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Abstract

Several full-rank representations of the A(2)
T,S inverse of a given constant complex matrix, which are based on various

complete orthogonal factorizations, are introduced. Particularly, we introduce a full rank representation based on

the Singular Value Decomposition (S VD) as well as on a combination of the QR decomposition and the S VD of

the triangular matrix produced by the QR decomposition. Furthermore, representations based on the factorizations

to a bidiagonal form are defined. The representations arising from reductions to bidiagonal form are applicable to

real full row rank matrices. Illustrative numerical examples as well as an extensive numerical study are presented.

A comparison of three introduced methods is presented.

Keywords: generalized inverse A(2)
T,S , complete orthogonal factorizations, S VD factorization, QR factorization,

full-rank representation

1. Introduction

Computation of generalized inverses by means of various matrix decompositions has been extensively investigated

in the scientific literature.

A fast computational method for computing the Moore-Penrose inverse A† based on the QR decomposition of the

matrix A is introduced in (Katsikis et al., 2011). The QR decomposition is assumed to be defined as in Theorem

3.3.11 in (Watkins, 2002) and its extension to complex matrices is used from (Godall, 1993). An extension of the

representation introduced in (Katsikis et al., 2011) to the set of outer inverses with prescribed range and null space

is presented in (Stanimirović et al., 2012b).

Symbolic computation of A(2)
T,S inverses on the basis of the QDR decomposition of the matrix W is presented in

(Stanimirović et al., 2012). The canonical form of the DMP inverse ADAA†, of a square matrix A, is presented

in (Malik & Thome, 2014). This representation of the DMP inverse is based on the Hartwig-Spindelböck ma-

trix decomposition. The authors of the paper (Issa & Bdair, 2014) introduced some new bounds for the zeros

of polynomials by using the QR and LU decompositions of the corresponding companion matrices. Recently,

representations of {2, 4} and {2, 3} generalized inverses based on the S VD are considered in (Shaini & Hoxha,

2013).

In the present paper we develop several numerical algorithms for computing A(2)
T,S inverses. These algorithms are

based on the full rank representation of an appropriately chosen n × m matrix W arising from various complete

orthogonal factorizations of W.

Our second intention is to examine properties of the introduced methods. For this reason, the paper presents a

greater number of numerical experiments in which the introduced methods are compared with each other.

The paper is organized as follows. The second section surveys some useful basic notions and notations concerning

generalized inverses. In the third section we derive two numerical algorithms for computing outer inverses. These

algorithms are based on the S VD factorization of an appropriately chosen matrix W as well as on the successive

application of QR decomposition and S VD. Representations based on bidiagonal forms, applicable to real full row

rank matrices, are introduced in Section 4. Numerical examples on various test matrices are presented in the last

section.
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2. Preliminaries

Following the usual notation, by R
m×n
r (resp. Cm×n

r ) we denote the set of all real (resp. complex) m × n matrices of

rank r. By I we denote the unit matrix of an appropriate order. Furthermore AT , R(A), rank(A) and N(A) denote

the transpose, the range, the rank and the null space of A ∈ Rm×n.

For any matrix A of the order m × n consider the following matrix equations in X, where ∗ denotes conjugate and

transpose:

(1) AXA=A (2) XAX=X (3) (AX)∗=AX (4) (XA)∗=XA.

In the case m = n we also consider the following equations

(5) AX = XA (1k) Ak+1X = Ak.

For a sequence S of elements from the set {1, 2, 3, 4, 5, 1k}, the set of matrices obeying the equations labeled by the

numbers collected in S is denoted by A{S}. A matrix from A{S} is called an S-inverse of A. The matrix X = A† is

said to be the Moore-Penrose inverse of A satisfying equations (1)–(4). The group inverse A# is the unique {1, 2, 5}
inverse of A, and exists if and only if ind(A) = min

k
{k| rank(Ak+1) = rank(Ak)} = 1. A matrix X = AD is said to be

the Drazin inverse of A if (1k) (for some positive integer k), (2) and (5) are satisfied. In the case ind(A) = 1, the

Drazin inverse of A is equal to the group inverse A# of A.

The rank of generalized inverse X is important, and it will be convenient to consider the subset A{i, j, k}s of A{i, j, k},
consisting {i, j, k}-inverses of rank s (see Ben-Israel & Greville, 2003).

