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Abstract

One generalises the notion of stabilizing bisets from Bouc and Thévenaz (2012) to n-stabilizing bisets. This allows

us to find new examples of stabilization for Roquette groups. We first investigate the idea of n-stabilizing bisets.

We give a way to construct examples with the notion of idempotent bisets and n-expansive subgroups. Finally, for

example, we look at Roquette groups and classify their n-stabilizing bisets.
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1. Introduction

One purpose in representation theory is to try to describe representations of a finite group from a subgroup or

subquotient of order as small as possible. This has been studied in Green’s theory of vertices and sources and

Harish-Chandra induction for reductive groups (see for instance Dipper & Du, 1997; Bouc, 1996). Another way to

do so is to use stabilizing bisets introduced in Bouc and Thévenaz (2012). Indeed, let k be a field, G a finite group,

U a (G,G)-biset and L a kG-module, where a (G,G)-biset U is a set which is both a left G-set and a right G-set such

that (gu)h = g(uh), for all g ∈ G, h ∈ G and u ∈ U. Then U is said to stabilize L if U(L) := kU ⊗kG L is isomorphic

to L. If we suppose that L is indecomposable, then one can show that U is of the form IndG
A InfA

A/BIsoφDefC
C/DResG

C
for some subgroups A, B,C,D and an isomorphism φ: C/D→ A/B. In particular, this means that L can be obtained

by a representation of A/B. Theorem 7.3 of Bouc and Thévenaz (2012) proves the existence of proper stabilizing

bisets for simple modules, except when the group is Roquette and the module is faithful. Moreover, it seems

impossible to find stabilizing bisets for the majority of Roquette groups. In order to obtain new examples, one

generalizes this notion to n-stabilizing bisets, i.e. bisets U such that U(L) � nL. This forces us to generalize the

notions and results of Bouc and Thévenaz (2012).

It is shown in Bouc and Thévenaz (2012) that there is no stabilizing biset for Roquette p-groups. In this article,

one shows that this is also true for Roquette groups with a cyclic Fitting subgroup. However, one finds non-trivial

examples of n-stabilizing bisets for these groups.

We refer to Section 2 of Bouc and Thévenaz (2012), for the introduction to the notion of induction, inflation,

deflation, restriction and isomorphism bisets and the corresponding notation. In particular, throughout this paper

IndinfDefres stands for the biset IndG
A InfA

A/BIsoφDefC
C/DResG

C .

We end this introduction with a short description of the organization of the paper, in Section 2 one finds some

properties and characterizations of n-stabilization. In Section 3, one looks at n-stabilizing bisets and strong mini-

mality. Then one looks at ways to obtain n-stabilizing bisets. We discuss one way with the help of n-idempotent

bisets and characterize them completely. In Section 5 one generalises Section 6 of Bouc and Thévenaz (2012) by

introducing the notion of n-expansive subgroups, this is another way to construct examples of n-stabilization. In

this section, one also generalizes Section 3 of Bouc and Thévenaz (2012).

Finally, Section 6 is a study of examples. In particular, one treats Roquette p-groups, some simple groups and

groups with a cyclic Fitting subgroup. One completely characterizes the n-stabilizing bisets for these examples.
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2. n-Stabilizing Bisets

In this section one introduces the idea of n-stabilizing bisets. Using the notion of strongly minimality one could

generalize Section 3 of Bouc and Thévenaz (2012). Theorem 12 is a generalization of Corollary 3.4 of Bouc and

Thévenaz (2012) from the case of stabilization to that of n-stabilization.

Definition 1 (1) A section of a group G is a pair (A, B) of subgroups of G such that B is a normal subgroup of A.

(2) Two sections (A, B) and (C,D) of a group G are linked if

(A ∩C)B = A, (A ∩C)D = C and A ∩ D = C ∩ B.

We next quote Lemma 2.5 of Bouc and Thévenaz (2012):

Proposition 2 (Generalized Mackey Formula) Let (A, B) and (C,D) be two sections of a finite group G. Then there
is the following decomposition as a disjoint union of bisets

DefresG
A/B IndinfG

C/D �
⋃

x∈[A\G/C]

Btf(A, B, xC, xD) Conjx,

where
Btf(A, B,C,D) := IndinfA/B

(A∩C)B/(A∩D)B Isoψ DefresC/D
(A∩C)D/(B∩D)D

is the butterfly biset and ψ is the composite

(A ∩C)D/(B ∩C)D→ (A ∩C)/(B ∩C)(A ∩ D)→ (A ∩C)B/(A ∩ D)B.

Definition 3 Let U be a (G,G)-biset, let n be an integer and let L be a kG-module. Then U acts on L as follows

U(L) := kU ⊗kG L.

U(L) is a kG-module and we say that U is applied to L. The biset U is said to n-stabilize L if U(L) � nL. In the

case n = 1, U is said to stabilize L.

Remark 4 We will focus our interest on indecomposable modules. If U = ∪r
i=1

Ui is a decomposition of U as

disjoint union of transitive bisets and if U n-stabilizes an indecomposable module L then

nL � U(L) �
r⊕

i=1

Ui(L).

Therefore by the Krull-Schmidt Theorem one has for every 1 ≤ i ≤ r that

Ui(L) � kiL

for some integer ki. For this reason, we shall assume that the biset U is transitive, hence, by Lemma 2.1 of Bouc

and Thévenaz (2012), of the form

U = IndinfG
A/BIsoφDefresG

C/D.

Example 5 One refers to the last section of Bouc and Thévenaz (2012) for examples with n = 1. Here are examples

with n > 1. Let k be an algebraically closed field of characteristic p and let P be a p-group. Let (A, B) be a section

of P, where A and B are normal subgroups of P, and define L as IndP
A(k).

By Green’s indecomposability theorem L is indecomposable and then it’s easy to see that U(L) = |P : A|L for

U := IndinfP
A/B DefresP

A/B. Indeed, (A, B) = ( gA, gB) for all g in P because both A and B are normal, therefore using

the Generalized Mackey Formula one has

U(L) = U
(

IndP
A(k)
)
�
⊕

g∈[A\P/A]

IndinfP
A/B Btf(A, B, gA, gB)(k)

�
⊕

g∈[A\P/A]

IndinfP
A/B(k) = |P : A|L.
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For example one can apply this to an extraspecial p-group P with B := Z(P) and A := NP(〈x〉), where x is a

non-central element of order p; or also to P the dihedral group D8 of order 8 with A = 〈r〉 and B = 〈r2〉, where r is

the rotation by an angle of π/2.

Proposition 6 Let U := IndinfG
A/BIsoφDefresG

C/D be an n-stabilizing biset for a module L. Let M := DefresG
C/D(L).

Then n = |G:A|dimM
dimL . In particular, one has n ≤ |G|.

Proof. By taking the dimension of U(L) � nL, one has

ndimL = |G : A|dimDefresG
C/D(L).

Therefore one has n = |G:A|dimM
dimL . As dimM ≤ dimL, one has n ≤ |G : A| ≤ |G|. �

Definition 7 Let U = IndinfG
A/BIsoφDefresG

C/D be a biset n-stabilizing a kG-module L.

(1) The biset U is said to be minimal if, for any transitive biset U′ = IndinfG
A′/B′ Isoφ′DefresG

C′/D′ n-stabilizing L, we

have |C/D| ≤ |C′/D′|.
(2) The biset U is said to be strongly minimal if, for any transitive biset U′ = IndinfG

A′/B′ Isoφ′DefresG
C′/D′ m-

stabilizing L for some integer m ≥ 1, we have |C/D| ≤ |C′/D′|.
Lemma 8 Let U := IndinfG

A/BIsoφDefresG
C/D be an n-stabilizing biset for a non-trivial simple module L. If |A/B| =

p, where p is the smallest prime dividing |G|, then U is strongly minimal.

