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Abstract

In this article, we construct the exact traveling wave solutions of the nonlinear (2+1)-dimensional Davey-Stewartson

equation (D-S) using the generalized (G′
G )-expansion method which play an important role in mathematical physics.

As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. When these

parameters are taken special values, the solitary and periodic solutions are derived from the hyperbolic and

trigonometric function solutions respectively. New complex type traveling wave solutions to the nonlinear (2+1)-

dimensional Davey-Stewartson equation were obtained with Liu’s theorem.

Keywords: exact solutions, Davey-Stewartson equation, generalized (G′
G )-expansion method, Liu’s theorem, non-

linear PDEs

1. Introduction

In the nonlinear science, many important phenomena in various fields can be described by the nonlinear partial

differential equations (NLPDEs). Searching and constructing exact solutions for NLPDEs is interesting and im-

portant. These exact solutions of these NLPDEs are important for the understanding of the nonlinear physical

phenomena and possible applications. In the past several decades, many effective methods for obtaining exact

solutions of NLPDEs have been presented, such as the tanh function method (Fan, 2000; El-Wakil et al., 2007),

the tanh-sech method (Malfliet et al., 1996; Wazwaz, 2004), the sine-cosine method (Al-Mdallal et al., 2007; Za-

yed & Abdelaziz, 2011), the homogeneous balance method (Fan et al., 1998), the Jacobi elliptic function method

(Dai et al., 2006), the F-expansion method (Zhang et al., 2006), the homotopy perturbation method (He, 2005),

the inverse scattering transformation method (Ablowitz et al., 1981), the Bäcklund transformation method (Miura,

1978), the Hirota bilinear method (Hirota, 1973), the exp-function method (Zhang, 2008; Zayed et al., 2012), the

(G′
G )-expansion method (Wang et al., 2008; Zayed & Abdelaziz, 2010, 2013) and so on.

Very recently, Wang et al. (2008) introduced an expansion technique called the (G′
G )-expansion method and they

demonstrated that it was a powerful technique for seeking analytic solutions of NLPDEs. Later, Zhang et al.

(2008) proposed a generalized (G′
G )-expansion method to improve and extend Wang et al.’s work (2008) for solv-

ing variable-coefficient equations and high dimensional equations. The (G′
G ) -expansion method is based on the

assumptions that the traveling wave solutions can be expressed by a polynomial in (G′
G ), where G satisfies the

following second order linear ordinary differential equation:

G
′′
+ λG

′
+ μG = 0, (1)

while λ and μ are arbitrary constants.

In this article, we apply the generalized (G′
G )-expansion method to improve the work made in (Wang et al., 2008).

Zhang et al. (2008) first proposed this method to construct exact solutions of the mKdV equation with variable co-

efficients. As an application of the suggested method, we will consider the following nonlinear (2+1)-dimensional

Davy-Stewartson equation:
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iut +
1
2
σ2

(
uxx + σ

2uyy

)
+ δ |u|2 u − υxu = 0,

υxx − σ2υyy − 2δ
(
|u|2

)
x
= 0,

(2)

where δ = ±1 and σ2 = ±1. The case σ = 1 is called the DS-I equation, while σ = i is the DS-II equation. The

parameter δ characterizes the focusing or defocusing case. The DS equation has four kinds of soliton solutions:

the conventional line, algebraic, periodic and lattice solutions: the conventional line soliton has an essentially

one-dimensional structure. On the other hand, the algebraic, periodic and lattice solitons have a two-dimensional

structure. The Davey-Stewartson I and II are two well-known examples of integrable equations in two space

dimensions, which arise as higher dimensional generalizations of the nonlinear Schrödinger equation (NLSE).

They appear in many applications, for example in the description of gravity-capillarity surface wave packets in the

limit of the shallow water. Therefore it is of interests to derive explicit solutions of the DS equation. Up to now,

many powerful methods have been established and developed to obtain analytic solutions of Equation (2), such as

the homotopy analysis method, the sine-cosine method and the variational iteration method (Davey et al., 1974;

Zedan et al., 2010; Jafari et al., 2012).

