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Abstract

In this paper, single and multi container maintenance model under limited time interval of interest is introduced in fuzzy

environment. These fuzzy models are solved by fuzzy geometric programming technique. Here fuzzy geometric program-

ming is discussed through fuzzy decision-making processes with three different operators, max-min, max-average mean,

and max-geometric mean. These operators are applied in the single-container maintenance model in fuzzy environment.

Fuzzy multi-container maintenance model through max-average mean operator which is solved by modified geometric

programming. Numerical examples are shown to illustrate the fuzzy models.
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1. Introduction

The reliability is an important research topic in engineering and operation research. Maintenance is one of the effective

ways of increasing the durability of a system. However, the repair will improve the availability of a single equipment

system. It is, therefore, necessary to estimate the optimum maintenance that will minimize the system downtime and hence

maximize the system durability. To perform a system impeccably it is required to maintain the system up to the desire

label and finally, replacement is needed when it fails to do so. It is important to find out the exact critical time to replace

the system. To keep a system in operating condition, the different activities of maintenance is necessary. Maintenance

action varies between the corrective maintenance (CM) and the preventive maintenance (PM). CM is maintained up to the

desired level of maintenance cost but proved to be ineffective, and then the replacement of the system is required. PM cost

is low for low level of PM effort but the expected CM cost is high when CM cost decreases and the PM effort increases,

the total (PM+CM) cost decreases initially and then increases with increasing PM effort. This implies that there is an

optimal level of PM effort to minimize the total maintenance cost. Minimization of cost per unit time is one approach to

determine the optimal maintenance policy.

Geometric Programming (GP) is one of the effective methods to solve a particular type of non-linear programming prob-

lem. Geometric Programming is introduced by Zener (1971), and it is further developed by Duffin, Peterson and Zener

(1967). In GP method, Degree of Difficulty (DD) plays a significant role. It is defined as DD = number of terms in

objective and constraint functions - number of primal decision variables - 1. If DD = 0, then dual variables can be deter-

mined uniquely from the normality and orthogonality conditions. In 1987, Cao (1987) first introduced FGP. Cao (1993)
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discussed fuzzy geometric programming with zero degree of difficulty. Later on a brief discussion on FGP is found in the

book by Cao (2002). In case of higher values of DD, it is not very easy to solve the problem by GP technique. If DD >
0, there are infinite number of solutions of the system of constraint equations in the dual problem. Abou-et-ata and Kotb

(1997) and Islam and Roy (2005) introduced a new idea on GP which is called modified geometric programming (MGP)

by reducing the DD to avoid the numerical difficulty. GP method is used rarely to solve the maintenance problem. Govil

(1992) discussed optimal maintainability problem using the geometric programming technique. But fuzzy replacement

model through FGP is very rare in literature.

Let the item is a container and a failure occurs when there is a leak in the container. As the item ages, the failure rate

increases due to degradation of material of the container made. In this paper, single and multi container maintenance

models are taken in fuzzy environment. Here the failure distribution of the containers is Weibull distribution with two

parameters. Fuzzy single container maintenance model solved by fuzzy geometric programming technique through fuzzy

decision-making process namely max-min, max-arithmetic mean and max-geometric mean operator. For higher degree of

difficulty of multi-container maintenance model, fuzzy geometric programming technique through max-arithmetic mean

operator is solved by MGP. Finally, numerical examples are given to show the above approaches of FGP on container

maintenance models to obtain an optimal maintenance policy of the system in fuzzy environment.

2. Model formulation
Notations

T expected cycle length

Jc(T ) total expected maintenance cost per unit time

M(T ) time required for replacing failed/nonfailed item

PJc the tolerance of Jc(T)

Cp cost of a preventive maintenance

Cr cost of corrective maintenance

L time interval of interest

PL the tolerance of L

m fixed factor(< 1)

Parameters for ith (i = 1, 2, · · · ) containers

Ti expected cycle length

Jci(Ti) total expected maintenance cost per unit time

M(Ti) time required for replacing failed/nonfailed item

PJci the tolerance of Jc(T)

Cpi cost of a preventive maintenance

Cri cost of corrective maintenance

L′ time interval of interest

PL′ the tolerance of L

mi fixed factor(< 1)

2.1 Crisp model of single container maintenance problem

Let the item is a container and a failure occurs whenever there is a leakage in the container. The failure distribution F(t) is

taken as Weibull distribution with shape parameter α and scale parameter β. Then the expected cost (see Appendix-I) of

maintenance under the time interval L is

Min Jc(T ) =
Cp

T +

(
Cr
βα

)
Tα−1

subject to M(T ) = mT ≤ L
T > 0

(2.1)

It should be considered that M(T ) = mT , the time required for a corrective maintenance action (replacing failed item by

new one) and preventive maintenance action (replacing nonfailed item by new one). Where α > 1(if α ≤ 1 it is decreasing

or constant failure rate).