Proof. Suppose U is not strongly minimal. Let

U′ = IndinfG
A′/B′ Isoφ′ DefresG

C′/D′

be an m-stabilizing biset such that |A′/B′| < |A/B| = p. Then one has 1 = |A′/B′| = |C′/D′| and so U can be

written as IndG
A′ InfA′

1′ Isoφ′ DefC′
1 ResG

C′ . The module InfA′
1′ Isoφ′ DefC′

1 ResG
C′ (L) is isomorphic to copies of the trivial

module k and thus nL = ν IndG
A′ (k) for some integer ν ≥ 1. But the trivial kG-module is always a submodule of

IndG
A′ (k), which contradicts the assumption that L is not the trivial module. Therefore such U′ cannot exist and U

is strongly minimal. �
Theorem 9 Consider two transitive (G,G)-bisets

U = IndinfG
A/B IsoφDefresG

C/D and U′ = IndinfG
A′/B′ Isoφ′ DefresG

C′/D′ .

Let L be an indecomposable kG-module such that U(L) � nL and U′(L) � mL for n,m ∈ N. Let M = DefresG
C/D(L)

and suppose U is strongly minimal. Let g be an element of G. Then only two cases are possible:

(i) The module Btf(C′,D′, gA, gB) Conjg Isoφ(M) is zero and the section ( gA, gB) is not linked to ((C′ ∩ gA)D′, (C′ ∩
gB)D′).

(ii) The biset Btf(C′,D′, gA, gB) is reduced to IndinfC′/D′
(C′∩ gA)D′/(C′∩ gB)D′ Isoβ(g), where β(g) is the isomorphism corre-

sponding to the linking between the sections ( gA, gB) and ((C′ ∩ gA)D′, (C′ ∩ gB)D′).

Proof. Applying successively U and U′ one obtains

U′(U(L)) �
⊕

g∈[C′\G/A]

IndinfG
A′/B′ Isoφ′ Btf(C′,D′, gA, gB) Conjg Isoφ(M)

� mnL.

Therefore, by the Krull-Schmidt theorem, one has, for all g ∈ [C′\G/A],

IndinfG
A′/B′ Isoφ′ Btf(C′,D′, gA, gB) Conjg Isoφ(M) � kgL.

In other words, one has a kg-stabilizing biset for L, for a certain kg ∈ N. If kg � 0 and because U is strongly

minimal, the biset Btf(C′,D′, gA, gB) must be reduced to IndinfC′/D′
(C′∩ gA)D′/(C′∩ gB)D′ Isoβ(g), where β(g) is the isomor-

phism corresponding to the linking between the sections ( gA, gB) and ((C′ ∩ gA)D′, (C′ ∩ gB)D′). Indeed, otherwise

Btf(C′,D′, gA, gB) would go through a subsection of (A, B), which is a contradiction to the fact that U is strongly

minimal. If kg = 0, then the module Btf(C′,D′, gA, gB) Conjg Isoφ(M) is zero, as the operation IndinfG
A′/B′ Isoφ′
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cannot annihilate a module. For such g, the section ( gA, gB) is not linked to ((C′ ∩ gA)D′, (C′ ∩ gB)D′) as otherwise

the biset Btf(C′,D′, gA, gB) would have been reduced to

IndinfC′/D′
(C′∩ gA)D′/(C′∩ gB)D′ Isoβ(g),

but the latter does not annihilate Conjg Isoφ(M). �

Remark 10 Let M′ be the module DefresG
C′/D′(L). Using the same notation, we observe that one has

nM′ = DefresG
C′/D′(nL) � DefresG

C′/D′ IndinfG
A/B IsoφDefresG

C/D(L)

�
⊕

g∈[C′\G/A]

Btf(C′,D′, gA, gB) Conjg Isoφ(M)

�
⊕

g∈[C′\G/A]
kg�0

IndinfC′/D′
(C′∩ gA)D′/(C′∩ gB)D′ Isoβ(g) Conjg Isoφ(M).

Corollary 11 Using the same notation and hypotheses as in Theorem 9 and suppose that both U and U′ are
strongly minimal. Let g be an element of G.

(1) Only two cases are possible:

(i) The module Btf(C′,D′, gA, gB) Conjg Isoφ(M) is zero and the section ( gA, gB) is not linked to ((C′ ∩
gA)D′, (C′ ∩ gB)D′).

(ii) The biset Btf(C,D, gA, gB) is reduced to Isoβ(g), where β(g) is the isomorphism corresponding to the linking
between the sections ( gA, gB) and (C′,D′).

Let M be the set of elements of [C′\G/A] such that we are in case (ii) and let d be the cardinality of M .

(2) There exists an isomorphism between nM′ and
⊕

g∈M Isoβ(g) Conjg Isoφ(M).

(3) One has the following equality nm = dd′, where d′ is the number of double cosets ChA′ such that

IndinfG
A/B Isoφ Btf(C,D, hA′, hB′) Conjh Isoφ′(M′) � {0}.

Proof. One uses the same argument as in the proof of Theorem 9 but suppose now that U′ is strongly minimal. One

deduces that Btf(C′,D′, gA, gB) is reduced to an isomorphism if kg � 0, because U and U′ are strongly minimal.

This means that, if kg � 0,

IndinfG
A′/B′ Isoφ′ Isoβ(g) Conjg Isoφ(M) � kgL.

In particular if kg � 0, the dimension on the right hand side does not depend on g, because on the left of the

isomorphism it does not. Therefore all non-zero kg are equal. The isomorphism becomes

mnL � U′(U(L)) �
⊕

g∈[C′\G/A]
kg�0

IndinfG
A′/B′ Isoφ′ Isoβ(g) Conjg Isoφ(M).

By looking at the dimension in this equality, one obtains that

mn dim L = dkg dim L

where d is the number of double cosets C′gA such that kg � 0.

Exchanging the roles of U and U′ in the previous argument one has mn = k′hd′, where d′ is the number of double

cosets ChA′ such that k′h � 0 and k′h is such that IndinfG
A/B Isoφ Btf(C,D, hA′, hB′) Conjh Isoφ′ (M′) is isomorphic to

k′hL.

Furthermore, using Remark 10, one has

nM′ =
⊕

g∈[C′\G/A]
kg�0

Isoβ(g) Conjg Isoφ(M).

By looking at the dimension one obtains that n dim M′ = d dim M. Exchanging the roles of U and U′ in the

previous argument one has m dim M = d′ dim M′. Finally, using these two equations, one obtains that mn = dd′
and that kg = d′ and k′h = d, whenever kg and k′h are non-zero. �
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Theorem 12 Let U = IndinfG
A/B IsoφDefresG

C/D be a strongly minimal n-stabilizing biset for an indecomposable
kG-module L. Let M = DefresG

C/D(L). Then, there exist n double cosets CgA such that

(1) Btf(C,D, gA, gB) Conjg Isoφ(M) � {0},
(2) the sections (C,D) and ( gA, gB) are linked,

(3) the module M is invariant under β(g)cgφ, where β(g) is the isomorphism corresponding to the linking between
the sections (C,D) and ( gA, gB),

(4) if h ∈ G does not belong to one of these cosets, the section ( hA, hB) is not linked to (C,D).