If A ∈ R
m×n
r , T is a subspace of Rn of dimension t ≤ r and S is a subspace of Rm of dimension m − t, then A

has a {2}-inverse X such that R(X) = T and N(X) = S if and only if AT ⊕ S = R
m, in which case X is unique

and it is denoted by A(2)
T,S . The outer generalized inverses with prescribed range and null-space are of the special

importance in matrix theory. The {2}-inverses have application in constructing the iterative methods for solving

the nonlinear equations (Ben-Israel & Greville, 2003; Nashed, 1993) as well as in statistics (Getson & Hsuan,

1988; Husen & Langenberg, 1985). In particular, outer inverses play an important role in stable approximations

of ill-posed problems and in linear and nonlinear problems involving rank-deficient generalized inverse (Nashed,

1976; Zheng & Bapat, 2004). On the other hand, it is well known that the Moore-Penrose inverse A† and the

weighted Moore-Penrose inverse A†M,N , the Drazin inverse AD and the group inverse A#, as well as the Bott-Duffin

inverse A(−1)
(L)

and the generalized Bott-Duffin inverse A(†)
(L)

can be presented by a unified approach, as generalized

inverses A(2)
T,S for appropriate choice of matrices T and S . For example, the next is valid for a rectangular matrix A

(Ben-Israel & Greville, 2003):

A† = A(2)

R(AT ),N(AT )
, A†M,N = A(2)

R(A�),N(A�)
, (1)

where M,N are positive definite matrices of appropriate orders and A� = N−1AT M. For a given square matrix A
the next identities are satisfied (Ben-Israel & Greville, 2003; Chen, 1990; Wang et al., 2004):

AD = A(2)

R(Ak),N(Ak)
, k = ind(A), A# = A(2)

R(A),N(A)
. (2)

In the next proposition we restate the full-rank representation of {2}-inverses with prescribed range and null space

from (Shen & Cheng, 2007).

Proposition 1 (Shen & Cheng, 2007) Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let S be a

subspace of Cm of dimensions m − s. In addition, suppose that W ∈ Cn×m satisfies R(W) = T,N(W) = S . Let W
has an arbitrary full-rank decomposition, that is W = FG. If A has a {2}-inverse A(2)

T,S , then:

(1) GAF is an invertible matrix;

(2) A(2)
T,S = F(GAF)−1G.

3. Representations Based on QRD and SVD

In this section, it is assumed that A ∈ C
m×n
r is an input matrix and W ∈ C

n×m
s , 0 < s ≤ r is an arbitrary but fixed

matrix. A complete orthogonal factorization of W is defined by

W = U
[

T 0

0 0

]
V∗, (3)
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where T is a square nonsingular matrix of dimension s × s, s = rank(W). It is assumed that the zero blocks in

positions (1, 2) and (2, 2) of the block matrix in (3) may vanish. In order to simplify computations and derive a

full-rank representation of W, it is necessary to consider partitions of matrices U and V into appropriate blocks

U =
[
Us UR

]
, V =

[
Vs VR

]
, (4)

where Us and Vs denote the first s columns of U and V , respectively. Then

W = UsTV∗s

is a full-rank factorization of W obtained from the complete orthogonal factorization (3).

In this section we will prove that the QR factorization and the S VD are various appearances of the complete

orthogonal factorization. Also, in Section 4 we show that a complete orthogonal factorization of W can be derived

from its reduction to a bidiagonal form.

Suppose that the QR factorization of W is of the form

WP = QR, (5)

where P is an m × m permutation matrix, Q ∈ C
n×n, Q∗Q = In and R ∈ C

n×m
s is an upper trapezoidal matrix.

Assume that Q and R are partitioned as

Q =
[
Qs QR

]
, R =

[
R11 R12

O O

]
=

[
R1

O

]
, (6)

where Qs consists of the first s columns of the matrix Q and R11 ∈ Cs×s is nonsingular.

The idea to calculate the Moore-Penrose inverse using the QR decomposition is originated in (Katsikis et al., 2011):

if AP = QR is a QR factorization of A, then A† = PR†Q∗. A generalization of this result to the set of outer inverses

is introduced in (Stanimirović et al., 2012b): if A has a {2}-inverse A(2)

R(W),N(W)
, then R1P∗AQs is an invertible matrix

and

A(2)

R(W),N(W)
= Qs(R1P∗AQs)

−1R1P∗ = A(2)

R(Qs),N(R1P∗). (7)

The QR factorization (6) is not a complete orthogonal factorization unless R12 = 0. Therefore, (7) is not derived

from the complete orthogonal factorization. However, R12 can be eliminated by applying further orthogonal (or

unitary) transformations from the right to the upper trapezoidal matrix
[
R11 R12

]
:

[
R11 R12

]
Z =
[
T11 0

]
.

This gives the complete orthogonal factorization of W:

W = Q
[
T11 0

0 0

]
(PZ)∗. (8)

Therefore, (8) is the complete orthogonal factorization of W arising from (5), where T is equal to T11. Further-

more, W = QsT11(PZ)∗ is the full-rank factorization of W (called the QR full-rank factorization). The following

representation can be derived as an analogy of (7).