2.2 Crisp model of multi-containers maintenance problem

Let there are multi containers of same material but different in shape and size. The failure distribution F(t) is taken as

Weibull distribution with shape parameter α and scale parameter β . The expected cost of maintenance of each container

under the total time of interval is formulated as multi-item multi-objective problem as follows

Min Jci(Ti) =
Cpi

T +

(
Cri
βα

)
Tα−1

i for i = 1, 2, 3, · · · , n (2.2)
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subject to M(T1,T2, · · · ,Tn) =

n∑
i=1

miTi ≤ L′

2.3 Fuzzy model of single container maintenance problem

Defining the container model (2.1), including the formulation of an objective and constraint functions is very complicated

decision making process. Determining objective goal, the cost of maintenance as well as constraint goal time of interval

of interest may be uncertain but non-stochastic in nature. Therefore the maintenance of container problem (2.1) can be

represented by fuzzy non-linear programming to make the model more flexible and acceptable to the human decision

process. Therefore in fuzzy environment the container problem (2.1) becomes

M̃in Jc(T ) =
Cp

T +

(
Cr
βα

)
Tα−1 ≤ Jc

subject to M(T ) = mT ≤ L
T > 0

(2.3)

Here objective and constraint functions are posynomial form. So we can use geometric programming to solve this prob-

lem.

2.4 Fuzzy model of multi-containers maintenance problem

The maintenance of container (2.2) can also be represented by fuzzy non-linear programming. Therefore in fuzzy envi-

ronment multi-item containers problem (2.2) becomes

M̃in Jc1(T1) =
Cp1

T1
+

(
Cr1

βα

)
Tα−1

1
≤
∼

Jc1

M̃in Jc2(T2) =
Cp2

T2
+

(
Cr2

βα

)
Tα−1

2
≤
∼

Jc2 (2.4)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
M̃in Jcn(Tn) =

Cpn

Tn
+

(
Crn
βα

)
Tα−1

n ≤
∼

Jcn

subject to M(T1,T2, · · · ,Tn) =

n∑
i=1

miTi ≤
∼

L′

Ti > 0 for i = 1, 2, 3, · · · , n
3. Prerequisties mathematics

Fuzzy sets is introduced by Zadeh (1965) as a mathematical way of representing impreciseness or vagueness in everyday

life.

3.1 Fuzzy Set

A fuzzy set Ã of the universe of discourse X is defined as the following set of pairs Ã = {(x, μÃ(x)) : x ∈ X}. Here

μÃ : X → [0, 1] is a mapping called the membership function of the fuzzy set Ã and μÃ(x) is called the membership value

or degree of membership of x ∈ X in the fuzzy set Ã. The larger Ã and μÃ(x) is the stronger the grade of membership in Ã.

3.2 Normal Fuzzy Set

A fuzzy set Ã of the universe of discourse X is called a normal fuzzy set implying that there exists at least one x ∈ X such

that μÃ(x) = 1

3.3 Fuzzy Decision Making

In this real world most of the decision making problems take place in a fuzzy environment. Here objective goal, constraints

and the consequences of possible actions are not known precisely. Under this observation, Bellman, et. al. (1970) has

introduced three basic concepts. They are fuzzy objective goal, fuzzy constraint and fuzzy decision based on fuzzy goal

and constraint. The conceptual framework for decision making has been introduced in a fuzzy environment.

Let X is a given set of possible alternatives which contains the solution of a decision making problem in fuzzy environment.

Fuzzy decision making problem may be taken as

G̃0: Optimize fuzzy objective function

Subject to

C̃ j: Fuzzy constraints for j = 1, 2, · · · ,m
3.3.1 Fuzzy goal

Here fuzzy goal G̃0 =

{(
x, μG̃0

(x)
)

: ∀x ∈ X
}

is a fuzzy set on possible alternatives X characterized by it membership

function μG̃0
: X → [0, 1].
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3.3.2 Fuzzy constraints

Here fuzzy Constraints C̃ j =

{(
x, μC̃ j

(x)
)

: ∀x ∈ X
}

is a fuzzy set on possible alternatives X characterized by it membership

function μC̃ j
: X → [0, 1]. for j = 1, 2, · · · ,m

3.3.3 Fuzzy decision

For fuzzy decision making problem, fuzzy goal G̃0 and m number of fuzzy constraints C̃ j( j = 1, 2, · · · ,m) are expected

to be satisfied simultaneously. According to Bellman and Zadeh (1970) fuzzy decision through fuzzy objective goal and

fuzzy constraints can be found as follows

Fuzzy decision based on max-min operator D̃m =

{(
x, μD̃m

(x)
)

: ∀x ∈ X
}

is a fuzzy set defined as D̃m = G̃0

m∩
j=1

C̃ j

It is characterized by μD̃m
(x) = min

∀ j=1,2,··· ,m
(
μG̃0

(x), μC̃ j
(x)
)
∀x ∈ X

So, optimal decision vector x∗ has been derived from

MaxμD̃m
(x∗) = max

x∈X

(
min

∀ j=1,2,··· ,m
(
μG̃0

(x), μC̃ j
(x)
))

There are two other aggregation patterns, which are based on arithmetic mean and geometric mean operators.

Fuzzy decision based on arithmetic mean operator is a fuzzy set D̃a =
{(

x, μD̃a
(x)
)

: ∀x ∈ X
}

.