Proof. Using part 3 of Corollary 11 with U′ = U, m = n and d′ = d, one obtains that n = d. Therefore by definition

of d, there exist exactly n double cosets CgA such that Btf(C,D, gA, gB) Conjg Isoφ(M) � {0}. For these double

cosets one knows that Btf(C,D, gA, gB) is reduced to Isoβ(g), where β(g) is the isomorphism corresponding to the

linking between the sections ( gA, gB) and (C,D). In particular, the sections (C,D) and ( gA, gB) are linked. If h ∈ G
does not belong to one of these cosets, the section ( hA, hB) cannot be linked to (C,D), otherwise we would have

another non-zero module of the form Btf(C,D, hA, hB) Conjh Isoφ(M).

Finally one proves (3). By the Krull-Schmidt Theorem we can write M as

a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k)),

where the Mjr j ’s are indecomposable and pairwise non-isomorphic, f ( j) is an integer depending on j and a j < a j+1

for all j. Using the second part of Corollary 11 and the fact that n = d = |M |, one has

nM �
⊕

g∈M
Isoβ(g) Conjg Isoφ(M) =

n⊕

i=1

Isoβ(gi)cgiφ
(M),

for some g1, . . . , gn in M . Using the decomposition of M one obtains

nM � na1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ nak(Mk1 ⊕ · · · ⊕ Mk f (k))

�
n⊕

i=1

Isoβ(gi)cgiφ
(M)

� Isoβ(g1)cg1
φ
(
a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k))

)

⊕ Isoβ(g2)cg2
φ
(
a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k))

)

...

⊕ Isoβ(gn)cgnφ
(
a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k))

)
.

Note that M11 appears in the decomposition of Isoβ(gi)cgiφ
(M) for all i = 1, . . . , n. Indeed, Isoβ(gi)cgiφ

sends an

indecomposable module to an indecomposable module and if Isoβ(gi)cgiφ
(Mj1r j1

) � Isoβ(gi)cgiφ
(Mj2r j2

) then Mj1r j1
�

Mj2r j2
by applying Iso(β(gi)cgiφ)

−1 on both sides. As the Mjr j are all pairwise non-isomorphic this means that there

is the same number of indecomposable modules in M than in Isoβ(gi)cgiφ
(M) and that the indecomposable modules

in the decomposition are the same. Denote by mi the multiplicity of M11 in Isoβ(gi)cgiφ
(M), then mi ≥ a1 for all

i = 1, . . . , n, as for all i the module M11 corresponds to Isoβ(gi)cgiφ
(Mjiri ) for some Mjiri , which means a ji ≥ a1 for

all i. Moreover, looking at the two decompositions of nM one has

n∑

i=1

mi = na1

and so mi = a1 for all i. Applying this argument to all the modules M1r1
one obtains that, for all i,

Isoβ(gi)cgiφ
(
a1(M11 ⊕ · · · ⊕ M1 f (1))

)
� a1(M11 ⊕ · · · ⊕ M1 f (1)).

Using this result, the same argument proves that

Isoβ(gi)cgiφ
(
a2(M21 ⊕ · · · ⊕ M2 f (1))

)
� a2(M21 ⊕ · · · ⊕ M2 f (1)).
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Finally, continuing like this, one has, for all i

Isoβ(gi)cgiφ
(M) � Isoβ(gi)cgiφ

(
a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k))

)

� Isoβ(gi)cgiφ
(
a1(M11 ⊕ · · · ⊕ M1 f (1))

) ⊕ · · · ⊕ Isoβ(gi)cgiφ
(
ak(Mk1 ⊕ · · · ⊕ Mk f (k))

)

� a1(M11 ⊕ · · · ⊕ M1 f (1)) ⊕ · · · ⊕ ak(Mk1 ⊕ · · · ⊕ Mk f (k))

� M. �

The next three results are generalized forms of respectively Corollary 3.5, Proposition 4.3 and Proposition 8.5 of

Bouc and Thévenaz (2012). We omit the proofs here as they are similar to the case n = 1. We refer to Monnard

(2014) for the proofs.

Corollary 13 Let U = IndinfG
A/B IsoφDefresG

C/D be a strongly minimal n-stabilizing biset for an indecomposable
kG-module L. Then there exists a section (Ã, B̃) linked to (C,D) by σ such that L is n-stabilized by

Ũ := IndinfG
Ã/B̃ Isoσ DefresG

C/D .

Proposition 14 Let U := IndinfG
A/B IsoφDefresG

C/D be a minimal biset n-stabilizing a module L and let M :=

DefresG
C/D(L). Then M is a faithful module.

Proposition 15 Let U = IndinfG
A/B IsoφDefresG

C/D be a (G,G)-biset n-stabilizing a simple kG-module L and let
M = IsoφDefresG

C/D(L). If M is the trivial k[A/B]-module then n = 1, the kG-module L is trivial and A = G.

Definition 16 Let G be a group and B ≤ G. The G-core of B is the largest normal subgroup of G contained in B,

that is, the intersection of all the G-conjugates of B.

Proposition 17 Let G be a group and L a faithful kG-module such that L is n-stabilized by IndinfG
A/B Isoφ DefresG

C/D.
Then the G-core of B is trivial.

Proof. Let M be the module IsoφDefresG
C/D(L), so nL is IndinfG

A/B(M), which has the following kernel,

∩g∈G gKer(InfA
A/B(M)). Obviously B is contained in Ker(InfA

A/B(M)) and so ∩g∈G gB is contained in

∩g∈G gKer(InfA
A/B(M)). As nL is faithful, the latter is trivial and so too is the G-core of B. �

Proposition 18 Let G be a group and L a faithful simple kG-module such that L is n-stabilized by
IndinfG

A/B Isoφ DefresG
C/D. Then the G-core of D is trivial.

Proof. Let N be the G-core of D. Then

DefresG/N
C/D DefG

G/N(L) = DefresG
C/D(L) � {0}

and thus DefG
G/N(L) � {0}. But DefG

G/N(L) is a quotient of L and N acts trivially on it; however, since L is simple

and faithful one must have N = {1}. �
Proposition 19 Let k be a field and let U = IndinfG

A/B IsoφDefresG
C/D be a biset n-stabilizing a simple kG-module

L. Then n|A| ≥ |NG(D)| and in particular n|A| ≥ |C|.
Proof. By the proof of Proposition 8.1 of Bouc and Thévenaz (2012), one has

dim L ≤ |G : NG(D)| dim DefresG
NG(D)/D(L).

By Lemma 6, one has n dim L = |G : A| dim DefresG
C/D(L). Moreover, dim DefresG

NG(D)/D(L) is equal to

dim DefresG
C/D(L) as it only depends on the action of D on L. Therefore

|G : A| dim DefresG
NG(D)/D(L)

n
≤ |G : NG(D)| dim DefresG

NG(D)/D(L)

and the result follows. �
3. n-Stabilizing Bisets and Strong Minimality

In this section one treats the question of strong minimality and existence of strongly minimal n-stabilizing bisets.

Proposition 20 Let G be a finite group, U be a nU-stabilizing biset of the form IndinfG
A/B V IsoφDefresG

C/D for a
kG-module L and V a strongly minimal nV-stabilizing biset for M := IsoφDefresG

C/D(L). Moreover suppose that M
is indecomposable. Then U is strongly minimal.
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Proof. Set V = IndinfA/B
H/J IsoσDefresA/B

S/T and let W be a nW -stabilizing biset for L. Set W = IndinfG
A′/B′ Isoφ′ DefresG

C′/D′ .

We have to show that |H/J| ≤ |A′/B′|. Using these settings, one has

IsoφDefresG
C/D W IndinfG

A/B V(M) � Isoφ DefresG
C/D W(nU L)

� nUnW Isoφ DefresG
C/D(L)

� nUnW M.