Corollary 1 Let A ∈ Cm×n
r be the given matrix and W ∈ Cn×m

s , s ≤ r be selected. Assume that (8) the complete
orthogonal factorization of W. If A has a {2}-inverse A(2)

R(W),N(W)
, then T11(PZ)∗AQs is an invertible matrix and

A(2)

R(W),N(W)
= Qs (T11(PZ)∗AQs)

−1 T11(PZ)∗ = A(2)

R(Qs),N((PZ)∗). (9)

Suppose that the S VD factorization of W ∈ Cn×m
s is of the general form

W = UΣV∗, (10)

where U ∈ Cn×n
s and V ∈ Cm×m

s are column-orthogonal and Σ ∈ Cn×m
s is a diagonal matrix with the singular values

of W in descending order σ1 ≥ σ2 ≥ · · · ≥ σs on the main diagonal.
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The S VD is a complete orthogonal factorization in which the block T is the diagonal matrix with singular values

of W on the main diagonal and U, V are left orthogonal. It is known that the S VD (10) can be presented in a more

efficient form

W = UsΣsV∗s , (11)

where

U =
[
Us UR

]
, V =

[
Vs VR

]
, Σ =

[
Σs O
O O

]
,

Us ∈ Cm×s, Vs ∈ Cn×s, Σs=diag {σ1, . . . , σs} .
(12)

Further, discarding small singular values in Σs, it is possible to use the Truncated Singular Value Decomposition

(TS VD) of W and generate a full-rank factorization of its approximation W(t), defined by

W(t) = UtΣtV∗t , t ≤ s. (13)

Immediately from Proposition and the full rank decomposition (13) we obtain the following representation of

outer inverses.

Lemma 1 Let A∈Cm×n
r be the given matrix and W ∈Cn×m

s , s ≤ r be selected. If (13) is the full-rank factorization
of W(t) then the following is valid

A(2)

N(Ut),N(V∗t )
= Ut

(
ΣtV∗t AUt

)−1
ΣtV∗t , t ≤ s. (14)

Algorithm 1 defines the method for computing the outer inverse of A which is based on the S VD full-rank decom-

position of W.

Algorithm 1 Computing the A(2)
T,S inverse of the matrix A using (14).

(Algorithm SVDATS2)
Require: The matrix A of dimensions m × n and of rank r.

1: Choose arbitrary but fixed n × m matrix W of rank s ≤ r.

2: Compute the S VD full-rank decomposition of the matrix W(t) in the form (13).

3: Solve the matrix equation

ΣtV∗t AUtX = ΣtV∗t

with respect to unknown matrix X.

4: Compute the output

A(2)

N(Ut),N(V∗t )
= UtX.

We also define representations based on a combination of the QR decomposition of A and the S VD of the triangular

matrix R. This representation is known from (Moor, 1991, 1992). In applications where m � n, it is often a good

idea to use the S VD of the triangular factor that appears in the QR decomposition of A (see Moor, 1991):

A = QR

= Q
(
URΣR

(
VR
)∗)

= (QUR
r )
(
ΣR

r

(
VR

r

)∗)
,

(15)

where UR
r contains first r columns of UR, Σr = diag{σR

1 , . . . , σ
R
r }, VR

r contains first r columns of VR.

The full-rank factorization (15) of A gives us idea to apply S VD of the triangular factor arising from the QR
decomposition of W ∈ Rn×m

s , 0 < s ≤ r:

WP = QWRW = QW (UΣV∗). (16)

Later, one can use the following truncated form of (16):

W(t) = (QWUt)ΣtV∗t P∗, 0 < t ≤ s ≤ r, (17)
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where Ut contains first t columns of U, Σt = diag{σR
1 , . . . , σ

R
t } is a diagonal matrix defined by the first t singular

values σR
1 , . . . , σ

R
t of RW and Vt contains first t columns of V . Clearly, (17) is a full-rank factorization of W(t).

Therefore, the induced outer inverse of A with the range R(QW ) and null space N(V∗t P∗) is defined by

A(2)

R(QW ),N(V∗t P∗) = (QWUt)
(
ΣtV∗t P∗AQWUt

)−1
ΣtV∗t P∗. (18)

Algorithm 2 defines the method for computing outer inverse of A which is defined in (18).

Algorithm 2 Computing the A(2)
T,S inverse of the matrix A using the full-rank representation (18).

(Algorithm QRSVDATS2)
Require: The matrix A of dimensions m × n and of rank r.

1: Choose arbitrary but fixed n × m matrix W of rank s ≤ r.

2: Compute the QR decomposition of the matrix W in the form (16).

3: Compute the TS VD decomposition of the matrix RW and derive the factorization (17) of W(t).

4: Solve the matrix equation

ΣtV∗t P∗AQWUtX = ΣtV∗t P∗

with respect to unknown matrix X.

5: Compute the output

A(2)

R(QW ),N(V∗t P∗) = QWUtX.

4. Representations Based on Bidiagonal Forms

In this section we generalize two algorithms from (Smoktunowicz & Wróbel, 2012). The first algorithm from

(Smoktunowicz & Wróbel, 2012) is restated in Algorithm 3.

Algorithm 3 Computing A† of a full-column rank matrix A.