Here μD̃a
(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝μG0

(x) +

m∑
j=1

μC j (x)

⎞⎟⎟⎟⎟⎟⎟⎠ /(m + 1)

⎞⎟⎟⎟⎟⎟⎟⎠ ∀ x ∈ X

So, optimal decision vector x∗ has been derived from Max μD̃a
(x∗) =

⎛⎜⎜⎜⎜⎜⎜⎝max
x∈X

⎛⎜⎜⎜⎜⎜⎜⎝μG̃0
(x) +

m∑
j=1

μC̃ j
(x)

⎞⎟⎟⎟⎟⎟⎟⎠ /(m + 1)

⎞⎟⎟⎟⎟⎟⎟⎠
Fuzzy decision based on geometric mean operator is a fuzzy set D̃P =

{(
x, μD̃P

(x)
)

: ∀ x ∈ X
}

Here μD̃P
(x) =

⎛⎜⎜⎜⎜⎜⎜⎝μG̃0
(x)

m∏
j=1

μC̃ j
(x)

⎞⎟⎟⎟⎟⎟⎟⎠
1

(m+1)

∀ x ∈ X

So, optimal decision vector x∗ has been derived from Max μD̃a
(x∗) = max

x∈X

⎛⎜⎜⎜⎜⎜⎜⎝μG̃0
(x)

m∏
j=1

μC̃ j
(x)

⎞⎟⎟⎟⎟⎟⎟⎠
1

(m+1)

4. Geometric Programming

Geometric Programming(GP) had its beginning in 1961 by Zener. Later on Duffin, Peterson and Zener wrote an authori-

tative book on GP. The extension of the GP method for negative terms and arbitrary inequalities was achieved by Wilde

and Passy , which is known as signomial GP.

The standard signomial GP problem may be taken as:

Find t = (t1, t2, · · · , tn)T of the following problem:

Minimize g0 (t) =
T0∑

k=1

σ0 k c0 k

n∏
r=1

tα0 k r
r (4.1)

Subject to g j (t) =
T j∑

k=1

σ j k c j k

n∏
r=1

tα j k r
r ≤ ζ j g0

j for j = 1, 2, 3, · · · ,m

tr > 0 for r = 1, 2, 3, · · · , n
where crk, g0

j (> 0), αrk j, signσ jk = ±1, ζ j = ±1(k = 1, 2, 3, · · · ,T j ; j = 0, 1, 2, 3, · · · , n; r = 1, 2, · · · , n) are real

numbers.

It may be written as a constrained GP problem with Degree of Difficulty

(DD) =

m∑
j=0

T j − (n + 1)

The pseudo dual of the problem (4.1) is
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Maximize d(w, λ) ≡ ζ0
⎡⎢⎢⎢⎢⎢⎢⎣ m∏

j=1

(
c0k

w0k

)σ0k w0k m∏
k=1

(
c jk

w jk

)σ jk w jk m∏
j=1

λ
ζ jλ j

j

⎤⎥⎥⎥⎥⎥⎥⎦
ζ0

Subject to

T j∑
k=1

σ jk w jk = ζ jk λ jk for j = 0, 1, 2, · · · ,m
p∑

k=1

σ jk α jk w jk = 0 for r = 1, 2, 3, · · · , n ; j = 1, 2, 3, · · · ,m
wjk ≥ 0 for j = 1, 2, 3, · · · ,m ; k = 1, 2, 3, · · · , p
λ0 = 1 and λk ≥ 0, k = 1, 2, · · · , p

(Note that it is assumed that the sign of the objective, ζ0 is known)

In real life problem, it is possible to soften the rigid requirements of the decision maker (DM) to minimize the objective

function strictly and satisfy the constraints strictly. In this situation, above GP may be taken as following single objective

fuzzy geometric programming (SOFGP) problem.

4.1 Single Objective Fuzzy Geometric Programming with its Solution Procedures

M̃in g0 (t) =
T0∑

k=1

σ0k c0k

n∏
r=1

tα0kr
r ≤

∼
g0 (4.2)

subject to

g j (t) =
T j∑

k=1

σ jk c jk

n∏
r=1

tα jkr
r ≤ ζ j g0

j for j = 1, 2, · · · ,m
tr > 0 for r = 1, 2, · · · , n

Hence the symbol ‘M̃in’ denotes a relaxed or fuzzy version of ‘Min’. It implies that the objective function should be

minimized as well as possible near g0. Similarly, the symbol ‘ ≤
∼

’ denotes a fuzzy version of ‘ ≤’. It also implies that

the constraints should be well satisfied. Here objective and constraint goals g j with maximum tolerance is (g
′
j − g0

j ) for

j = 0, 1, 2, · · · ,m. These fuzzy requirements may be quantified by eliciting membership functions μ j (g j(t)) from the DM

for all functions g j(t) ( j = 0, 1, 2, · · · ,m). By taking account of the rate of increased membership satisfaction, the DM

must determine the subjective membership function μ j (g j(t)). It is in general a strictly monotone decreasing linear or

non-linear function u j (g j(t)) with respect to g j(t) ( j = 0, 1, 2, · · · ,m). Here for simplicity, linear membership functions

are taken.