Using the Generalized Mackey Formula, the left hand side becomes

⊕g,h Isoφ Btf(C,D, gA′, gB′) Conjg Isoφ′ Btf(C′,D′, hH, hJ) Conjh Isoσ DefresA/B
S/T (M),

where the sum is taken over g ∈ [C\G/A′] and h ∈ [C′\G/H]. Because M is indecomposable, this implies that for

each summand there exists a certain kg,h such that

Isoφ Btf(C,D, gA′, gB′) Conjg Isoφ′ Btf(C′,D′, hH, hJ) Conjh IsoσDefresA/B
S/T (M) � kg,hM.

Note that kg,h � 0 for at least one pair (g, h). The biset V is strongly minimal therefore the biset Btf(C′,D′, hH, hJ)

has to be reduced to

IndinfC′/D′
(C′∩ hH)D′/(C′∩ hJ)D′ Isoψ,

when kg,h � 0, which means that ( hH, hJ) is linked to a subsection of (C′,D′). In particular |H/J| ≤ |C′/D′| =
|A′/B′|, which proves the strong minimality of U. �
Proposition 21 Let G be a finite group and let U := IndinfG

A/B V IsoφDefresG
C/D be a strongly minimal nU-stabilizing

biset for an indecomposable kG-module L, where V nV-stabilizes M := IsoφDefresG
C/D(L). Then V is strongly

minimal.

Proof. Set V = IndinfA/B
H/J Isoσ DefresA/B

S/T and let W be a nW -stabilizing biset for M. Set W =

IndinfA/B
H′/J′ Isoσ′ DefresA/B

S ′/T ′ , then

IndinfG
A/B VW IsoφDefresG

C/D(L) � IndinfG
A/B VW(M)

� nW IndinfG
A/B V(M)

� nWnU L.

Using Mackey’s Formula, the first term on the left becomes

⊕g IndinfG
H/J Isoσ Btf(S ,T, gH′, gJ′) Conjg Isoσ′ DefresA/B

S ′/T ′ IsoφDefresG
C/D(L) � nUnW L.

Because L is indecomposable, this implies that for each summand there exists a certain kg such that

IndinfG
H/J Isoσ Btf(S ,T, gH′, gJ′) Conjg Isoσ′ DefresA/B

S ′/T ′ IsoφDefresG
C/D(L) � kgL,

and kg � 0 for at least one g. By strongly minimality of U the biset Btf(S ,T, gH′, gJ′) must, at least, be reduced

to IsoψDefres
gH′/ gJ′
(S∩ gH′) gJ′/(T∩ gH′) gJ′ , which means that (S ,T ) is linked to a subsection of ( gH′, gJ′). In particular

|H/J| = |S/T | ≤ |H′/J′|, which proves the strongly minimality of V . �
Proposition 22 Let G be a finite group, U := IndinfG

A/B IsoφDefresG
C/D and L a kG-module nU-stabilized by U.

Suppose M := IsoφDefresG
C/D(L) is indecomposable. Then there exists a biset V, nV-stabilizing M, such that

W := IndinfG
A/B V Isoφ DefresG

C/D is strongly minimal for L. Moreover V is strongly minimal for M.

Proof. One proves this by induction hypothesis to |G|. If |G| = 1, then the trivial biset is strongly minimal. Now

suppose the statement is true for groups of order less than |G|. If U is strongly minimal then V = Id. Suppose U
is not strongly minimal. Moreover suppose |A/B| < |G| and apply the induction on the indecomposable module

M with the identity as stabilizing biset. So one obtains a strongly minimal biset V such that V(M) � nV M. By

Proposition 20 the biset

W := IndinfG
A/B V Isoφ DefresG

C/D

is strongly minimal for L.
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It is left to consider the case |A/B| = |G|. This implies that U = Isoφ, but U is not strongly minimal by assumption,

therefore there exists a proper biset V1, i.e. not reduced to an isomorphism, such that V1(L) � nV1
L. Replacing U

by V1 in the argument of the first case, one obtains a strongly minimal nV -stabilizing biset V for the module L and

therefore W = V Isoφ is strongly minimal for L. �
Remark 23 Note that W is a nUnV -stabilizing biset for L and not simply a nU-stabilizing biset.

Proposition 24 Let G be a finite group, U := IndinfG
A/B Isoφ DefresG

C/D and L an indecomposable kG-module
stabilized by U. Then there exists a biset V such that U′ := IndinfG

A/B V Isoφ DefresG
C/D is minimal for L. Moreover

V is minimal for M := Isoφ DefresG
C/D(L).

Proof. Following exactly the proof of Proposition 22 with nU = 1, the fact that M is indecomposable because

IndinfG
A/B(M) � L is and the notion of minimality instead of strongly minimality, one obtains the result. �

Proposition 25 Let L be a faithful simple kG-module. Suppose that whenever U(L) � L for U a minimal biset
then U is reduced to an isomorphism. Then, for an arbitrary biset IndinfG

A/B IsoφDefresG
C/D stabilizing L one has

(A, B) = (C,D) = (G, 1).

Proof. By proposition 24 there exist subgroups H and J with J a normal subgroup of H with B ≤ H ≤ A and

B ≤ J ≤ A such that

IndinfG
A/B IndinfA/B

H/J Isoσ DefresA/B
S/T IsoφDefresG

C/D � IndinfG
H/J Isoσφ DefresG

φ−1(S/T )

is minimal for L. As a minimal stabilizing biset one has, by hypothesis, that J = {1} and H = G and so in particular

B = {1} and A = G. �
4. n-Idempotent Bisets

This generalizes section 5 of Bouc and Thévenaz (2012) on idempotent bisets to n-idempotent bisets for n > 1.

One gives here a complete classification of such bisets.

Definition 26 Let U be a (G,G)-biset, then U is an n-idempotent biset if U2 � nU.

Theorem 27 Let U = IndinfG
A/B Isoφ DefresG

C/D be a (G,G)-biset. Then U2 � nU if and only if the following three
conditions hold:

1) There are n (C, A)-double cosets.

2) The sections (C,D) and ( gA, gB) are linked for all g.

3) For every g ∈ G, there exist x ∈ NG( gA, gB) and y ∈ NG(C,D) such that

φβ(g)−1 Conjg φ = Conjx φConj−1
y ,

where β(g): C/D→ gA/ gB is the isomorphism induced by the linking.

Proof. The idea of the proof is similar to that of Theorem 5.1 of Bouc and Thévenaz (2012). We refer to Theorem

2.26 of Monnard (2014) for more details. �
As Proposition 5.4 of Bouc and Thévenaz (2012), one obtains the following generalized result:

Proposition 28 Let U be an n-idempotent (G,G)-biset. For any kG-module L′, the kG-module L := U(L′) is
n-stabilized by U.

Remark 29 Note that in general L need not be indecomposable.

Example 30 (1) An example can be found in A5. Let U be IndinfA5

D10/C5
DefresA5

D10/C5
, where D10 denotes 〈(1, 2, 3, 4, 5),

(2, 5)(3, 4)〉 a dihedral group of order 10, and C5 = 〈(1, 2, 3, 4, 5)〉, a cyclic group of order 5. An easy calculation,

which can be made by GAP (see The GAP Group, 2014) gives two double (D10,D10)-cosets in A5 and the section

(D10,C5) is linked via conjugation to its conjugate. By taking x = 1 = y in the last condition of Theorem 27 one

can see that U is a 2-idempotent biset.

(2) If A and B are normal subgroups of G and U := IndinfG
A/B DefresG

A/B, then U is |G : A|-idempotent. Indeed, one

has |G : A| (A, A)-double cosets. By normality the sections are trivially linked and by taking x = y = 1 the third

condition is also fulfilled. This is the case, in particular, of Example 5.
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5. n-Expansivity

In this section one introduces a type of subgroup called n-expansive, which will be a useful notion to find n-

stabilizing bisets. In particular, Theorem 12 is a generalization of Corollary 3.4 of Bouc and Thévenaz (2012)

from the stabilization case to that of n-stabilization.

