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Abstract 

This paper describes how to control the inventory production system with Weibull distributed deterioration items. 

The model is solved by two methods and a comparison between them is conducted. In the first method the model 

is solved using the control theory approach. In the second method the model is discretized then the Dynamic 

Programming (DP) technique is applied. The advantage of second method is easier than the first method in 

computational and its accuracy can be improved by increasing the number of discretization intervals (sampling). 
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1 Introduction 

(Zaher 2013) Optimal Control theory becomes very useful tool to solve dynamic inventory and production 

problems .The production system consists of manufacturing plant and finished goods in warehouse to store those 

products which are fabricated but not at once sold. Excess Inventory on hand will be sold during high demand 

intervals. The advantage of having products in inventory are: First it will be available to meet demand, second by 

using warehouse to store excess production. The firm has to evaluate the high production cost s and find the 

quantity it should be produced in order to maintain the total cost at minimum. The main aim of the paper is to 

minimize the difference between actual production flow rate and required production flow rate. In this paper we 

compare between linear quadratic control (LQC) and dynamic programming(DP). Due to using discretization to 

convert continuous time system to discrete time system LQC is more exact than DP but more complex in 

computational than DP. (Emamverdi 2011) presented optimal control of production inventory system with 

deteriorating items in which the deteriorating rate follows the Weibull distribution. They adjust the optimal 

production rate to minimize total production and inventory costs. (El-Gharry 2009) presented the production 

inventory system consisting of two stores. The model represented as an optimal control problem with two state 

variables, the inventory levels in the first store and the same in the second store. The paper considered also the 

case of three control variables, the manufacturing, and remanufacturing and disposal rates. He used The 

Pontryagin's minimum principle to find the optimum control of the Holt, Modigiliani, Muth and Simon (HMMS) 

reverse logistics model of production inventory system with deteriorating items. (Varbie 2009) presented a model 

where the new policy iteration technique is used to solve online the continuous time LQR problem without using 

knowledge about the system detail dynamics. (Chaudhary 2011) considered market segmentation as a vital 

element of marketing in industrialized countries. They used market segmentation approach in single product 

inventory system with deteriorating items. Problems studied and solved using Pontryagin's maximun principle. 

(Adida, 2007) Investigated a continuous time optimal control model for a dynamic pricing and inventory system 

problem with no backorders. They presented a continuous time solution approach using Pontryagin’s Principle 

for state-constrained problems. They illustrated the role of capacity and of the dynamic nature of demand in the 

model.( Yang 2006) Defined the deterioration as obsolescence decay, damage, spoilage, evaporation, , pilferage 

and loss of marginal value or looses of entity of a product that affect on decreasing usefulness from original one. 

(Singh 2011) represented a method rely on genetic algorithm to improve the performance of inventory in supply 

chain management. The proposed method use MATLAB. 

2. Mathematical Model and Notations 

To build an optimal control model, consider that a firm can manufacture a certain product selling some and 

stocking the rest in warehouse. Assuming the firm distributed the product to a certain buyer, the firm has set an 



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014 

110 

 

inventory required level and production required rate. The instantaneous rate of deterioration of the on hand 

inventory follows the two parameters Weibull distribution and the production is continuous with no shortage 

allowed. The objective is to minimize total cost. X1(t) ; Vendor inventory level at time t. X2(t) ; Buyer inventory 

level at time t.  tu  ; Production flow rate at time t.  tD ; Demand rate at time t. 10x ; Initial vendor inventory 

level. 20x ; Initial buyer inventory level. û ; Production goal rate. 1h  ; Vendor holding cost 2h  ; Buyer 

holding cost c  ;Production unit cost . (t) ; Deterioration rate. 1x̂ ; Vendor inventory goal level. 2x̂  ;Buyer 

inventory goal level. 

The interpretation of inventory goal level is that a safety stock that company wants to keep on hand. Similarly 

the production goal level is interpreted as most efficient level at which it is desired to run the factory. The time of 

deterioration is a random variable following two parameter Weibull distributions. The probability density 

function for two parameter Weibull distribution is given by 

 tf  = ab  
1b

t
bte 

 t  > 0 

a   : Scale parameter a > 0 

b   : Shape parameter  b > 0 

The probability distribution function  

 tF =1-
bate 

  t >0 

The instantaneous rate of deterioration of the on hand inventory is given by  

 t =  
1b

abt               t >0 

Since our objective to minimize setup and inventory costs the objective function to be expressed as quadratic 

form: 

minimize 
j

 = 2

1

 

T

0  1h
 

  211 x̂tx   2h   222 x̂tx 
 c   2vv utu  

 dt    (1) 

s.t.  

 tx1
 =  tu   tD  ab

1b
t   tx1           11 )0( xx      (2) 

             tx2
 =  tD  ab

1b
t   tx2                 22 )0( xx               (3) 

where: dot denotes differentiation with respect to (w.r.t.) time t. 