They are

μ j (g j(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 if g j(t) ≤ g0

j

u j (g j(t)) =
g

′
j − g j(t)

g′
j − g0

j

if g0
j ≤ g j(t) ≤ g

′
j for j = 0, 1, 2, · · · ,m (4.3)

0 if g j(t) ≥ g
′
j

Its rough sketch is

<Figure 1>

As shown in the above figure 1,

g0
j ≡ the value of g j(t) is such that the grade of membership function μ j(g j(t)) is 1.

g
′
j ≡ the value of g j(t) is such that the grade of membership function μ j(g j(t)) is 0.

ḡ j ≡ the intermediate value of g j(t) between g0
j and g

′
j (i.e. ḡ j ∈ (g0

j , g
′
j)) is such that the grade of membership function

say α(∈ (0, 1)).

Fuzzy decision making process (Bellman, et.al., 1997) based on fuzzy objective and constraint goals using above said

membership functions μ j (g j(t)) ( j = 0, 1, 2, ....,m) the problem of finding the optimal decision vector t∗ based on three

operators (namely Max-min, Max-arithmetic mean, and Max-geometric mean) are as follows:

4.1.1 Equivalent Crisp GP of SOFGP based on Max-Min Operator:

Find t∗ = (t∗1, t
∗
2, · · · , t∗n)T where μm(t∗) = max

∀ t>0

(
min

∀ j=0,1,2,··· ,m
μ j(g j(t))

)
(4.4)
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Following Sakawa (1993), (4.4) is equivalent to Max μ0 (g0(t)) subject to

μ j(g j(t)) ≥ μ0(g0(t)) for i = 1, 2, · · · ,m
Considering membership functions (4.3), the problem (4.2) reduces to

Max Vm(t) =

g
′
0 −

T0∑
i=1

σ0i c0i

n∏
r=1

tα0ir
r

g′
0
− g0

0

subject to

g
′
j −

T j∑
i=1

σ ji c ji

n∏
r=1

tα jir
r

g′
j − g0

j

≥
g

′
0 −

T0∑
i=1

σ0i c0i

n∏
r=1

tα0ir
r

g′
0
− g0

0

for j = 1, 2, 3, · · · ,m

tr > 0 for r = 1, 2, 3, · · · , n
so optimal decision variable vector t∗ = (t∗1, t

∗
2, · · · , t∗n)T with optimal objective value is

V∗
m(t∗) =

g
′
0

g′
0
− g0

0

− V
′
m(t∗)

where t∗ = (t∗1, t
∗
2, · · · , t∗n)T is optimal decision variable vector of the following GP problem

Min V
′
m(t∗) =

1

g′
0
− g0

0

T0∑
i=1

σ0i c0i

n∏
r=1

tα0ir
r (4.5)

subject to

g
′
0 − g0

0

g′
0
g′

j − g′
jg

0
0

T j∑
i=1

σ ji c ji

n∏
r=1

tα jir
r − g

′
0 − g0

0

g′
0
g′

j − g′
jg

0
0

T0∑
i=1

σ0i c0i

n∏
r=1

tα0ir
r ≤ 1 for j = 1, 2, 3, · · · ,m

tr > 0 for r = 1, 2, 3, · · · , n

It is a constrained signomial GP with DD = mT0 +

m∑
j=0

T j − (n + 1)

4.1.2 Equivalent Crisp GP of SOFGP based on Max-Arithmatic Mean Operator

Find t∗ = (t∗1, t
∗
2, · · · , t∗n)T where

μa(t∗) = max
∀ t>0

⎛⎜⎜⎜⎜⎜⎜⎝ m∑
j=0

μ j(g j(t))/(m + 1)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.6)

Considering membership functions(4.3),the problem (4.2) reduces to

Max Va(t) =
m∑

j=0

g
′
j −

T j∑
i=1

σ ji c ji

n∏
r=1

tα jir
r

(m + 1)(g′
j − g0

j )

subject to t1 > 0 for r = 1, 2, 3, · · · , n
So optimal decision variable vector t∗ = (t∗1, t

∗
2, · · · , t∗n)T with optimal objective value is

V∗
a (t∗) =

1

(m + 1)

⎛⎜⎜⎜⎜⎜⎜⎝ m∑
j=0

g j
′

g′
j − g0

j

− V
′
a (t∗)

⎞⎟⎟⎟⎟⎟⎟⎠ where t∗ = (t∗1, t
∗
2, · · · , t∗n)T is the optimal decision vector of the unconstrained

geometric programming problem

Min V
′
a(t) =

m∑
j=0

1

g′
j − g0

j

T j∑
i=1

σ ji c ji

n∏
r=1

tα jir
r (4.7)

subject to tr > 0 for r = 1, 2, 3, · · · , n

It is a unconstrained posynomial GP with DD =
m∑

j=0

T j − (n + 1)
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4.1.3 Equivalent Crisp GP of SOFGP based on Max-Geometric Mean Operator

Find t∗ = (t∗1, t
∗
2, · · · , t∗n)T where

μp(t∗) = max
∀ t>0

⎛⎜⎜⎜⎜⎜⎜⎝ m∏
j=0

μ j (g j(t))

⎞⎟⎟⎟⎟⎟⎟⎠
1

(m+1)

(4.8)

Considering memberhip finctions (4.3),the problem (4.2) reduces to

Max(Vp(t))m+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m∏

j=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
g

′
j −

T j∑
i=1

σ ji c ji

n∏
r=1

tα jir
r

g′
j − g0

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
subject to tr > 0 for r = 1, 2, 3, · · · , n
It can be formulated as an unconstrained signomial GP problem with

DD =
m∏

j=0

(T j + 1) − (n + 1).