Definition 31 Let n be an integer. A subgroup T of a group G is called (S , n)-expansive relatively to (A, B) if

(1) The pairs (A, B) and (S ,T ) are sections of G.

(2) The sections (A, B) and (S ,T ) are linked via φ.

(3) The composition of φ with the conjugation map, φ ◦ cg, links the sections (Ag, Bg) and (S ,T ) for exactly n
elements g in [A\G/S ]. For the other elements g in [A\G/S ] the S -core of the subgroup (Bg ∩ S )T contains T
properly.

Remark 32

(1) One will mainly use this notion with S = NG(T ) and (A, B) = (S ,T ). In this case the subgroup T is simply

called n-expansive. If moreover n = 1 one says that T is expansive as defined in Chapter 6 of Bouc and Thévenaz

(2012).

(2) By assumption (A, B) is linked to (S ,T ) and therefore the first part of condition (iv) is fulfilled at least for

g = 1 in [A\G/S ].

Lemma 33 Let (A, B) be a section of a finite group G. Let M be a faithful simple k[A/B]-module. Then DefA/B
A/N(M) =

{0} for any non-trivial normal subgroup N/B of A/B.

Proof. Since M is simple and faithful, the largest quotient of M with trivial action of N/B must be zero and

therefore DefA/B
A/N(M) = {0}. �

Proposition 34 Let T be (S , n)-expansive relatively to (A, B). Let φ be the link between (A, B) and (S ,T ). Suppose
that M is a faithful simple k[A/B]-module. Let L := IndinfG

S/T Isoφ(M). Then,

(i) DefresG
A/B(L) � nM.

(ii) The biset U := IndinfG
S/T IsoφDefresG

A/B n-stabilizes L.

Proof. We decompose DefresG
A/B(L) using the Generalized Mackey Formula, see Proposition 2,

DefresG
A/B(L) = DefresG

A/B IndinfG
S/T Isoφ(M)

�
⊕

x∈[A\G/S ]

Btf(A, B, xS , xT ) Conjx Isoφ(M)

�
⊕

x∈[A\G/S ]

Conjx Btf(Ax, Bx, S ,T ) Isoφ(M).

Now by definition one has

Btf(Ax, Bx, S , T ) = IndinfAx/Bx

(Ax∩S )Bx/(Ax∩T )Bx IsoψDefresS/T
(Ax∩S )T/(Bx∩S )T

Since T is (S , n)-expansive the S -core Nx of the subgroup (Bx ∩ S )T contains T properly, except for exactly

n elements x in [A\G/S ]. In other words, except for these n elements, Nx/T is a non-trivial subgroup of S/T
contained in (Bx ∩ S )T . As

DefresS/T
(Ax∩S )T/(Bx∩S )T = DefresS/Nx

(Ax∩S )T/(Bx∩S )T DefS/T
S/Nx

one has, by Lemma 33 applied to Isoφ(M), that

DefresS/T
(Ax∩S )T/(Bx∩S )T Isoφ(M) = {0}

for all x except n elements. Theses n elements have the property that the composition of φ with the conjugation

map links the sections (Ax, Bx) and (S ,T ), which implies that

Conjx Btf(Ax, Bx, S ,T ) Isoφ(M) � M.
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As this occurs exactly n times, one concludes that

DefresG
A/B(L) � nM.

The second claim in this theorem follows from the first and the definition of L. �
Example 35 Here is an example of n-expansivity in S 6.

(i) First, consider T := 〈(1, 2, 3)〉 × 〈(4, 5, 6), (5, 6)〉 � C3 × S 3. Its normalizer S is T � 〈(2, 3)(4, 6)〉. There are four

(S , S )-double cosets in S 6. Here is a list of representatives:

{id, (3, 4), (2, 4)(3, 5), (1, 4)(2, 5)(3, 6)}.
The first two elements satisfy the first part of (iv) in Definition 31 and the last two elements satisfy the second

part of that definition. Therefore T is an example of a 2-expansive subgroup in S 6. Setting M to be the sign

representation of S/T one obtains an example of a 2-stabilizing biset. However the module L := IndinfS 6

S/T (M) is

not an indecomposable module for S 6 over C.

(ii) Now consider T := 〈(5, 6)〉×〈(1, 2)(3, 4), (1, 3)(2, 4), (2, 3, 4)〉 � C2×A4. Its normalizer S is T � 〈(3, 4)〉. There

are three (S , S )-double cosets in S 6. Here is a list of representatives:

{id, (4, 5), (3, 5)(4, 6)}.
The second one satisfies the second part of Definition 31 and the two others the first part. Therefore T is another

example of a 2-expansive subgroup in S 6. Again, setting M to be the sign representation of S/T one obtains an

example of a 2-stabilizing biset, but the module L := IndinfS 6

S/T (M) is not indecomposable over C.

6. n-Stabilizing Bisets and Roquette Groups

In Bouc and Thévenaz (2012), Theorem 7.3 states that if k is a field, G a finite group and L a simple kG-module,

then there exists an expansive subgroup T of G such that

IndinfG
NG(T )/T DefresG

NG(T )/T (L) � L.

This theorem proves the existence of stabilizing bisets for simple modules. However, it is possible that this biset

is trivial, i.e. it is reduced to an isomorphism. The proof of the theorem shows that this could only be the case if

G is Roquette and L is faithful. Recall that a finite group G is said to be a Roquette group if all its normal abelian

subgroups are cyclic.

This raises the question of proving the existence, or non-existence, of stabilizing bisets for Roquette groups and

more generally of n-stabilizing bisets. The goal of this section is to study n-stabilization for Roquette groups. Let

G be a Roquette group and denote by F(G) the Fitting subgroup of G, which is the product of the normal subgroups

Op(G) for all primes p. As G is Roquette each Op(G) does not contain a characteristic abelian subgroup that is not

cyclic. By Theorem 4.9 of Gorenstein (1980), such groups are known. More precisely, each subgroup Op(G) is the

central product of an extraspecial group with a Roquette p-group. Roquette p-groups are known, see Chapter 5,

Section 4 of Gorenstein (1980), so one starts our study with these groups. Then, one continues with groups with a

cyclic Fitting subgroup, corresponding to cyclic Op(G) for every prime p.

6.1 Roquette p-Groups

The case of Roquette p-groups has already been studied in Bouc and Thévenaz (2012). It is shown that if U is a

stabilizing biset for a faithful simple module, then U has to be reduced to an isomorphism, see Theorem 9.3. One

will discuss the case of n-stabilizing bisets for n > 1.

Theorem 36 Let p be a prime number and let P be a Roquette p-group of order pk+1. Let U := IndinfG
A/B IsoφDefresG

C/D
be a n-stabilizing biset for L where L is a simple faithful CP-module. Then one has B = D = 1.

Proof. First note that by 17 and 18, the P-cores of B and D are trivial. In particular, B∩ Z(P) and D∩ Z(P) have to

be trivial, as these intersections are contained in the P-core of, respectively, B and D. It follows from Lemma 9.1
of Bouc and Thévenaz (2012) that B and D are trivial, except possibly if p = 2, P is dihedral or semi-dihedral, and

B and D are non-central subgroups of order 2. Therefore one has four cases to treat

• B and D are non-central subgroups of order 2,
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• B is a non-central subgroup of order 2 and D = 1,

• B = 1 and D is a non-central subgroup of order 2,

• B = 1 and D = 1.

