:

- (1) A is an ω -connected set.
- (2) There do not exist two nonzero ω -open sets Q_1 , Q_2 , such that $A \not\leq Q_1$, $A \not\leq Q_2$, $A \land Q_1 \land Q_2 = 0_X$, $A' \lor Q_1 \lor Q_2 = 1_X$.
- (3) There do not exist two nonzero ω -closed sets F_1 , F_2 , such that $A \wedge F_1 \neq 0_X$, $A \wedge F_2 \neq 0_X$, $A \wedge F_1 \wedge F_2 = 0_X$, $A' \vee F_1 \vee F_2 = 1_X$.

Theorem 3.3 If (L^X, Ω) is an $L\omega$ -space, $A \in L^X$, then A is an ω -connected set if and only if $A_0 = \{x \in X | A(x) > 0\}$ is an ω -connected set.

Proof It is obvious that for any $A, B \in L^X$, $A \wedge B = \phi$ is equivalent to $A_0 \wedge B = \phi$, by theorem 3.1 or theorem 3.2, we have the conclusion.

4. Local ω -connectedness on an $L\omega$ -space

Definition 4.1 Let (L^X, Ω) be an $L\omega$ -space, $x_\alpha \in M^*(L^X)$, $Q \in \Omega$.

(1) Q is called the ω -open coincidence neighborhood of x_{α} , if Q' is the ω -closed remote neighborhood of x_{α} .

88 ➤ www.ccsenet.org

(2) $P \in L^X$ is called the ω -coincidence neighborhood of x_α , if P' is the ω -remote neighborhood of x_α .

Definition 4.2 (L^X, Ω) is called a local ω -connected space, if for any $x_\alpha \in M^*(L^X)$ and for any ω -coincidence neighborhood Q of x_α , Q includes an ω -connected coincidence neighborhood P of x_α .

It is obvious that (L^X, Ω) is a local ω -connected space if and only if for any $x_\alpha \in M^*(L^X)$, the ω -coincidence neighborhood base (Chen, 2004, pp.11-16) of x_α is composed of all of the ω -connected coincidence neighborhood of x_α .

Theorem 4.1 If (L^X, Ω) is an $L\omega$ -space, then the followings are equivalent:

- (1) (L^X, Ω) is a local ω -connected space;
- (2) If B is an open ω -connected component, then B is an ω -open set;
- (3) (L^X, Ω) includes an ω -base which elements are ω -connected.

Proof (1) \Rightarrow (2): Let $A \in \Omega$ and B is an ω -connected component of A. Now we will prove that B' is an ω -closed set, therefore B is an ω -open set. Let $x_{\alpha} \in M^*(L^X)$ and $x_{\alpha} \nleq B'$, then $x_{\alpha} \nleq A'$, by definition 4.1, A is an ω -coincidence neighborhood of x_{α} . And for (1), A includes an ω -connected coincidence neighborhood P of x_{α} . We notice that $x_{\alpha} \nleq (B \wedge P)'$, that is to say $B \wedge P \neq \phi$. Since B is an ω -connected component of A, $B \wedge P \leq B$, hence $P \leq B$, $B' \leq P'$, so we have $x_{\alpha} \nleq (B')_{\omega}^{-}$, this is $B' = (B')_{\omega}^{-}$, or B is an ω -open set.

(2) \Rightarrow (3): Let $A \in \Omega$, then A is the union of all ω - connected components of A, by (2) all of the ω - connected components are ω -open sets, therefore the ω -base of (L^X, Ω) is composed of all of the open ω -connected components.

(3) \Rightarrow (1): Let μ is the ω -base of (L^X, Ω) which elements are ω -connected. It obvious that for any $x_\alpha \in M^*(L^X)$, $\mu(x_\alpha) = \{B \in \mu | x_\alpha \nleq B'\}$ is the ω -coincidence neighborhood of x_α , hence (L^X, Ω) is an local ω -connected space.

Using theorem 3.4 on (Huang, 2003, pp.165-168), we have

Corollary 4.1 Each ω - connected component of local ω -connected space (L^X, Ω) is not only an ω -open set but also an ω -closed set.

Theorem 4.2 Let $(L_i^{X_i}, \Omega_i)(i=1, 2)$ be two $L\omega$ -spaces, $f: L_1^{X_1} \to L_2^{X_2}$ is an (ω_1, ω_2) -continuous, open, full order homomorphism (Chen and Dong, 2002, pp.36-41). If $(L_1^{X_1}, \Omega_1)$ is a local ω_1 -connected space, then $(L_2^{X_2}, \Omega_2)$ is a local ω_2 -connected space.