2. Description of the Generalized (G′
G )-Expansion Method

Suppose that we have a nonlinear PDE in the following form:

F(u, ut, ux, uy, utt, uxt, uyt, uxx, ....) = 0, (3)

where u = u(x, y, t) is an unknown function, F is a polynomial in u = u(x, y, t) and its partial derivatives, in which

the highest order derivatives and nonlinear terms are involved. Let us now give the main steps for solving Equation

(3) using the generalized (G′
G )-expansion method.

Step 1. The traveling wave variable

u(x, y, t) = u(ξ), ξ = x + y − ct, (4)

where c is a constant, permits us reducing Equation (3) to an ODE for u = u (ξ) in the form

P
(
u, u′, u′′, ....

)
= 0, (5)

where P is a polynomial of u = u(ξ) and its total derivatives.

Step 2. Suppose that the solution of Equation (5) can be expressed by a polynomial in
(

G
′

G

)
as follows:

u (ξ) =

m∑
i=0

αi

(
G′ (ξ)
G (ξ)

)i

, (6)

where αi are constants to be determined later, αm � 0 and m is a positive integer.

Step 3. Balancing the highest derivative term with the nonlinear terms in Equation (5), we find the value of the

positive integer m in Equation (6).

Step 4. Substituting Equation (6) into Equation (5) and using Equation (1), collecting all terms with the same

power of (G′
G ) together, and then equating each coefficient of the resulted polynomial to zero, yields a set of

algebraic equations for αi, c, λ and μ.

Step 5. Since the general solutions of Equation (1) have been well known for us, then substituting αi, c and the

general solutions of Equation (1) into Equation (6), we have the traveling wave solutions of the nonlinear PDEs

(3).

Theorem 1 (Liu’s Theorem) If Equation (3) has a kink-type solution

u = pk
(
tanh

[
A (ξ + ξ0)

])
, (7)

then it has certain the kink-bell-type solution

u = pk
(
tanh

[
2A (ξ + ξ0)

] ± i sech
[
2A (ξ + ξ0)

])
, (8)
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where pk is a polynomial of degree k, i is the imaginary number unit.

3. An Application

In this section, we will apply the generalized (G′
G )-expansion method to construct the exact solutions of the nonlin-

ear (2+1)-Davey Stewartson equation. To this end, we take the following transformations of Equation (2)

u (x, y, t) = U (ξ) eiθ, υ (x, y, t) = V (ξ) , (9)

ξ = x + y − ct, θ = l1x + l2y + l3t, (10)

where c, l1, l2 and l3 are real constants. Substituting (9) and (10) into (2) and separating the real and imaginary

parts we obtain

c = σ2
(
l1 + σ2l2

)
, (11)

σ2
(
1 + σ2

)
U
′′

(ξ) + 2δU3 (ξ) −
[
2
(
V
′
(ξ) + l3

)
+ σ2

(
l21 + σ

2l22
)]

U (ξ) = 0, (12)

(
1 − σ2

)
V
′′

(ξ) − 2δ
(
U2 (ξ)

)′
= 0. (13)

Integrating (13) with respect to ξ and setting the constant of integration to zero, we find

V
′
(ξ) =

2δ

1 − σ2
U2 (ξ) . (14)

Substituting (14) into (12) yields

σ2
(
σ4 − 1

)
U
′′

(ξ) + 2δ
(
σ2 + 1

)
U3 (ξ) −

(
σ2 − 1

) [
2l3 + σ2

(
l21 + σ

2l22
)]

U (ξ) = 0. (15)

Balancing U
′′
and U3 in Equation (15), we have m = 1. Consequently, we have the formal solution of Equation

(15) in the form

U(ξ) = α1

(
G
′
(ξ)

G (ξ)

)
+ α0, (16)

where α1, α0 are constants to be determined later. After some calculation we can obtain

U
′′

(ξ) = α1

⎡⎢⎢⎢⎢⎢⎣2
(
G
′
(ξ)

G (ξ)

)3

+ 3λ

(
G
′
(ξ)