One starts with a general remark on the first three cases that occur only if P is dihedral (with k ≥ 3), or semi-

dihedral (with k ≥ 3). As L is a simple faithful module, by looking at the character tables of D2k+1 and S D2k+1 , one

sees that the dimension of L is 2. Also the character of ResP
C2×Z(P)(L), for C2 a non-central subgroup of order 2, is

the following

1 c cz z
χ

ResP
C2×Z(P)(L) 2 0 0 −2

where c generates C2 and z generates Z(P). Thus the module χResP
C2×Z(P)(L) splits in the sum of the following two

characters of degree one

1 c cz z
1 1 −1 −1

1 −1 1 −1.

Therefore, DefresP
C2×Z(P)/C2

(L) is the sign representation.

One proves now that the first three cases are impossible. Consider first the case where B is a non-central subgroup of

order 2 without assumption on D. By Lemma 9.1 of Bouc and Thévenaz (2012), one knows that NP(B) = B×Z(P).

This fact forces us to have A = NP(B), otherwise the A/B-module M = Isoφ DefresP
C/D(L) would be trivial and by

Proposition 15 the module L would be trivial as well, but this contradicts the fact that L is faithful. As A/B is of

order 2, the module M is therefore forced to be copies of the sign representation M1. As L is of dimension 2, either

M = M1 or M = 2M1. We would like to know if IndP
A(InfA

A/B(M)) is a sum of copies of L. To do so one uses the

scalar product on characters and Frobenius reciprocity

〈
L, IndP

A(InfA
A/B(M1))

〉
=
〈
ResP

A(L), InfA
A/B(M1)

〉
= 1.

The latter equality holds because, as described in the general remarks above, ResP
A(L) is the sum of two non-

isomorphic represention of degree 1. It is easy to check that one of them is InfA
A/B(M1). Thus at most two copies

of L are in the decomposition of IndP
A(InfA

A/B(M)), which has dimension 2k−1 dim M. As k ≥ 3 one has

dim IndP
A(InfA

A/B(M)) = 2k−1 dim M >
〈
L, IndP

A(InfA
A/B(M))

〉
dim L.

Indeed, if k > 3, or k = 3 but dim M = 2, then 2k−1 dim M > 4 ≥
〈
L, IndP

A(InfA
A/B(M))

〉
dim L and if k = 3 and

dim M = 1 then 2k−1 dim M = 4 > 2 =
〈
L, IndP

A(InfA
A/B(M))

〉
dim L. So IndP

A(InfA
A/B(M)) contains other modules,

non-isomorphic to L, in its decomposition which implies that it cannot be the sum of n copies of L.

Assume now that B = 1 and D is a non-central subgroup of order 2. As above one has C = NP(D) = D × Z(P) and

M is the sign representation. Moreover the subgroup A is of order 2 as A is isomorphic to C/D. We would like to

know if IndP
A(M) is a sum of copies of L. Again using the scalar product one has

〈
L, IndP

A(M)
〉
=
〈
ResP

A(L),M
〉
≤ 2.

The latter inequality occurs because L is of dimension 2 and therefore the sign representation can only occur twice.

In fact, it is easy to see that it is equal to 2 if A = Z(P) and 1 otherwise. In any case one has

dim IndP
A(M) = 2k > 4 = 2 dim L ≥

〈
L, IndP

A(M)
〉

dim L.

This means again that IndP
A(M) contains other modules, non-isomorphic to L, in its decomposition and so it cannot

be the sum of n copies of L.

Finally we are restricted to the last case, namely B = {1} = D and the result follows. �
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We are therefore reduced to U := IndP
A Isoφ ResP

C . In this case n must be equal to |P : A| as the restriction does

not change the dimension of the module. Now, if we suppose that the n-stabilizing biset is strongly minimal, then

this implies that A = C and A is a normal subgroup of P. Indeed, by Corollary 13, one can suppose that (A, 1)

and (C, 1) are linked, which implies that A = C and by Theorem 12, there are n double (A, A)-cosets in P and as

n = |P : A| this forces A to be a normal subgroup of P.

This is why we focus on that situation and completly describe it in the following theorem.

Theorem 37 Let p be a prime number and let P be a Roquette p-group of order pk+1. Let A be a normal subgroup
of P, U := IndP

A Isoφ ResP
A and n = |P : A|. Then the following conditions are equivalent

(1) P is generalized quaternion (with k ≥ 2), dihedral (with k ≥ 3), or semi-dihedral (with k ≥ 3) and A is the
maximal cyclic subgroup of order pk. In particular, n and p are equal to 2.

(2) U(L) � nL for all faithful CP-modules L.

(3) U(L) � nL for a faithful CP-module L.

Proof. Throughout the proof we denote by M the module ResP
A(L). First suppose that the first condition holds, and

prove 2. Let L be an arbitrary faithful CP-module. By Clifford’s Theorem, one has ResP
A(L) � V ⊕ gV, for V a

representation of dimension 1 of A. So

IndP
A Isoφ ResP

A(L) � IndP
A Isoφ(V) ⊕ IndP

A Isoφ(
gV)

and using Relations 1.1.3 of Bouc (2010) and the fact that A is normal one has

IndP
A Isoφ(

gV) � IndP
A Isoφ(V).

Thus, one obtains that U(L) � 2 IndP
A Isoφ(V). Moreover, using Frobenius reciprocity one has U(L) � L ⊕ (L ⊗

InfP
P/A(M1)

)
, where M1 is the sign represention for P/A. So

2 IndP
A Isoφ(V) � L ⊕ (L ⊗ InfP

P/A(M1)
)

and by the Krull Schmidt theorem one deduces that IndP
A Isoφ(V) � L and therefore U(L) � 2L, which is the second

condition.

The fact that (2) implies (3) is obvious.

We finally prove that 3 implies 1 by proving the contrapositive. Suppose first that P is a cyclic group. Then by

Clifford’s Theorem ResP
A(L) = V where V is a representation of dimension 1 of A. But then one has

〈
L, IndP

A Isoφ(V)
〉
=
〈
ResP

A(L), Isoφ V
〉
≤ 1.

Yet, the dimension of IndP
A(V) is |P : A| > 1, which is stricly bigger than one and so other modules than L appear

in the decomposition of IndP
A(V) which means that it cannot be a sum of copies of L.

Suppose that P is not cyclic. One starts with A a maximal non-cyclic subgroup of P, so that |P : A| = 2. Using

Frobenius reciprocity one has U(L) = L⊕ (L⊗ InfP
P/A(M1)

)
where M1 is the sign representation of P/A. In order to

have n-stabilization one needs L⊗InfP
P/A(M1) to be isomorphic to L. In terms of characters one must have χL(g) = 0

for all g which are not in A, as these elements act on InfP
P/A(M1) as −1. Looking at the character tables of non-cyclic

Roquette p-groups one can check that this does not occur if A is a maximal non-cyclic subgroup of P. So U does

not n-stabilize L. As a consequence, one deduces that ResP
A(L) is irreducible. Indeed, if not then by Clifford’s

Theorem one could decompose ResP
A(L) as the sum of two conjugate modules and using the same argument as

above it would give us an example of 2-stabilization. As ResP
A(L) is irreducible, one can actually see that every

irreducible A-module can be written in this manner. The reason is that ResP
A(CP) = CA ⊕ CA. Furthermore, by

the argument above, we note that this implies that if V is an irreducible A-module, then IndP
A(V) � IndP

A ResP
A(L) �

L ⊕ (L ⊗ InfP
P/A(M1)

)
� L1 ⊕ L2 for L1 and L2 two non-isomorphic irreducible CP-modules.