(Algorithm V (Bidiag1) from (Smoktunowicz & Wróbel, 2012))
Require: The matrix A of dimensions m × n and of rank n.

1: Use Golub-Kahan algorithm to reduce A to a bidiagonal form A = UBVT , where U ∈ Rm×n is left orthogonal

(i.e. UT U = In), V ∈ Rn×n is orthogonal and B ∈ Rn×n is bidiagonal (i.e. the nonzero elements can be located

on the main diagonal or on the superdiagonal only).

2: Solve the equation BY = UT for Y by back substitution.

3: Compute the output

X = VY = A† = VB−1UT .

The second algorithm from (Smoktunowicz & Wróbel, 2012) is restated in Algorithm 4.

Algorithm 4 Computing A† of a full-column rank matrix A.

(Algorithm VI (Bidiag2) from (Smoktunowicz & Wróbel, 2012))
Require: The matrix A of dimensions m × n and of rank n.

1: Find the QR decomposition of A (A = QR).

2: Bidiagonalize R, as described in Algorithm V: R = UBVT , where U ∈ R
n×n is orthogonal (i.e. UT U = In),

V ∈ Rn×n is orthogonal, and B ∈ Rn×n is bidiagonal.

3: Solve the equation BY = (QU)T for Y by back substitution.

4: Compute the output

X = VY = A† = VB−1(QU)T .

A complete orthogonal factorization of W can be obtained starting from its bidiagonal form. Introduced general-

izations of Algorithm 3 and Algorithm 4 are applicable to real full row rank matrices. If A is of the order m × n
and of rank m ≤ n, introduced algorithms generate the set of outer inverses of A of rank m, denoted by A{2}m. The

bidiagonal form of the matrix W ∈ Rn×m
m , defined in (Ralha, 2003), is used to compute outer inverses of A. As it is

stated in (Smoktunowicz & Wróbel, 2012), the assumption rank(W) = m guarantees invertibility of B. This means

that W = UBVT is a complete orthogonal factorization of A. In the sequel we define a method to obtain a complete

orthogonal factorization of W ∈ Rn×m
m starting from its bidiagonal form.
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Proposition 2 (Ralha, 2003) Let W ∈ Rn×m satisfy n ≥ m = rank(W). There exist orthogonal U ∈ Rn×n, orthogonal
V ∈ Rm×m and upper bidiagonal matrix

B =
[
B̃
0

]
∈ Rn×m,

where the block B̃ is bidiagonal, such that the following factorization of W holds:

W = UBVT . (19)

Theorem 1 Let A ∈ R
m×n
m be a given matrix satisfying n ≥ m and W ∈ R

n×m
n be a selected but fixed matrix. Let

(19) be the bidiagonal form of W. Let U be partitioned into blocks

U =
[
Um UR

]
,

where Um denotes the first m rows of U. Then

W = UmB̃VT (20)

is a complete orthogonal factorization of W. Also,

W = FG, F = Um, G = B̃VT (21)

is a full-rank factorization of Wand

A(2)

R(Um),N(VT )
= Um

(
B̃VT AUm

)−1
B̃VT . (22)

Using the representation (22) from Theorem we are in a position to state Algorithm 5.

Algorithm 5 Computing the A(2)
T,S inverse of A ∈ Rm×n using (22).

(Algorithm Bidiag1ATS2)
Require: The matrix A of dimensions m × n and of rank m.

1: Choose arbitrary but fixed n × m matrix W of rank m.

2: Compute the factorization of the matrix W in the form (20).

3: Solve the matrix equation

B̃VT AUmX = B̃VT

with respect to unknown matrix X.

4: Compute the output

A(2)

R(Um),N(VT )
= UmX.

In order to generalize Algorithm 4, in the sequel we generalize the idea of the reduction to bidiagonal form in two

stages. If W ∈ Rn×m
m , the generalization is justified in the case when n is much larger than m. A QR decomposition

of W ∈ Rn×m
m is performed in the first stage:

W = QR =
[
Qm QR

] [Rm

0

]
, (23)

where Rm ∈ Rm×m is upper triangular and Qm denotes the matrix constructed from the first m columns of Q. The

second stage requires reduction of the relatively small matrix Rm into a bidiagonal form

Rm = Ũ B̃ṼT . (24)

All matrices included in the decomposition (24) are of the order m × m, Ũ, Ṽ are orthogonal and B̃ is bidiagonal.

Decompositions (23) and (24) imply the following representation of outer inverses of A.

Theorem 2 Let A ∈ Rm×n
m be given and W ∈ Rn×m

m be chosen matrix. If (23) is a QR decomposition of W and (24)

is a bidiagonal form of Rm, then

A(2)

R(Qm),N(VT )
= QmŨ

(
B̃ṼT AQmŨ

)−1
B̃ṼT . (25)
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Proof. We have

W =
[
Qm QR

] [Ũ B̃ṼT

0

]

= QmŨB̃ṼT .