Note: 4.1 Through max-geometric mean operator, FGP becomes a crisp GP with higher DD than that through other two

operators namely, max-min and max-arithmetic mean operators.

5. Single-Container Maintenance Model by Fuzzy Geometric Programming Approach

In the fuzzy container problem (2.3) fuzzy linear membership functiions for fuzzy objective and constraint goals are taken.

The linear membership function for expected cost constraint is

μJc(Jc(T )) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if Jc(T ) ≤ Jc

Jc + PJc − Jc(T )

PJc
if Jc ≤ Jc(T ) ≤ Jc + PJc

0 if Jc(T ) ≥ Jc + PJc

Its rough sketch is given in figure 2.

<Figure 2>

And the linear membership function for M(T ) is

μM(M(T )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if M(T ) ≤ L

L + PL − M(T )

PL
if L ≤ M(T ) ≤ L + PL

0 if M(T ) ≥ L + PL

Its rough sketch is given in figure 3.

<Figure 3>

Here fuzzy container problem(2.3) is described through different operators.

(i) Based on Max-Min Operator:

Through max-min operator, fuzzy model (2.3) reduces to

Max
(
1 +

L
PL

− T
PL

)
subject to

(
CP

T
+

(
Cr

βα

)
Tα−1 − Jc

)
PL ≤ (T − L) PJc

T > 0

The above maximization problem can be obtained by solving following minimization problem

Minσ0

T
PL

subject to
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σ1Cm1T−1 + σ2Cm2Tα−1 + σ3Cm3T ≤ 1

T > 0

Where Cm1 =
PLCP

JcPL − LPJc
, Cm2 =

PLCr

(JcPL − LPJc) βα
, Cm3 =

PJc

JcPL − LPJc

It is a constraint signomial GP with DD = 4 − 1 − 1 = 2

The Dual Problem (DP) of above Primal Geometric Problem (PGP) is as follows

Max dwm(w) = ζ0

[(
1

PLw01

)σ0w01
(
Cm1 λ

w11

)σ1w11
(
Cm2 λ

w12

)σ2w12
(
Cm3 λ

w13

)σ3w13
]ζ0

(5.1)

subject to

σ0 w01 = ζ0

σ0 w01 − σ1 w11 + σ2(α − 1) w12 + σ3 w13 = 0 (5.2)

where λ = σ1w11 + σ2w12 + σ3w13

where w01,w1i ≥ 0 for i = 1, 2, 3, Here ζ0 is assume +1, σ0 = σ1 = σ2 = 1 and σ3 = −1

solving system of linear equations (5.2) in terms of w12 and w13 and putting in objective function (5.1) we get

Max dwm(w12,w13) =
1

PL

(
Cm1(1 + αw12)

1 + (α − 1)w12 + w13

)(1+(α−1)w12+w13) (Cm2(1 + αw12)

w12

)w12

(
Cm3(1 + αw12)

w13

)−w13

subject to w12,w13 > 0

To find the optimal solution of the above objective function, taking logarithm and then differentiating with respect to w12

and w13 and equating to zero we get

(α − 1) log(Cm1(1 + αw12)) + log(Cm2(1 + αw12)) +
α(α − 1)(w12 − w13)

1 + αw12

= (α − 1) log(1 + (α − 1) w12 + w13) − logw12 (5.3)

and

log (Cm1(1 + αw12)) + log w13 = log(1 + (α − 1) w12 + w13) + logw12 + log (Cm3(1 + αw12)) (5.4)

Solving the above system of non-linear equations (5.3) and (5.4), optimal dual values w∗
12 and w∗

13 are obtained and hence

optimal dual value of w∗
11 is solved and so optimal dual value of the object function is dw∗

m(w∗).