Finally, suppose that P is not cyclic and A is not maximal. Then, there exists a non-cyclic maximal subgroup H
containing A and

IndP
A(M) � IndP

H IndH
A (M).
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Decompose IndH
A (M) as the sum of irreducible H-modules Vi and using the remark above on the induction on

modules from a maximal subgroup, one obtains that

IndP
A(M) � IndP

H(⊕iVi) � ⊕i(Li1 ⊕ Li2)

with, for all i, Li1 and Li2 two non-isomorphic irreducible P-modules. Thus the module IndP
A(M) cannot be only n

copies of a module L. �
6.2 Groups With a Cyclic Fitting Subgroup

In this section one proves that if G is a solvable group such that F(G) = Cn =
∏

i Cpki
i

and U is a stabilizing biset

for a simple faithful CG-module, then U has to be reduced to an isomorphism. Then one describes the case of

ν-stabilizing bisets as one did for Roquette p-groups, where ν is an integer. In this section, G is assumed to be

solvable. Suppose n = 2k pk1

1
. . . pkm

m for some distinct odd primes pi and integers k and ki, so Cn = C2k ×∏m
i=1 Cpki

i
.

First note that it is a well known fact that CG(F(G)) ≤ F(G) and therefore G/F(G) injects into Out(F(G)). Thus

one has the following exact sequence

{1} → Cn → G → S → {1}
where S is a subgroup of Aut(Cn). The map ι: Cn → G is the inclusion map. The map π: G → S sends an element

g to the conjugation map cg. Suppose moreover that S is a subgroup of C2 ×∏i Cpi−1 where C2 is either generated

by β1: g �→ g−1 or β2: g �→ g−1+2k−1

where g is a generator of C2k with k > 2, or S ≤ ∏i Cpi−1 if k ≤ 2. This added

condition is to ensure that G is Roquette, see Theorem 3.7 of Monnard (2014). We start with a number of general

lemmas.

Lemma 38 Let G be an extension of S by Cn as above. Let D be a subgroup of G such that D ∩ Cn = {1}, then
NCn (D) = CCn (D) = CCn (π(D)).

Proof. For the first equality, let x ∈ NCn (D). Then, for all d ∈ D one has xdx−1 ∈ D. But xdx−1 = x dx−1d which

belongs to D if and only if x dx−1 = 1 that is x = dx . This implies that x is an element of CCn (D). The other

inclusion is trivial.

For the second equality, note that the action of D on Cn is the same as the action of π(D) on Cn by definition of the

map π. �
Lemma 39 Let C2k be a cyclic group of order 2k and C2 its subgroup of order 2. Denote by T+ and T− the trivial
and the sign C-representation of dimension 1 of C2. Then the module Ind

C2k

C2
(T+) decomposes as the sum of all non-

faithful representations of C2k and the module Ind
C2k

C2
(T−) decomposes as the sum of all faithful representations of

C2k .

Proof. Observe that

Ind
C2k

C2
(T−) ⊕ Ind

C2k

C2
(T+) = Ind

C2k

C2
(T− ⊕ T+) = Ind

C2k

C2
(CC2) = CC2k .

But CC2k decomposes as the sum of all simple CC2k -modules. Using the Krull-Schmidt Theorem and the fact

that Ind
C2k

C2
(T+) is not faithful as C2 is in its kernel, one can conclude that Ind

C2k

C2
(T+) decomposes as the sum of all

non-faithful representations of C2k . Therefore the module Ind
C2k

C2
(T−) has to decompose as the sum of all faithful

representations of C2k . �
Theorem 40 Let G be a Roquette group with F(G) = Cn. Let U := IndinfG

A/B Isoφ DefresG
C/D be a ν-stabilizing biset

for L, where L is a simple faithful CG-module. Then B = {1} and A contains C2Cp1
. . .Cpm .

Proof. The idea of this proof is to restrict the module L to certain well-chosen subgroups using once Clifford’s

Theorem and then Mackey’s Formula as νL can be written as U(L). Then one utilizes the fact that these two

decompositions should be isomorphic.

By Proposition 17, one knows that B has a trivial G-core. Therefore B ∩ Cn = {1}. Denote by M̃ the A-module

InfA
A/B IsoφDefresG

C/D(L) and by H the product C2Cp1
. . .Cpm . Using Clifford’s Theorem one has

ResG
H(νL) � νResG

H(L) � ν ⊕g∈G/I μ gV

where V is a simple H-module and I := {g ∈ G | gV � V}. As L is faithful the module ResG
H(L) is also faithful and

so is V , because ker( gV) = gker(V) = ker(V), as the subgroups of H are characteristic. Now by Mackey’s Formula
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one has

ResG
H(νL) = ResG

H(IndG
A (M̃)) �

⊕

g∈[H\G/A]

IndH
H∩ gA

g(ResA
H∩A(M̃)

)
.

Let Q be a complement of H ∩ A in H. Such a complement exists because H ∩ A ≤ C2Cp1
. . .Cpm and so

Q = C|H|/|H∩A|. Now one extends ResA
H∩A(M̃) to an H-module N by saying that Q acts trivially on N. Therefore

one has ResH
H∩A(N) = ResA

H∩A(M̃). Using this in the previous equation one has:

ResG
H(νL) �

⊕

g∈[H\G/A]

IndH
H∩ gA

g(ResA
H∩A(M̃)

)

�
⊕

g∈[H\G/A]

IndH
H∩ gA

g(ResH
H∩A(N)

)

� IndH
H∩A ResH

H∩A(N) ⊕
⊕

g∈[H\G/A],
g�1

IndH
H∩ gA

g(ResH
H∩A(N)

)

� N ⊕ (N ⊗ Ir2) ⊕ · · · ⊕ (N ⊗ Ir f ) ⊕
⊕

g∈[H\G/A],
g�1

IndH
H∩ gA

g(ResH
H∩A(N)

)
,

where {Ir j} is a set of isomorphism classes of simple C[H/H ∩ A]-modules for 1 ≤ j ≤ f , with f = |H : H ∩ A|.
The kernel of N is Q but, as mentioned before, ResG

H(L) is a sum of faithful modules, therefore Q is trivial and so

H ∩ A = H. This in turn implies that H ≤ A and therefore normalizes B, because B is normal in A. This implies

that B acts trivially on H by Lemma 38. Therefore B is either trivial or π(B) is generated by β1 or β2, where π
denotes the homomorphism from G to S . Suppose the latter holds, so k > 2. By Clifford’s Theorem

νResG
C2k

(L) = ν
⊕

g∈G/I1

m1
gL1,

where L1 is a simple C2k -module and I1 := {g ∈ G | gL1 � L1}. By definition Cn is a subgroup of I1. As
∏

i Cpi−1

acts trivially on C2k , it is a subgroup of I1/Cn and so the order of G/I1 is at most 2. This implies that there are at

most 2 non-isomorphic modules appearing in ResG
C2k

(L).

Next we note that

C2 = H ∩C2k ≤ A ∩C2k ≤ NG(B) ∩C2k = NC2k (B) = C2

where the last equality holds because either for β1 or β2 one has C2k (〈βi〉) = {c ∈ C2k | c2 = 1} = C2. Using this

remark and Mackey’s Formula we restrict L to C2k :

ResG
C2k

(νL) �
⊕

g∈[C2k \G/A]

Ind
C2k

C2k∩ gA
g(ResA

C2k∩A(M̃)
)

� Ind
C2k

C2
ResA

C2
(M̃) ⊕

⊕

g∈[C
2k \G/A]

g�1

Ind
C2k

C2k∩ gA
g(ResA

C2k∩A(M̃)
)
.