3. Quadratic Optimal Control  

To develop the optimal control model we define the variables  tz ,  tk  and  tv   so that   

 tz  = 
  11 x̂tx 

                                    (4) 

 ty
 = 

  22 x̂tx 
                                 (5) 

 tk
 = 

  utu ˆ
                                    (6) 

  tv =  tû  -  tD  ab
1b

t  1x̂
                           (7) 

  tm = abtD )( 1b
t 2x̂                             (8) 
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Substitute the term ab
1b

t  1x̂
 in equation (2) by adding and subtracting this term. Similarly Substitute the term 

ab
1b

t  2x̂
 in equation (3) by adding and subtracting this term we get  

  tz  ab 1b
t   11 x̂tx  D  t  tu ab

1b
t 1x̂                   (9) 

 y  t  ab
1b

t     txtx 22
ˆ D  t ab

1b
t 2x̂                  (10) 

Substitute (4) (6) (7) in equation (9) and (5) (8) in equation (10) we get  

  tz   - ab  
1b

t  z   t k  t  v  t                        (11) 

 y  t   - ab  
1b

t  
y m  t

                            (12) 

This form standard linear quadratic regulator LQR problem with known disturbance defined in (Chaudhary, et 

al., 2011), (Kou, 1975). 

Minimum                 j  =
2

1
)()()(   Z(

0

T tZtQt
T

   +  tK T  tR  tk ) dt                     (13) 

s.t 

 )(tz =  tA  tz +  tB  tk  +  tv                            (14) 

where 

Q: Error weight positive semi definite matrix R : control weighted matrix positive definite matrix A : state matrix. 

B : control matrix. Solution using Pontryagin maximum principle (9)(8) 

Solution using Pontryagin’s maximum principle (Chaudhary, et al., 2011), (Kou, 1975), (Varbie, et al., 2009), 

(Emamverdi, et al., 2011) 

Step 1: Using definition of Hamiltonian (Sethi, et al., 2010)  

H(x  t ,u  t ,λ  t ) = 
2

1
)()()( tZtQtZ T

+
2

1
  tK T  tR  tk + )()( tztA )(tBu      (15) 

Where  : Costate vector of n  th order 

Step 2: Optimal control  
K

H




 = 0 

 K* t =  tR 1   tB   t       (16) 

Step 3: State and Costate System 

 Z  t 


H
=  tA  tZ +  tB  tk +  tv                        (17) 

  t = 
Z




H
=   )(Q tzt  tTA  t     (18) 

Substitu te the optimal control K* t in equations (16) and (17) the state –costate equations can be written in 

matrix conical form as                       

 
 









t

t



Z
    =  

       
    
















tt

tttt

AQ

BRBA
T

  
 
 







t

t



Z
                   (19) 
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Step 4: Feed back optimal control  

 

Assume a transformation )()()( tztpt   

Where p: Riccati coefficient 

)(* tk =        tZtptBtR *1                              (20) 

Step 5: Matrix Differential Riccati Equation (DRE) 

 )()()()( tpAtAtptp T -  tQ + )()()()( 1 tptBRtBtp T
                    (21) 

 P(T)=F(T)                                   (22) 

Solution of Differential Riccati Equation (DRE) 

  H  =    1112
1

1222 FWWFWW 


                      (23) 

  H  =  

 tTM

e



 *  TH

 

 tTM

e


                       (24) 

  tP  =   HWW 2221     1
1211


 HWW                    (25) 

Where  

tT   

M: Diagonal matrix contains eigen values of  Matrix 

       
    













tt

tttt

AQ

BRBA
 

with positive real parts in right half plane. 

W:Matrix of eigenvectors corresponding to d iagonal matrix M . 

4. Dynamic Programming Method 

The discrete state equation (2) can be solved by means of simple recursion procedure. Setting k = 0,1 ,2,3,4,5 in 

equation (2) 

K=0 :   x (m)  = x (0)  + mu(0)  -mD-mx(0)                     (26) 

 K=1:   x (2m) = x (m)  + mu(m)  -mD-mx(m)                    (27) 

K=2:   x (3m)  = x (2m)  + mu(2m)  -mD-mx(2m)                  (28) 

 K=k-1: x (km)  =x(k-1)+mu(k-1)- mD-m(x(k-1)                    (29) 

Where :  m is d iscretization  interval (sampling).   

Also replacing the integration in continuous time objective function (1) 

 kj  
=

2

1





1

0

fk

kk

[m 1h   211 x̂kx   m 2h   222 x̂kx  mc   2vv uku  ]           (30) 

The DP forward recursive equation can be expressed as : 

 j(k)=min(j(k)+j(k-1))  for k=1 ,2, 3,4,5                        (31) 

5. Numerical Example 

In this section numerical example is presented to illustrate the model. Table (1) presents the values of system 
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parameters and initial states which are used in the numerical example. 