(26)

Since

W = FG, F = QmŨ, G = B̃ṼT

is a full-rank factorization of W, the proof immediately follows from the representation of outer inverses with

prescribed range and null space from (Shen & Cheng, 2007). �

Algorithm 6 Computing the A(2)
T,S inverse of the matrix A ∈ Rm×n using (25).

(Algorithm Bidiag2ATS2)
Require: The matrix A of dimensions m × n and of rank m.

1: Choose arbitrary but fixed n × m matrix W of rank m.

2: Compute the factorization of the matrix W in the form (26).

3: Solve the matrix equation

B̃ṼT AQmŨX = B̃ṼT

with respect to unknown matrix X.

4: Compute the output

A(2)

R(Qm),N(VT )
= QmŨX.

5. Numerical Experience

Example 1 In this illustrative example we consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 1

1 3 4 6 2

2 3 4 5 3

3 4 5 6 4

4 5 6 7 6

6 6 7 7 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of rank 4 and choose the matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 1 0 0 39 0

17 3 0 0 51 0

21 4 0 0 63 0

25 6 0 0 75 0

19 2 0 0 57 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of rank 2. The QR decomposition of W is defined by

{Q,R, P}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.299425 −0.532976

0.391555 −0.0122351

0.483686 0.103891

0.575817 0.624632

0.437621 −0.561096

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
43.4166 7.73898 0. 0. 130.25 0.

0. 2.47148 0. 0. 7.105 × 10−15 0.

]
, P = I6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Truncated S VD of the order 2 of the matrix R is defined by the ordered triple

{U, S ,V}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ −0.999999 0.00101179

−0.00101179 −0.999999

]
,

[
137.513 0.

0. 2.46756

]
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.315726 0.0178024

−0.0562962 −0.998414

0. 0.
0. 0.

−0.947179 0.0534072

0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Outer generalized inverse defined in (18) is equal to

A(2)

R(QW ),N(V∗t P∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0453361 −0.215651 0. 0. 0.136008 0.
0.00990099 −0.0049505 0. 0. 0.029703 0.
0.00364773 0.0420358 0. 0. 0.0109432 0.
−0.0317874 0.252736 0. 0. −0.0953622 0.
0.0505472 −0.227028 0. 0. 0.151641 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the continuation of this section we will give a series of examples in which we study behavior of introduced

representations.

Example 2 In this example we compare algorithms for computing outer inverses based on three different factoriza-

tions:

- Algorithm QRATS2 based on the QR decomposition from (Stanimirović et al., 2012b);

- Algorithm QRSVDATS2 based on the representation (18) and

- Algorithm SVDATS2 based on the S VD from (Shaini & Hoxha, 2013).

The following code in the programming package Mathematica is applied:

(* n=100 or n=200 or n=300 or n=400 or n=500 or n=600 or n=700 or n=800 *)

Clear[S];

S[n_] := Module[{i, j, mat = Table[a, {i, n}, {j, n}]},

For[i = 1, i <= n, i++,

If[OddQ[i], mat[[i, i]] = a + 1, mat[[i, i]] = a - 1 ];

];

mat[[1, n]] = mat[[n, 1]] = a + 1;

Return[mat];

]

a=1;

LQR = {}; LQRSVD = {}; LSVD = {};

TQR = {}; TQRSVD = {}; TSVD = {};

For[k = 1, k <= 50, k++,

F = Table[RandomReal[], {i, n}, {j, 2}]; G = Table[RandomReal[], {i, 2}, {j, n}];

W = F.G;

s = MatrixRank[W];

(* Algorithm QRATS2 *)

{Q, R, P} = QRDecomposition[W, Pivoting -> True] // N;

Q = Transpose[Q];

Q1 = Transpose[Take[Transpose[Q], s]]; R1 = Take[R, s];

XQR = Timing[Q1.Inverse[R1.Transpose[P].A.Q1].R1.Transpose[P]];

(* Algorithm QRSVDATS2 *)

{U, S, V} = SingularValueDecomposition[R, s] // N;

XQRSVD = Timing[Q.U.Inverse[S.Transpose[V].Transpose[P].A.Q.U].S.Transpose[V].Transpose[P]];

(* Algorithm SVDATS2 *)

{U, S, V} = SingularValueDecomposition[W, s] // N;

XSVD = Timing[U.Inverse[S.Transpose[V].A.U].S.Transpose[V]];

qr = Norm[XQR[[2]].A.XQR[[2]] - XQR[[2]]];

qrsvd = Norm[XQRSVD[[2]].A.XQRSVD[[2]] - XQRSVD[[2]]];

svd = Norm[XSVD[[2]].A.XSVD[[2]] - XSVD[[2]]];

AppendTo[LQR, qr]; AppendTo[LQRSVD, qrsvd]; AppendTo[LSVD, svd];

AppendTo[TQR, XQR[[1]]]; AppendTo[TQRSVD, XQRSVD[[1]]]; AppendTo[TSVD, XSVD[[1]]];

]

The smallest values in the tables are written in bold font.