Now ResA
C2

(M̃) decomposes as a sum of representations that are either the trivial or the sign representation, but the

trivial cannot occur. Indeed suppose the trivial representation T+ appears in the decomposition of ResA
C2

(M̃). Then

Ind
C2k

C2
(T+) is not a faithful representation as C2 is in its kernel, contrary to the fact that ResG

C2k
(L) is faithful. There-

fore ResA
C2

(M̃) is a sum of copies of the sign representation T− and Ind
C

2k

C2
ResA

C2
(M̃) = ⊕ Ind

C
2k

C2
(T−). But Ind

C
2k

C2
(T−)

decomposes as the sum of all faithful representations of C2k by Lemma 39 and there are 2k−1 such non-isomorphic

representations. So the module ResG
C2k

(L) decomposes with at least 2k−1 non-isomorphic representations. As k > 2

one has 2k−1 > 2 and so a contradiction is obtained with the decomposition using Clifford’s Theorem. Therefore

the only possibility is that B = {1}. �
Theorem 41 Let G be a Roquette group with F(G) = Cn. Let U := IndinfG

A/B IsoφDefresG
C/D be a stabilizing biset

for L, where L is a simple faithful CG-module. Then one has (A, B) = (C,D) = (G, 1).

Proof. By Proposition 25 it is sufficient to look at minimal stabilizing bisets. If U is minimal, one knows that if

B = {1} then A = G by Proposition 8.4 of Bouc and Thévenaz (2012), but Theorem 40 shows that B = {1} and so

the results follows. �
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One continues our investigation of ν-stabilizing bisets for ν > 1. Next we reduce our study to strongly minimal

bisets.

Theorem 42 Let G be a Roquette group with F(G) = Cn. Let U := IndG
A IsoφDefresG

C/D be a strongly minimal
ν-stabilizing biset for L where L is a simple faithful CG-module. Then D = {1} and A = C is a normal subgroup of
G.

Proof. First recall that by Proposition 18, we know that D has a trivial G-core. Therefore D∩Cn = {1}. By Corollary

13, one can suppose that (A, 1) and (C,D) are linked, which implies that A ∩ C = A and so A ≤ C, therefore A
normalizes D. As A contains C2Cp1

. . .Cpm by Theorem 40, this implies that D acts trivially on C2Cp1
. . .Cpm by

Lemma 38. Therefore D is either trivial or π(D) is generated by β1 or β2, where π denotes the homomorphism from

G to S . As in the proof of Theorem 40, one restricts L to C2k using first Clifford’s Theorem and secondly Mackey’s

Formula to obtain with exactly the same arguments that D = {1}. The key ingredient is that A ∩ C2k is again equal

to C2 as A normalizes D.

Finally, as the sections are linked and D = {1} one obtains that A = C. Moreover, by Theorem 12, there are ν
double (A, A)-cosets in G, but also ν = |G : A|, which forces A to be a normal subgroup of G. �
One finishes our study by completely describing the remaining case.

Theorem 43 Let G be a Roquette group with F(G) = Cn. Let A be a normal subgroup of G, U := IndG
A ResG

A and
ν = |G : A|. Then the following conditions are equivalent

(1) A contains F(G).

(2) U(L) � νL for all faithful CG-modules L.

(3) U(L) � νL for a faithful CG-module L.

Proof. Suppose first that A contains F(G), we will then prove that U := IndG
A ResG

A is a |G : A|-stabilizing biset for

an arbitrary faithful CG-module L. First note that L can be written as IndG
F(G)(ξ), where ξ is a primitive nth root of

unity. Indeed, every irreducible CG-module comes from a summand of an induction from F(G), but the module

IndG
F(G)(ξ) is irreducible as the conjugate representations of ξ by the action of G/F(G) are not isomorphic. The

condition of primitivity on the root is to ensure the faithfulness of the induced module. Furthermore, as A contains

F(G), then L � IndG
A (V) where V := IndA

F(G)(ξ). The A-module V is irreducible because IndG
F(G)(ξ) is. Therefore,

using Mackey’s Formula, one has

U(L) = IndG
A ResG

A (L) � IndG
A ResG

A IndG
A (V) �

⊕

g∈G/A
IndG

A ( gV)

= |G : A| IndG
A (V) � |G : A|L,

where the isomorphism between the first and the second line holds because A is normal. As L was arbitrarily

chosen, this holds for any faithful CG-module L.

The fact that (2) implies (3) is obvious.

We prove now that (3) implies 1 by proving the contrapositive. Let A be a normal subgroup of G such that A∩F(G)

is not equal to F(G). Recall that by Theorem 40, one knows that A contains C2Cp1
. . .Cpm , so this intersection is

non-trivial. One shows that it is not possible to ν-stabilize L for all faithful CG-modules L. One knows that

L � IndG
F(G)(ξ) where ξ is a primitive nth root of unity. Then, by Mackey’s Formula, one has

U(L) � IndG
A ResG

A IndG
F(G)(ξ) �

⊕

g∈[A\G/F(G)]

IndG
A IndA

A∩F(G) Res
F(G)
A∩F(G)

( gξ)

�
⊕

g∈[A\G/F(G)]

IndG
A∩F(G) Res

F(G)
A∩F(G)

( gξ)

� |A\G/F(G)| IndG
A∩F(G) Res

F(G)
A∩F(G)

(ξ)

� |A\G/F(G)| IndG
F(G) Ind

F(G)
A∩F(G)

Res
F(G)
A∩F(G)

(ξ).

Using Frobenius reciprocity one has Ind
F(G)
A∩F(G)

Res
F(G)
A∩F(G)

(ξ) � ⊕ jξ ⊗ Ir j where {Ir j} is a set of isomorphism classes

of simple C[F(G)/(F(G)∩A)]-modules. The sum is not reduced to one module as A∩F(G) � F(G) by assumption.
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This means that

U(L) �
⊕

j

|A\G/F(G)| IndG
F(G)(ξ ⊗ Ir j).

Thus our purpose is to show that IndG
F(G)(ξ ⊗ Ir j) is not isomorphic to L = IndG

F(G)(ξ) for at least one representation

Ir j. To do so, one proves that ξ ⊗ Ir is not conjugate, by an element of G/F(G) to ξ, where Ir denotes a non-trivial

C[F(G)/(F(G) ∩ A)]-module. We specify which Ir is taken later on.

Let p be a prime dividing |F(G) : A ∩ F(G)| and let i be its highest power dividing |F(G) : A ∩ F(G)|. Choose p
such that pi is strictly smaller that pk, where k is the highest power of p such that pk divides n. As F(G) is cyclic,

one decomposes Ir as the tensor product of a representation θ of Cpi and a representation θc of its complement in

F(G)/(F(G) ∩ A), i.e. Ir = θ ⊗ θc. Note that θ is a pith root of unity. In the same fashion ξ = ξ1 ⊗ ξ2, where ξ1 is a

pkth root of unity and ξ2 is a representation for Cn/pk . Then one has

ξ ⊗ Ir � ξ1 ⊗ θ ⊗ ξ2 ⊗ θc.

One now sets Ir such that θ = ξ
pk−i

1
and then one has ξ1 ⊗ θ = ξ1+pk−i

1
. Because of the assumption on S made at the

beginning of the section, this representation cannot be conjugate to the representation ξ1 by an element of G/F(G).

Indeed, such an element would have order a divisor of pi, as such an element must be of the following form

α : ξ1 �→ ξ1+pk−i

1
.

Moreover, it is easy to check that αδ(ξ1) = ξ
1+δpk−i

1
and so αpi

= id. So ξ ⊗ Ir is not conjugate to ξ. Finally, one has

proved that IndG
F(G)(ξ ⊗ Ir) � L = IndG

F(G)(ξ) and therefore other modules than L appear in the decomposition of

U(L). �
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