Now from primal dual relation T ∗ = PL dw∗(w∗) the optimal value of the primal variable can be obtained. By the help of

the above optimal decision variable T ∗, we obtain the optimal value of the primal objective function.

ii) Based on Arithmetic Mean Operator:

Through max-arithmetic mean operator, fuzzy model (2.3) reduces to

Max
(
1 +

L
PL

− T
PL

− CP

T PJc
− 1

Pjc

(
Cr

βα

)
Tα−1 +

Jc
Pjc
+ 1

)
/2

The above maximization problem can be obtained by solving following minimization problem

Min (Ca1T−1 +Ca2Tα−1 +Ca3T )

T > 0

Where Ca1 =
CP

PJc
,Ca2 =

Cr

PJcβα
,C3 =

1

PL

It is an unconstraint posynomial GP with DD = 3 − 1 − 1 = 1

The DP of above PGP is as follows

Max dwa(w) =

(
Ca1

w01

)w01
(
Ca2

w02

)w02
(
Ca3

w03

)w03

(5.5)

w01 + w02 + w03 = 1 (5.6)

−w01 + (α − 1) w02 + w03 = 0

where w01 ≥ 0 for i = 1, 2, 3

54 � www.ccsenet.org



Journal of Mathematics Research September, 2009

Solving system of linear equations (5.6) in term of w02 and putting in objective function (5.5) we get

Max dwa(w02) =

(
2Ca1

1 + (α − 2)w02

)0.5(1+(α−2)w02) (Ca2

w02

)w02
(

2Ca3

1 − αw02

)0.5(1−αw02)

subject to w02 > 0

To find the optimal solution of the above objective function, taking logarithm of the objective function and then differen-

tiating with respect to w02 and equating to zero we get

(α − 2){log2Ca1 − log(1 + (α − 2) w02)} + 2logCa2 = 2logw02 + α{log2Ca3 − log(1 − αw02)} (5.7)

Solving the above non linear equations (5.7) optimal dual value of w∗
02 is obtained and hence optimal dual values of

w∗
01 = 0.5(1+ (α− 2) w∗

02) and w∗
03 = 0.5(1 −αw02) are attained so, optimal value of the dual objective function is dw∗

a(w∗)

Now from primal dual relation T ∗ =
w∗

01 dw∗(w∗)

Ca1

, the optimal value of the primal variable can be obtained. By the help

of the above optimal decision variable T ∗, the optimal value of the primal objective function is achieved.

iii) Based on Geometric Mean Operator:

Through max-geometric mean operator, fuzzy model (2.3) reduces to

Max

((
Jc + Pjc

P jc
− CP

T PJc
− 1

Pjc

(
Cr

βα

)
Tα−1

)
×
(

L + PL + T
PL

)) 1
2

the above maximization problem can be obtained by solving following GP problem

Min{σ01Cp1T−1 + σ02Cp2Tα−1 + σ03Cp3T + σ04Cp4Tα}
T > 0

Where Cp1 =
(L + PL)Cp

PLPJc
,Cp2 =

(L + PL)Cr

PLPJc
,Cp3 =

Jc + PJc

PLPJc
,Cp4 =

Cr

PLPJcβα

It is an unconstraint signomial GP with DD = 4 − 1 − 1 = 2

The dual problem of above primal problem is as follows

Max dwp(w) = ζ0

[(
Cp1

w01

)σ01w01
(
Cp2

w02

)σ02w02
(
Cp3

w03

)σ03w03
(
Cp4

w04

)σ04w04
]ζ0

(5.8)

subject to

σ01 w01 + σ02 w02 + σ03 w03 + σ04 w04 = ζ0

−σ01 w01 + σ02(α − 1)w02 + σ03 w03 + σ04 αw04 = 0 (5.9)

where w01 ≥ 0 for i = 1, 2, 3, 4, Here ζ0 is assume + 1, σ01 = σ02 = σ03 = 1 and σ04 = −1

Solving system of linear equations (5.9) in terms of w02 and w04 and putting in objective function (5.8) we get

Max dwp(w) =

(
2Cp1

1 + (α − 2)w02 + (α − 1)w04

)0.5(1+(α−2)w02+(α−1)w04) (Cp2

w02

)w02

×(
2Cp3

1 − αw02 − (1 + α)w04

)0.5(1−αw02−(1+α)w04) (Cp4

w04

)w04

To find the optimal solution of the above objective function, taking logarithm and then differentiating with respect to w02

and w04 and equating to zero, equations are as follows

(α − 1) log 2Cp1 + 2log Cp2 + α log(1 + αw02 − (α + 1)w04

= (α − 2)log(1 + (α − 2)w02 + (α − 1)w04) + 2logw02 + αlog2Cp3 (5.10)

and

4 + (α − 1) log 2Cp1 + 2log w04 + (α + 1)log(1 − αw02 − (α + 1)w04)

= (α − 1)log(1 + (α − 2)w04 + (α − 1)w04) + 2logCp4 + (1 − α)log2Cp3 (5.11)

Solving the above system of non-linear equations (5.10) and (5.11), optimal values w∗
02 and w∗

04 are obtained and hence

other optimal value of dual variables are

w∗
01 = 0.5(1+ (α−2)w∗

02+ (α−1)w∗
04) and w∗

02 = 0.5(1−αw∗
02 − (1+α)w∗

04) so optimal value of the dual objective function

is dw∗
p(w∗).

Now from primal dual relation T ∗ = dw∗(w∗)PL, we obtain the optimal value of the primal variable. By the help of the

above optimal decision variable T ∗, the optimal value of the primal objective function is obtained.