In Table 1 and Table 2 we arrange the results obtained applying the above Mathematica code on the test function

S [n] from (Zielke, 1986), in the case a = 1. Dimensions n of test matrices are equal to n=100, 200, 300, 400, 500,
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600, 700, 800. For each matrix S [n] we generate 50 random matrices W of rank 2. Two criteria are used for testing

the algorithms: precision and CPU time. Let us denote by Xk = QRATS 2(S [n]), Yk = QRS VDATS 2(S [n]),

Yk = S VDATS 2(S [n]) the results generated applying QRD, the combination of QRD and S VD of R and TS VD
for kth generated matrix Wk, k = 1, . . . , 50. The columns 2,3,4 in Table 1 denote the sum of generated norms:

S QRn =

50∑
k=1

‖XkAXk − Xk‖, S QRS VDn =

50∑
k=1

‖YkAYk − Yk‖, S S VDn =

50∑
k=1

‖ZkAZk − Zk‖.

Table 1. Comparison of three algorithms for computing outer inverses

n S QRn S QRS VDn S S VDn

100 3.043527549586 × 10−11 1.454904489449 × 10−11 1.799685579904 × 10−11

200 6.42517329481 × 10−11 4.418754168002 × 10−11 4.205730328071 × 10−11

300 1.812027062984 × 10−10 5.292579107393 × 10−10 1.039752882034 × 10−10

400 2.713609669991 × 10−9 5.292579107393 × 10−10 5.956789277588 × 10−10

500 2.995818463930 × 10−9 1.314409320131 × 10−9 1.163914125347 × 10−9

600 1.434233650545 × 10−9 3.91646747789 × 10−10 3.902297496071 × 10−10

700 1.258711792555 × 10−9 5.1970729464 × 10−10 4.57213168965 × 10−10

800 3.92444897696 × 10−9 2.728576549705 × 10−9 4.672371872085 × 10−9

Performances of compared methods are tested by using the so-called performance profile, introduced in (Dolan

& Moore, 2002). The underlying performance metric is defined by the accuracy and the CPU time. Follow-

ing the notations given in the paper (Dolan & Moore, 2002), the number of solvers is ns = 3 (the solvers are

S QRn, S QRS VDn, S S VDn) and the number of numerical experiments is np = 8 (each exploiting 50 randomly ma-

trices W and accordingly generated outer inverses). By ip,s we denote the achieved accuracy obtained by applying

the method s on the problem p. The quantity

rp,s =
ip,s

min{ip,s : s ∈ {S QRn, S QRS VDn, S S VDn}}
is called the performance ratio. Finally, the performance of the solver s is defined by the following cumulative

distribution function

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}, s ∈ {S QRn, S QRS VDn, S S VDn}

where τ ∈ R and P represents the set of problems.

Figure 1 shows the performance profiles for S QRn, S QRS VDn, S S VDn regarding the accuracy, using data arranged

in Table 1.
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Figure 1. Performance profile regarding the accuracy presented in Table 1

It is observable from Figure 1 that S S VDn and S QRS VDn methods show better performances compared to S QRn:

ρS S VDn (τ) ≥ ρS QRS VDn (τ) ≥ ρS QRn (τ), 0 ≤ τ ≤ 1.
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This means that Algorithm S VDATS 2 has the highest probability of being the optimal solver with respect to the

numerical accuracy. Also, Algorithm QRS VDATS 2 is better than Algorithm QRATS 2.

Let us denote by T QRk,T QRS VDk,TS VDk CPU times spanned by applying QRD, combination of QRD and

S VD of R and TS VD for a selected n and kth generated matrix Wk, k = 1, . . . , 50. The columns 2, 3, 4 in Table 2

denote the sums of CPU times

S T QRn =

50∑
k=1

T QRk, S T QRS VDn =

50∑
k=1

T QRS VDk, S TS VDn =

50∑
k=1

XTS VDk.

Table 2. CPU time of three algorithms for computing outer inverses

n S T QRn S T QRS VDn S TS VDn

100 0.0312002 0.0000001 0.0000001
200 0.0468003 0.0000001 0.0000001
300 0.0624004 0.0156001 0.0312002

400 0.1248008 0.0624004 0.0312002
500 0.202801 0.1716011 0.0936006
600 0.3432022 0.2028013 0.1936006
700 0.3588023 0.3588023 0.2340015
800 0.5304034 0.5460035 0.312002

Figure 2 illustrates data arranged in Table 2 and shows the performance profiles for the methods QRATS 2,

QRS VDATS 2, S VDATS 2 regarding the spanned CPU time.

� �

�

� � �

� �

�

�

� � � � � �

� �

� � � � � �

1.5 2 2.5 3 3.5 4 4.5 5
Τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ρ

� SVD
� QRSVD
� QR

Figure 2. Performance profile regarding the CPU time presented in Table 2

Figure 2 leads to the same conclusion as Figure 1:

ρS TS VDn (τ) ≥ ρS T QRS VDn (τ) ≥ ρS T QRn (τ), 0 ≤ τ ≤ 1.