 

Table 1. Parameters given 
 

Parameters value 

a 1 

b 1 

10x  10 

20x  15 

1x̂  40 

2x̂  25 

C $1 

h
1
 $1 

h
2
 $1 

û  15 

T 1 

5.1 Solution by Pontryagin Minimum Principle 

Comparing the present plant (11), (12) and the PI (10) of the problem with the corresponding general 

formulations of the plant (14) and the equation (13), respectively, let us first identify the various quantities as 

A= 












10

01
 ;         B = 









0

1
 ;  Q = 









10

01
; 

                        F = 








00

00
 ;            R=1 ;        T =1 

We Substitute these values in equation (25) and plot of Riccati coefficients as function of t as in fig. (1).similarly 

substitute in equation (20) we get optimum control  tk *
 and substitute in equation (6) to get original optimal 

control u. Fig. (2). Gives a plot of  tu  as function of time.  

 

Figure 1. Riccati Coefficients 
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Figure 2. Optimal Control 

 

5.2 Solution by Dynamic Programming 

Taking discretization sampling m = 0.2 and assuming the demand rate D(t) is constant and equal 5 . 

Substitute in equation (26) starting with x10 = 10 and x20 = 15. This means the problem decomposes into five 

stages .let the quantization values of control be u = 0, 5, 10, 15, 20, 25, 30. The problem can be solved forward 

recursion equation (31). The model start with stage 1 (k = 0, 1) and goes forward to stage 2 , stage 3 , stage 4 and 

ending at stage 5.The computations are shown in table 2 for k =0, 1 The stages 2, 3,4 and 5 can be obtained in 

similar manner. Because of computations complexity, MATLAB Programming is used to get the solution. The 

optimal production rate at each stage appears in table 4. Fig. 3 gives the plot of optimal production as function of 

time. (3) 

 

Table 2. Computation of cost at first stage k=0,1 

Current states 
Current 

control 
Next states Cost 

X1 X2 U X1 X2 J01 

10 15 

0 7 11 273.5 

5 8 11 242 

10 9 11 220.7 

15 10 11 209.6 

20 11 11 208.7 

25 12 11 218 

30 13 11 237.5 
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Table 3. Computation of cost at second stage k=2 

Current 

states 

Current 

control 
Next states Cost 

X1 X2 U X1 X2 J02 

7 11 

0 4.6 7.8 450.5 

5 5.6 7.8 431.42 

10 6.6 7.8 417.14 

15 7.6 7.8 408.06 

20 8.6 7.8 404.18 

25 9.6 7.8 405.5 

30 10.6 7.8 412.02 

8 11 

0 5.4 7.8 413.8 

5 6.4 7.8 394.48 

10 7.4 7.8 380.36 

15 8.4 7.8 371.44 

20 9.4 7.8 367.72 

25 10.4 7.8 369.2 

30 11.4 7.8 375.88 

9 11 

0 6.2 7.8 387.02 

5 7.2 7.8 367.86 

10 8.2 7.8 353.9 

15 9.2 7.8 345.14 

20 10.2 7.8 341.5 

25 11.2 7.8 343.2 

30 12.2 7.8 350.06 

10 11 

0 7 7.8 370.58 

5 8 7.8 351.5 

10 9 7.8 337.7 

15 10 7.8 329.18 

20 11 7.8 325.7 

25 12 7.8 327.5 

30 13 7.8 334.58 

11 11 

0 7.8 7.8 364.468 

5 8.8 7.8 345.628 

10 9.8 7.8 331.988 

15 10.8 7.8 323.548 

20 11.8 7.8 320.308 

25 12.8 7.8 322.268 

30 13.8 7.8 329.428 

12 11 

0 8.6 7.8 368.68 

5 9.6 7.8 350 

10 10.6 7.8 336.52 

15 11.6 7.8 328.24 

20 12.6 7.8 325.16 

25 13.6 7.8 328.28 

30 14.6 7.8 334.6 

13 11 

0 9.4 7.8 383.22 

5 10.4 7.8 364.7 

10 11.4 7.8 351.38 

15 12.4 7.8 343.26 

20 13.4 7.8 340.34 

25 14.4 7.8 342.62 

30 15.4 7.8 350.1 
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The stages 3, 4 and 5 can be obtained in similar manner. Because of table computations are complex, the 

MATLAB Program is used. The final solutions appear in table (4).Fig (3) gives the plot of optimal production u 

as function of time. 

 

Table 4. Optimal production at each stage  

k x1 x2 Cost (jk) u  

0 10 15 110 25 

1 12 11 108 25 

2 13.6 7.8 109.28 25 

3 14.88 5.24 112.15 20 

4 14.904 3.192 113.04 20 

 

 

Figure 3. Optimal production 

6. Conclusion 

This research described the principle of optimality and the Hamilton Jacobi- Bellman (HJB) equation to obtain 

the optimal production rate for the given problem .Also after the model has been discretized the dynamic 

programming technique applied to obtain the optimal production rate .The solution of the first method is accurate 

and exact but the computations are complex even using computer. The solution of the second method is 

approximate and less complex than first method. The given model may be extended in many ways. For instance 

transportation cost, order cost, and shortage cost of both buyer and vendor. Also this model can extend to include 

multiple buyers, multiple vendors and multi-products. 
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