� www.ccsenet.org/jmr 55



Vol. 1, No. 2 ISSN: 1916-9795

6. Multi-container Maintenance Model by Fuzzy Geometric Programming Approach

In the fuzzy container problem (2.4) and DD is higher so for problem MGP is applied through max-arithmetic mean

operator with fuzzy linear membership functions for fuzzy objectives and constraint goals. The problem (2.4) is equivalent

to the following fuzzy objective goal problem:

Find T = (T1,T2,T3, · · · ,Tn)

Jci(Ti) ≤
∼

Jci for i = 1, 2, 3, · · · , n (6.1)

with the fuzzy constraint M(T1,T2, · · · ,Tn) ≤
∼

L
′

where Ti > 0 for i = 1, 2, 3, · · · , n
In the above formulation, it is assumed that the average maintenance cost has a target Jci for the first item. such a

situation may occur that it is compelled to enhance some more expenditure for maintenance say PJc1
for the first item.

similar cases may also happen for other cases. It is assumed that the objective goals are imprecise having a minimum

targets Jc1, Jc2, · · · , Jcn with positive tolerances PJci , PJc2
, · · · , PJcn and the constraint goal having target L

′
with positive

tolerance PL′ . The above stated multi-item, multi-objective fuzzy maintenance model is solved by GP method.

The linear membership functions for the n-objective are

μi(Jci(Ti)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Jci(Ti) ≤ Jci

Jci + PJci − Jci(Ti)

PJci

if Jci ≤ Jci(Ti) ≤ Jci + PJci for i = 1, 2, · · · , n

0 if Jci(Ti) ≥ Jci + PJci

And the linear membership function for M(T1,T2, · · · ,Tn) is

μ(M(T1,T2, · · · ,Tn)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if M(T1,T2, · · · ,Tn) ≤ L
′

(L′ + PL′ ) − M(T1,T2, · · · ,Tn)

PL′
if L′ ≤ M(T1,T2, · · · ,Tn) ≤ L′ + PL′

0 if M(T1,T2, · · · ,Tn) ≥ L′ + PL′

MM and GM operators are not applied to avoid higher DD. Here AM operator for the problem (6.1) has been applied and

thereby it is considered as

Max Y(Ti) =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

μi(Jci(Ti)) + μ(M(T1,T2, · · · ,Tn))

⎞⎟⎟⎟⎟⎟⎠ /(n + 1) (6.2)

subject to

μi(Jci(Ti)) =
Jci + PJci − Jci(Ti)

PJci

for i = 1, 2, 3, · · · , n

μ(M(T1,T2, · · · ,Tn)) =
L′ + PL′ − M(T1,T2, · · · ,Tn)

PL′

μi(Jci(Ti)) ∈ [0, 1] i = 1, 2, 3, · · · , n, μ(M(T1,T2, · · · ,Tn)) ∈ [0, 1] and Ti > 0

It is sufficient to derive the minimization problem as

Min Z(Ti) =

n∑
i=1

(
Cpi

PJciTi
+

Cri

βαPjci
Tα−1

i

)
+

1

PL′

n∑
i=1

Ti =

n∑
i=1

Xi(Ti) (6.3)

such that Ti > 0 for i = 1, 2, 3, · · · , n
where Xi(Ti) = (θ1iT−1

i + θ2iTα−1
i + θ3iTi) and θ1i =

Cpi

PJci
, θ2i =

Cri

βαPjci
, and θ3i =

1

PL′

Here (6.3) is an unconstrained GP problem with DD = (2n−1), which is difficult to solve by formulating its dual problem

for higher values of n. To reduce the DD, MGP method consider only the terms of ith function (i = 1, 2, 3, · · · , n) instead

of all the terms of the objective function. Here the number of terms in the ith function is there and the number of decision

variables of the function is one. so DD is now reduced to one. According to this formulation , the DP is
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Max dw(w1,w2,w3) =

n∏
i=1

[(
θ1i

w1i

)w1i
(
θ2i

w2i

)w2i
(
θ3i

w3i

)w3i
]

(6.4)

subject to normally and orthogonality conditions

w1i + w2i + w3i = 1

−w1i + (α − 1)w2i + w3i = 0 for i = 1, 2, 3, · · · , n (6.5)

where w1i,w2i,w3i ≥ 0 for i = 1, 2, 3, · · · , n
solving system of linear equations (6.5)in term of w2i and putting in objective function (6.4) and it becomes

Max dw(w2i) =

(
2θ1i

1 + (α − 2)w2i

)0.5(1+(α−2)w2i) ( θ2i

w2i

)w2i
(

2θ3i

1 − αw2i

)0.5(1−αw2i)

(6.6)

subject to w2i > 0

Differentiate the objective function of (6.6) with respect to w2i(i = 1, 2, 3, · · · , n) and the equating to zero we get

(α − 2){log2θ1i − log(1 + (α − 2)w2i)} + 2logθ2i = 2logw2i + α{log2θ3i − log(1 − αw2i)} (6.7)

Solving the above non linear equation (6.7), we get optimal dual value of w∗
2i. Hence the other dual values are w∗

1i =

0.5(1 + (α − 2)w∗
2i),w

∗
3i = 0.5(1 − αw∗

2i) and so optimal value of the dual objective function is dw∗

Now from primal dual relation, we can obtain the optimal value of the primal variable and primal objective function

Z∗ = n(dw∗)
1
n

θ1i
T ∗

i w∗
1i

= Z∗
n fori = 1, 2, 3, · · · , n

or
θ2iT ∗α−1

i
w∗

2i
= Z∗

n fori = 1, 2, 3, · · · , n
By the help of the above optimal decision variable T ∗

i , the optimal value of the primal objective functions is obtained as

Jc∗
i (T ∗

i )

7. Numerical Example

7.1 Numerical Exposure of Single Container maintenance problem

Here the single container problem is considered for the numerical exposure as follows.