Example 3 In this example we compare the same algorithms as in Example 2 on the numerical computation of the

Moore-Penrose inverse. Instead of randomly generated matrices we use the matrices

W=Transpose[A]=Transpose[S[n]], n=10, 30, 50, 70, 90, 110, 130, 150, 170, 190.

The results are arranged in Table 3. Let us denote by

Xn = QRATS 2(S [n]), Yn = QRS VDATS 2(S [n]), Zn = S VDATS 2(S [n])

the results generated applying QRD, the combination of QRD and S VD of R and TS VD, respectively. The columns

2, 3, 4 in Table 3 contain the generated matrix norms

QRn = ‖XnAXn − Xn‖, QRS VDn = ‖YnAYn − Yn‖, S VDn = ‖ZnAZn − Zn‖.
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Table 3. Accuracy of three algorithms for computing the Moore-Penrose inverse of A = S [n]

n QRn QRS VDn S VDn

10 1.26979128026215 × 10−14 2.034260922393099 × 10−15 2.08463132435095 × 10−15

30 4.552256280073264 × 10−13 1.400571444654255 × 10−14 1.69407576911329 × 10−14

50 3.211712544885929 × 10−12 3.948851248647643 × 10−14 8.49949726133356 × 10−14

70 2.074587304154639 × 10−11 1.405943038980567 × 10−13 9.335752912707724 × 10−14

90 7.562701917834577 × 10−11 1.848439361484347 × 10−13 2.52063399770323 × 10−13

110 1.611344139340718 × 10−10 2.995396809335819 × 10−13 4.933328358230868 × 10−13

130 3.10808433007285 × 10−10 5.76950819729177 × 10−13 8.547396331319857 × 10−13

150 9.706992066606753 × 10−10 6.703513511452163 × 10−13 1.01164533157711 × 10−12

170 1.537548362472706 × 10−9 9.427111973617442 × 10−13 1.39830112820996 × 10−12

190 1.763047487102721 × 10−9 1.368421169609527 × 10−12 2.423576221191562 × 10−12

From Table 3 it is possible to conclude the following:

1) The method QRATS 2 is the worst solver.

2) The method QRS VDATS 2 reaches the best numerical precision. The only exception is observed in the case

n = 70.

Example 4 In this example we continue comparison of the same algorithms for numerical computation of outer
inverse. We again use the matrix A = S [n] and randomly generated matrices W of rank rank(W) = n/2. These
matrices can be generated by the next Mathematica code:

F = Table[RandomReal[], {i, n}, {j, n/2}];

G = Table[RandomReal[], {i, n/2}, {j, n}];

W = F.G;

The results are arranged in Table 4. Dimensions n are equal to n=10, 30, 50, 70, 90, 110, 130, 150, 170, 190. Let us

denote by

Xn = QRATS 2(S [n]), Yn = QRS VDATS 2(S [n]), Zn = S VDATS 2(S [n])

the results generated applying QRD, combination of QRD and S VD of R and TS VD. The columns 2, 3, 4 in Table

3 contain values of the matrix norms

QRn = ‖XnAXn − Xn‖, QRS VDn = ‖YnAYn − Yn‖, S VDn = ‖ZnAZn − Zn‖.

Table 4. Accuracy of three algorithms for computing outer inverses of the matrix A = S [n]

n QRn QRS VDn S VDn

100 6.482337614683532 × 10−11 2.336597321351282 × 10−12 2.25369380715732 × 10−12

200 1.009070836847863 × 10−10 4.835373145662078 × 10−12 9.532052089466464 × 10−12

300 1.431377648899222 × 10−9 7.52993615694554 × 10−11 2.239950472891654 × 10−10

400 8.858839542548144 × 10−9 2.172761850286787 × 10−10 2.525893041322895 × 10−10

500 6.042211807189602 × 10−9 3.297464621913326 × 10−10 3.281406609564898 × 10−10

600 2.880744866586528 × 10−7 1.292875855137494 × 10−8 1.125846642264049 × 10−8

700 2.289567222443336 × 10−6 1.342219034202508 × 10−8 1.797521293862002 × 10−8

800 4.740735235660559 × 10−8 1.537611159244433 × 10−9 1.771785004312878 × 10−9

900 1.446198521363777 × 10−8 5.4865896018928 × 10−10 6.560027712609556 × 10−10

1000 1.433314506856117 × 10−8 1.10417479414053 × 10−10 7.640356337951447 × 10−11

2000 1.156190659420065 × 10−7 9.368815439069883 × 10−10 1.112831852598413 × 10−9

3000 3.630671988979119 × 10−7 7.875340741156123 × 10−10 1.995284420020749 × 10−9

4000 0.00001541881512652355 3.562343444447241 × 10−8 3.05838545101564 × 10−8

5000 4.028422642321919 × 10−6 3.980279026633443 × 10−8 1.396301973029279 × 10−8

Comparing the results included in Table 4, it is possible to conclude the following:
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1) The method QRATS 2 is again the worst solver regarding the numerical precision.