G (ξ)

)2

+
(
λ2 + 2μ

) (G
′
(ξ)

G (ξ)

)
+ λμ

⎤⎥⎥⎥⎥⎥⎦ , (17)

U3 (ξ) = α3
1

(
G
′
(ξ)

G (ξ)

)3

+ 3α2
1α0

(
G
′
(ξ)

G (ξ)

)2

+ 3α1α
2
0

(
G
′
(ξ)

G (ξ)

)
+ α3

0. (18)

Substituting (16)-(18) into (15), collecting all terms with the same powers of
(

G
′

G

)
and setting them to zero then,

we have the following system of algebraic equations:

(G′
G )3 : 2σ2

(
σ4 − 1

)
α1 + 2δ

(
σ2 + 1

)
α3

1
= 0,

(G′
G )2 : 3σ2

(
σ4 − 1

)
λα1 + 6δ

(
σ2 + 1

)
α0α

2
1
= 0,

(G′
G )1 : σ2

(
σ4 − 1

)
λ2α1 + 2σ2

(
σ4 − 1

)
μα1 + 6δ

(
σ2 + 1

)
α2

0α1

−
(
σ2 − 1

) [
2l3 + σ2

(
l21 + σ

2l22
)]
α1 = 0,

(G′
G )0 : σ2

(
σ4 − 1

)
μλα1 + 2δ

(
σ2 + 1

)
α3

0

−
(
σ2 − 1

) [
2l3 + σ2

(
l21 + σ

2l22
)]
α0 = 0.

(19)

Solving the system (19) by the Maple, we have the following solution:

α1 = ±σ
√

1−σ2

δ
, α0 = ±σλ2

√
1−σ2

δ
, l1 = l1, l2 = l2,

l3 = −σ2

4

[
2
(
l21 + σ

2l22
)
+

(
σ2 + 1

) (
λ2 − 4μ

)]
.

(20)
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Substituting (20) into (16), we have

U (ξ) = ±σ
δ

√
δ
(
1 − σ2

) [λ
2
+

G
′
(ξ)

G (ξ)

]
. (21)

In view of (9)-(11), (14) and (21), we obtain the general solutions of Equation (2) in the forms

u (ξ) = ±σ
δ

√
δ
(
1 − σ2

) [ λ
2
+

G
′
(ξ)

G(ξ)

]
× exp

{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
+

(
σ2 + 1

) (
λ2 − 4μ

))
t
]}
, (22)

υ (ξ) = 2σ2

∫ [
λ

2
+

G
′
(ξ)

G (ξ)

]2

dξ, (23)

where

ξ = x + y − σ2
(
l1 + σ2l2

)
t. (24)

Consequently, we have the following three types of exact solutions of Equation (2).

Case 1: When λ2 − 4μ > 0, we obtain the hyperbolic function solutions in the forms

u (ξ) = ± σ
2δ

√
δ
(
1 − σ2

) (
λ2 − 4μ

) ⎡⎢⎢⎢⎢⎢⎣ c1 cosh
(

1
2

√
λ2−4μξ

)
+c2 sinh

(
1
2

√
λ2−4μξ

)

c1 sinh
(

1
2

√
λ2−4μξ

)
+c2 cosh

(
1
2

√
λ2−4μξ

)
⎤⎥⎥⎥⎥⎥⎦×

exp
{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
+

(
σ2 + 1

) (
λ2 − 4μ

))
t
]}
,

(25)

υ (ξ) =
σ2

(
λ2 − 4μ

)
2

∫ ⎛⎜⎜⎜⎜⎜⎜⎝
c1 cosh

(
1
2

√
λ2 − 4μξ

)
+ c2 sinh

(
1
2

√
λ2 − 4μξ

)
c1 sinh

(
1
2

√
λ2 − 4μξ

)
+ c2 cosh

(
1
2

√
λ2 − 4μξ

)
⎞⎟⎟⎟⎟⎟⎟⎠

2

dξ. (26)