The coefficients and indices are taken as:

Cp = 100,Cr = 10, α = 2, β = 1, Jc = 65, Pjc = 5, L = 2.5, PL = 0.5,m = 2.5

The optimal solutions of the fuzzy model through FGP with three operators are presented in table 1.

From the above table the optimal objective value is better through max-arithmetic mean operator than the other two

operators. Decision maker can take the decision when it is required to replace the container.

7.2 Numerical Exposure of Multi-Container maintenance problem

Considering there is three containers in the system of different corrective and preventive maintenance cost of each con-

tainer. The input data are shown in the table 2.

Table 3 shown the optimal values T ∗
i with corresponding optimal value Jc∗

i (T ∗
i ) for i = 1, 2, 3 solved by MGP through

max-arithmetic mean operator of FGP. From the above table it is easy to say that MGP gives better result than the NLP.

8. Conclusion

In the earliest stage of system designing, the maintenance policy is usually made on precise data but in real life problem,

available data is incomplete and inexact in nature. In this paper, maintenance problem of container model has been taken

in view of maintenance work up to a certain level in fuzzy environment. This fuzzy maintainability of container problem is

discussed through fuzzy geometric programming. Here fuzzy GP is illustrated through fuzzy decision-making processes.

Three different operators namely, max-min, max-arithmetic mean, max-geometric mean are considered for this fuzzy GP.

If situation demands it is easy to solve by FGP method for the single container and MGP methods for multi-container

maintenance model considering different failure rates and shape parameters for different containers made of different

materials.

There are more several operators based on different t-norms, this FGP may be developed using this operators.

Several reliability, maintenance and replacement models in fuzzy environment can be solved easily through fuzzy geo-

metric programming than other fuzzy non-linear programming methods.
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Appendix-I

In the block policy, the time instant at which preventive maintenance occurs is renewal points. Cycle length is a determin-

ing quantity and the cycle cost is the sum of a preventive replacement (Cp) at the end of the cycle and corrective repairs

over the cycle length. Since failures are rectified through minimal repairs, the failures (and repairs) over a cycle occur

according to a non-homogeneous Poisson process with an intensity function given by the failure rate of the item. As a

result, the expected cycle cost (ECC) [3] is given by

ECC = Cp +Cr

∫ T

0

r(x)dx

Where r(x) is the failure rate associated with the failure distribution F(x), from the renewal reward theorem, it is obtained

that Jc(T ) =
ECC
ECL

=

Cp +Cr

∫ T

0

r(x)dx

T
where ECL is the expected cycle length.

Harter and Moore (1976) give a comprehensive list of references dealing with the applicability of the Weibull distribution

to model failure times for many different technical objects. Keceioglu (1991) explains the use of this distribution in

modeling failure times for electron tubes, capacitors, ball bearings, leakage from batteries and many other applications.

Now failure distribution, F(x) is a Weibull distribution with shape parameter α and scale parameter β, i.e. failure rate is

r(x) =
αxα−1

βα
, then

Jc(T ) =
Cp

T +
Cr
T

∫ T
0
αxα−1

βα
dx

=
Cp

T +
Cr
βα

Tα−1
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Table 1. Optimal solutions of fuzzy single container model(2.3)
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Operator T ∗(Year) J∗
c (T ∗)($)

Max-min 2.2222 67.2222

Max-arithmetic mean 2.2360 67.0820

Max-geometric mean 2.2249 67.1943

Table 2. Input data of fuzzy multi-objective multi-containers model (2.4)

i Jci PJci α β L′ PL′ mi

(Minimum values of Jci)($) (Maximum tolerance)

1 64.8074 4.40 2 1 10 2.5 0.7

2 59.3295 4.55 2 1 10 2.5 0.7

3 69.2820 2.92 2 1 10 2.5 0.7

Table 3. Optimal solution of fuzzy multi-objective multi-containers model (2.4)

i T ∗
i (Year) Jc∗

i (T ∗
i )($) T ∗

i (Year) Jc∗
i (T ∗

i )($)

MGP-method MGP-method NLP-method NLP-method

1 2.666339 66.04323 2.325641 68.40525

2 2.701221 62.33209 2.513352 63.87307

3 3.826449 72.05128 2.161007 72.20681

Total 200.4266 204.4851

Figure 1. Linear membership function for g j ≤
∼

g0
j

Figure 2. Linear membership function for m̃inJc(T )
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Figure 3. Membership function of M(T ) ≤
∼

L
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