Proof We can suppose that β is an ω_1 -base of $(L_1^{X_1}, \Omega_1)$ by theorem 4.1, which elements are ω_1 -connected. For each $B \in \beta$, f(B) is ω_2 -connected (Huang, 2003, pp.165-168). At the same time, since f is an open, full order homomorphism, $f(L_1^{X_1}) = L_2^{X_2}$ is an ω_2 -open set, this means that the family $\tilde{\beta} = \{f(B)|B \in \beta\}$ is composed of the ω_2 -connected open sets of $(L_2^{X_2}, \Omega_2)$. Now we will prove that $\tilde{\beta}$ is an ω_2 -base of $(L_2^{X_2}, \Omega_2)$. If U is an ω_2 -open set of $(L_2^{X_1}, \Omega_1)$, so there exists $\beta_1 \subset \beta$, such that $f^{-1}(U) = \vee_{B \in \beta_1} B$, hence we have

$$U = f(f^{-1}(U)) = \vee_{B \in \beta_1} f(B),$$

This means that $(L_2^{X_2}, \Omega_2)$ is a local ω_2 - connected space.

Corollary 4.2 Local ω - connectedness on an $L\omega$ -space has the invariant property of homoeomorphism.

Definition 4.3 Let X be an non-empty set, P(X) is the power set of X. If the operator $\omega: P(X) \to P(X)$ which satisfies the followings: (1) $\omega(X) = X$; (2) For any $A, B \in P(X)$, if $A \subset B$, then $\omega(A) \subset \omega(B)$; (3) For any $A \subset X$, $A \subset \omega(A)$, then ω is called the order-preserving operator of X. Meanwhile, A is called an ω -set of X if $A = \omega(A)$. Let $\Delta = \{A \in P(X) | A = \omega(A)\}$, then (X, Δ) is called an ω -order-preserving operator space, or an ω -space.

Theorem 4.3 Let (X, \triangle) be an ω -space, $(L^X, \omega_L(\triangle))$ is an $L\omega$ -space generated topologically by (X, \triangle) (Huang, 2005, pp.383-388), then $(L^X, \omega_L(\triangle))$ is local ω -connected if and only if (X, \triangle) is local ω -connected.

Proof Let $(L^X, \omega_I(\Delta))$ be local ω -connected, then there exists an ω -base μ which elements are ω -connected, let

$$S = \{A_0 | A \in \mu\}$$

.

It is obvious that *S* is an ω -base of \triangle . By theorem 3.3, the elements in *S* are ω -connected in $(L^X, \omega_L(\triangle))$, therefore they are ω -connected in (X, \triangle) (Huang, 2005, pp.383-388), this means that (X, \triangle) is local ω -connected.

Conversely, if (X, Δ) is local ω -connected, then there exists an ω -base S in Δ which elements are ω -connected, so the elements of S are ω -connected in $(L^X, \omega_L(\Delta))$ (Huang, 2005, pp.383-388). It is obvious that $\mu = \{\lambda \wedge A | \lambda \in L, A \in S\}$ is an ω -base of $\omega_L(\Delta)$, when $\lambda \neq 0$, we notice $(\lambda \wedge A)_0 = A_0$, so all the elements of μ are ω -connected by theorem 3.3, hence $(L^X, \omega_L(\Delta))$ is local ω -connected by theorem 4.1.

>> www.ccsenet.org/jmr

Vol. 1, No. 2 ISSN: 1916-9795

Corollary 4.3 Local ω -connectedness on an $L\omega$ -space has good extension.

5. Conclusions

In this paper, starting with the unified operator which is called an $L\omega$ -space containing various closure operators such as θ -closure operator (Chen, 1992), δ -closure operator (Cheng, 1997, pp.38-41), we introduce the concept of the ω -operator, ω -remote neighborhood, ω -coincidence neighborhood and local ω -connected space, discuss the basic properties of the $L\omega$ -space, such as the ω -connectedness, the local ω -connectedness and the invariant property of homeomorphism. All the discussions will offer a theoretical foundation in fuzzy operator.

References

Chen, Shuili and Dong, Changqing. (2002). L-fuzzy Order-preserving Operator Spaces. *Fuzzy System and Mathematics*, 16(special issue), 36-41.

Chen, Shuili. (2004). ω -countability on L-order-preserving Operator Spaces. Fuzzy System and Mathematics, 18(3), 11-16.

Chen, Shuili. (1992). Moore-Smith θ -convergence Theory on Topological Molecular Lattices. Proc. Fuzzy Mathematics and Systems, Hunan Science and Technology Press, Changsha.

Cheng, Jishu. (1997). Some properties of δ -continuous Order-homomorphism. Fuzzy System and Mathematics, 11(4), 38-41.

Huang, Zhaoxia. (2003). The Connectedness on L-fuzzy Order-preserving Operator Spaces. *Proceeding of International Conference on Fuzzy Information Processing Theories and Applications*. Tsinghua University Press & Springer, Beijing, Vol., 165-168.

Huang, Zhaoxia. (2004). The Quasi ω -Lindelöf Properties on L-fuzzy Order-preserving Operator Spaces. Fuzzy System and Mathematics, 18(3), 34-38.

Huang, Zhaoxia and Chen, Shuili. (2005). The ω -separations on L-fuzzy Order-preserving Operator Spaces. *Mathematics Magazine*, 25(4), 383-388.

Wang, Guojun. (1988). L-fuzzy Topology Space Theory. Xi'an: Shanxi Normal University Press.