Case 2: When λ2 − 4μ < 0, we have the trigonometric function solutions in the forms

u (ξ) = ± σ
2δ

√
δ
(
1 − σ2

) (
4μ − λ2

) ⎡⎢⎢⎢⎢⎢⎣−c1 sin
(

1
2

√
4μ−λ2ξ

)
+c2 cos

(
1
2

√
4μ−λ2ξ

)

c1 cos
(

1
2

√
4μ−λ2ξ

)
+c2 sin

(
1
2

√
4μ−λ2ξ

)
⎤⎥⎥⎥⎥⎥⎦×

exp
{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
−

(
σ2 + 1

) (
4μ − λ2

))
t
]}
,

(27)

υ (ξ) =
σ2

(
4μ − λ2

)
2

∫ ⎛⎜⎜⎜⎜⎜⎜⎝
−c1 sin

(
1
2

√
4μ − λ2ξ

)
+ c2 cos

(
1
2

√
4μ − λ2ξ

)
c1 cos

(
1
2

√
4μ − λ2ξ

)
+ c2 sin

(
1
2

√
4μ − λ2ξ

)
⎞⎟⎟⎟⎟⎟⎟⎠

2

dξ. (28)

Case 3: When λ2 − 4μ = 0, we get the rational function solutions in the forms

u (ξ) = ±c2σ
√
δ
(
1 − σ2

)
δ (c1 + c2ξ)

exp

{
i
[
l1x + l2y − σ

2

4

(
l21 + σ

2l22
)

t
]}
, (29)

υ (ξ) =
−2c2σ

2

c1 + c2ξ
+ d0, (30)

where c1, c2 are arbitrary constants and d0 is a constant of integration. Finally, we note that:

(1) If μ = 0, λ > 0, c2 = 0 and c1 � 0 then we deduce from (25) and (26) that

u (ξ) = ±σλ
2δ

√
δ
(
1 − σ2

)
coth

(
λξ
2

)
× exp

{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
+ λ2

(
σ2 + 1

))
t
]}
, (31)

υ (ξ) =
σ2λ

2

[
λξ − 2 coth

(
λξ

2

)]
+ d1, (32)

and therefore from Theorem 2.1 we also have

u (ξ) = ±σλ
2δ

√
δ
(
1 − σ2

) [
tanh (λξ) ± i sech (λξ)

]−1 ×
exp

{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
+ λ2

(
σ2 + 1

))
t
]}
,

(33)
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υ (ξ) =
σ2λ

2

{
λξ − 2

[
tanh (λξ) ± i sech (λξ)

]−1
}
+ d1, (34)

where d1 is a constant of integration, while if μ = 0, λ > 0, c2 � 0 and c2
2 > c2

1 we deduce from (25) and (26) that

u (ξ) = ±σλ
2δ

√
δ
(
1 − σ2

)
tanh

(
ξ1 +

λξ
2

)
× exp

{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
+ λ2

(
σ2 + 1

))
t
]}
, (35)

υ (ξ) =
σ2λ

2

[
λξ − 2 tanh

(
ξ1 +

λξ

2

)]
+ d2, (36)

and therefore from Theorem 2.1 we also have

u (ξ) = ±σλ
2δ

√
δ
(
1 − σ2

) [
tanh (2ξ1 + λξ) ± i sech (2ξ1 + λξ)

]×
exp

{
i
[
l1x + l2y − σ2

4

(
2
(
l2
1
+ σ2l2

2

)
+ λ2

(
σ2 + 1

))
t
]}
,

(37)

υ (ξ) =
σ2λ

2

{
λξ − 2

[
tanh (2ξ1 + λξ) ± i sech (2ξ1 + λξ)

]}
+ d2, (38)

where ξ1 = tanh−1
(

c1

c2

)
and d2 is a constant of integration.