2) The methods QRS VDATS 2 and S VDATS 2 reach much better numerical precision.

Example 5 Finally, the same algorithms are compared in numerical computation of outer inverses of the Lauchli

matrix. The Lauchli matrix is a (n + 1) × n matrix defined by (see Higham, 1988)

L(n, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

μ
μ
. . .

μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this example, the matrix A is equal to A = L(n, 0.2). We again use randomly generated matrices W satisfying

rank(W) = n/2. The results are arranged in Table 5.

Table 5. Accuracy of three algorithms for computing the outer inverses of the Lauchli matrix

n QRn QRS VDn S VDn

100 1.028604544233837 × 10−11 1.425460861122351 × 10−11 1.142795986871279 × 10−11

200 7.100072558578722 × 10−12 1.824218048288609 × 10−11 1.689039220659226 × 10−11

300 3.931602647539584 × 10−10 1.522893445477722 × 10−10 3.067952338830401 × 10−10

400 5.172628286663662 × 10−11 3.515510616280827 × 10−11 4.156475258052759 × 10−11

500 4.645784213245661 × 10−10 1.315563869323691 × 10−10 3.028534791228661 × 10−10

600 1.689506089025813 × 10−10 1.018132753134374 × 10−10 1.172500764749819 × 10−10

700 1.134125813525221 × 10−9 5.572822660688449 × 10−10 2.571534358928769 × 10−9

800 5.647648157231927 × 10−10 1.945489973975069 × 10−10 2.76608506543413 × 10−10

900 4.477591961216335 × 10−10 4.434485330379887 × 10−10 2.129986321753629 × 10−10

1000 5.175937950315212 × 10−10 4.066683452807805 × 10−10 5.50032373267487 × 10−10

2000 1.019238815039415 × 10−9 7.941173235725879 × 10−10 7.09726704984236 × 10−10

3000 1.803956394814176 × 10−8 5.854369183636487 × 10−9 3.522502016638002 × 10−9

4000 4.642390180619101 × 10−9 4.484612755803374 × 10−9 3.34756148108135 × 10−9

5000 2.528918230390071 × 10−6 4.265161501638872 × 10−6 6.238001463545644 × 10−7

Comparing the results included in Table 5, it is possible to conclude the following.

1) The method QRATS 2 reaches the minimal precision two times, in the first two cases.

2) The methods QRS VDATS 2 and S VDATS 2 generate the results with much better numerical precision. Both of

them reach the minimal precision six times.

3) QRATS 2 is the best solver for small dimensions n, QRS VDATS 2 for medium values and S VDATS 2 for

greatest dimensions.

Example 6 The matrix A = L(n, 0.000002) is ill–conditioned and causes serious numerical problems in computation

of required outer inverses. The results are obtained using randomly generated matrices W of rank rank(W) = n/2
and arranged in Table 6.

102



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

Table 6. Accuracy of three algorithms for computing the outer inverses of the ill-conditioned Lauchli matrix

n QRn QRS VDn S VDn

100 0.395788193577041 0.4493449896897091 0.1430739500991127
200 0.1101693065477999 0.09052408752219679 0.1517284556203095

300 0.5757304019521979 0.9945688854731312 0.7355659072586593

400 0.5008982407371158 0.2071745759326693 0.473611267749282

500 0.8474063213377292 0.6275335481487543 0.3640134520309316
600 0.3563584901595677 0.3442714329338474 0.1503166152086566
700 6.652359033095027 2.89843803437463 2.299765261435784
800 19.43181229016723 32.86722282380996 37.35266633821223

900 5.962766800197418 3.555777641729863 8.543932380583575

1000 14.55693372724122 3.973128971933598 5.542061014703714

2000 22.84253966856699 13.65738063338715 41.93288432714076

3000 5.6061607170558 62.15805382380937 21.85354632399693
4000 210.4520364390122 613.7966082641098 721.2117782329316

5000 50.09409738330062 29.81137054768079 31.69036850919142

The results included in Table 6 show that QRS VDATS 2 is the best solver six times, S VDATS 2 five times and

QRATS 2 reaches the best values three times.

6. Conclusion

According to performed numerical experiments we conclude the following.

1) The S VD representation of outer inverses with prescribed range and null space is the most efficient in the case

of low rank matrices W.

2) The combination of QR and S VD decomposition of outer inverses with prescribed range and null space is the

most efficient in the case W = AT .

3) The combination of QR decomposition and S VD is a significant improvement of the QR decomposition method

from (Stanimirović et al., 2012b).

Also, in the present paper we show that the factorizations based on a bidiagonal form are useful in representation

of outer inverses of matrices with full column rank.
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