(2) If c2
1 + c2

2 � 0, then we deduce from (27) and (28) that

u (ξ) = ± σ
2δ

√
δ
(
1 − σ2

) (
4μ − λ2

)
tan

(
ξ2 − 1

2

√
4μ − λ2ξ

)
×

exp
{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
−

(
σ2 + 1

) (
4μ − λ2

))
t
]}
,

(39)

υ (ξ) = −1

2
σ2

√
4μ − λ2

[√
4μ − λ2ξ + 2 tan

(
ξ2 − 1

2

√
4μ − λ2ξ

)]
+ d3, (40)

where ξ2 = tan−1
(

c2

c1

)
and d3 is a constant of integration, while

u (ξ) = ± σ
2δ

√
δ
(
1 − σ2

) (
4μ − λ2

)
cot

(
ξ3 +

1
2

√
4μ − λ2ξ

)
×

exp
{
i
[
l1x + l2y − σ2

4

(
2
(
l21 + σ

2l22
)
−

(
σ2 + 1

) (
4μ − λ2

))
t
]}
,

(41)

υ (ξ) = −1

2
σ2

√
4μ − λ2

[√
4μ − λ2ξ + 2 cot

(
ξ3 +

1

2

√
4μ − λ2ξ

)]
+ d4, (42)

where ξ3 = cot−1
(

c2

c1

)
and d4 is a constant of integration.

Remark 1 Note that (31)-(38) represent the solitary solutions while (39)-(42) represent the periodic solutions of

the Davey-Stewartson Equation (2) and the traveling wave solutions obtained using the generalized (G′
G )-expansion

method for the hyperbolic, trigonometric function types are presented in Equations (31), (32), (35), (36) and (39)-

(42).

Remark 2 Applying Liu’s theorem to Equations (31), (32), (35) and (36), we obtain new complex traveling wave

solutions in the form of Equations (33), (34), (37) and (38).

Remark 3 All solutions of this article have been checked with Maple by putting them back into the original

Equation (2).

4. Conclusions

In this article, the generalized (G′
G )-expansion method has been applied to find the exact traveling wave solutions

of the nonlinear (2+1)-dimensional Davey-Stewartson equation. Liu’s theorem was also applied to obtain new

complex traveling wave solutions to the nonlinear (2+1)-dimensional Davey-Stewartson equation. As a result,

hyperbolic function solutions and trigonometric function solutions with parameters are obtained, from which some

known solutions, including the kink-type and kink-bell-type solitary wave solutions are recovered by setting the

parameters as special values. These obtained solutions with free parameters may be important to explain some

physical phenomena. The paper shows that the generalized (G′
G )-expansion method is effective and can be used for

many other NLDDEs in mathematical physics.
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(a) (b)

Figure 1. (a) illustrates the soliton solution for |u| in Equation (31), for σ = I, δ = −1, l1 = 2, l2 = −1, y = 0.3 and

λ = 4. (b) illustrates the soliton solution for v in Equation (32), for σ = I, δ = −1, l1 = 2, l2 = −1, y = 0.3 and

λ = 4

(a) (b)

Figure 2. (a) illustrates the soliton solution for |u| in Equation (35), for σ = I, δ = −1, l1 = 2, l2 = −1, y = 0.3,

λ = 4 and ξ1 =
π
2
. (b) illustrates the soliton solution for v in Equation (36), for σ = I, δ = −1, l1 = 2, l2 = −1,

y = 0.3, λ = 4 and ξ1 =
π
2
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(a) (b)

Figure 3. (a) illustrates the periodic solution for |u| in Equation (39), for σ = I, δ = −1, l1 = 2, l2 = −1, y = 0.3,

λ = 4, μ = 8 and ξ1 =
π
6
. (b) illustrates the periodic solution for v in Equation (40), for σ = I, δ = −1, l1 = 2,

l2 = −1, y = 0.3, λ = 4, μ = 8 and ξ1 =
π
6
.

(a) (b)

Figure 4. (a) illustrates the periodic solution for |u| in Equation (41), for σ = I, δ = −1, l1 = 2, l2 = −1, y = 0.3,

λ = 4, μ = 8 and ξ1 =
π
6
. (b) illustrates the periodic solution for v in Equation (42), for σ = I, δ = −1, l1 = 2,

l2 = −1, y = 0.3, λ = 4, μ = 8 and ξ1 =
π
6
.
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