
Journal of Mathematics Research; Vol. 6, No. 2; 2014

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

The Doubly Periodic Scherk-Costa Surfaces
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Abstract

We present a new family of embedded doubly periodic minimal surfaces, of which the symmetry group does not

coincide with any other example known before.
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1. Introduction

Any complete embedded minimal surface in R
3 belongs to one of four different classes: non-periodic, singly,

doubly or triply periodic. Explicit examples are only known for finite topology (after the quotient by translations)

and for proper embeddedness. In this case, the triply periodic class has always been the richest one, and this fact

counts to a great extent on the Conjugate Plateau Construction. This is a very powerful method explained in

Sections 4 and 6 of Karcher and Polthier (1996), but it requires a fundamental conjugate frame that projects onto

a convex plane region bounded by a monotone curve. In Ramos Batista (2003), one obtains explicit examples

that do not fulfil this requirement. Hence, the Conjugate Plateau Construction is not always applicable, or even

extendable to infinite frames (See Jenkins & Serrin, 1966).

The less numerous in explicit examples is the doubly periodic class. This is probably due to the fact, proved in

Meeks and Rosenberg (1989), that all such surfaces must have only Scherk-type ends. Much more flexible is the

singly periodic class, which allows three different kinds of ends: planar, Scherk or helicoidal. Regarding the non-

periodic class, if the surface has finite total curvature, only planar or catenoidal ends come out. Otherwise, it must

have a helicoidal end (See Hoffman, Karcher, & Wei, 1993; Hoffman, Wolf, & Weber, 2009; Meeks & Rosenberg,

2005).

In the 20th century, the explicit examples were obtained thanks to their high order symmetry groups, a resource

already used up nowadays. Therefore, potentially new examples normally lack in symmetries, which makes it so

hard to prove their existence. One might opt for keeping a high order symmetry group with an increase in the

genus, but this leads to the same hurdle, namely too many period problems.

Several non-explicit examples were obtained by modern constructions, which do close many periods at once. For

instance, in Kapouleas (1997) the author desingularizes a finite set of co-axial intersecting catenoids and planes,

and obtains minimal surfaces with high genera that, however, cannot be determined. In Traizet (1996) the au-

thor uses heavy Functional Analysis to desingularize vertical intersecting planes into singly periodic surfaces with

Scherk ends, however without getting Weierstraß Data. In Traizet (2002a, 2002b) he now uses an implicit func-
tion argument to obtain his surfaces, but this requires hard computation of partial derivatives of elliptic integrals.

Teichmüller Theory is applied in Weber (2000) for singly periodic constructions, but this theory is far from being

trivial. Finally, singly and doubly periodic examples are obtained in Hauswirth, Morabito, and Rodı́guez (2009)

by a cut-and-glue procedure, again with heavy Functional Analysis and without Weierstraß Data.

For at most three period problems, however, it is still feasible to handle them with much less computations, provid-

ing one applies some adequate methods (See Baginski & Ramos Batista, 2011; Lübeck, 2007; Lübeck & Ramos

Batista, 2009; Martı́n & Ramos Batista, 2006). By the way, in this paper we solve three periods at once by applying

the limit-method described both in Lübeck (2007), Lübeck and Ramos Batista (2009).
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However, what is the purpose of constructing a new minimal surface? The following reason motivates this present

work. Minimal surfaces model many structures, like crystals and co-polymers, but several symmetry groups are

not yet represented by any of them (See Hart, 2007; Lord & Mackay, 2003). As explained above, the doubly

periodic class still lacks in examples, even after very rich works like Hoffman, Karcher, and Wei (1993), Karcher

(1988), Pérez, Rodrı́guez, and Traizet (2005), Rossman, Thayer, and Wohlgemuth (2000), and Wei (1992). A

survey of such works indicates what symmetry groups already have a representative. The purpose of this paper

is then to introduce a new family of embedded doubly periodic minimal surfaces, of which the symmetry group

does not coincide with any other example known before. For the converse, there are symmetry groups that admit

more than one representative, even restricted to a certain conformal type (See Ramos Batista, 2004). Although not

embedded, these examples easily hint at embedded ones.

Our surfaces are inspired in the examples called Lb in Ramos Batista (2005, p. 482). By taking the picture of

Lb on that page, if one replaces the catenoidal ends by curves of reflectional symmetry parallel to Ox1x2, the

resultant surface will then come out as in Figure 1. Its symmetry group is D2d or 4̄2m in Schönflies or in simplified

Hermann-Maugin notation, respectively. The same procedure for Cb from Ramos Batista (2005, p. 483) could

also result in a new doubly periodic example. However, it would then have the same symmetry group as Mπ/4,π/2,0
from Pérez, Rodrı́guez and Traizet (2005). Of course, they would differ in genus, but one still might go round it by

adding handles to the latter, a widely applicable technique. That is why our paper is totally devoted to the example

in Figure 1.

We formally state our result in the following theorem:

Figure 1. A doubly periodic Scherk-Costa surface

Theorem 1 There exists a one-parameter family of complete embedded doubly periodic minimal surfaces in R
3

such that, for each member of this family the following holds:

(a) The quotient by its translation group has genus three. Up to vertical translation and re-scaling, this quotient
is invariant by a reflection in either plane x3 = ±1, which turns out to be the same reflection. Further quotient by
this reflection gives a smaller surface called fundamental piece.

(b) The doubly periodic surface is generated by the fundamental piece, which is a surface with boundary in R
3. The

fundamental piece has two Scherk-ends (modulo translation), and a symmetry group generated by 180◦-rotations
around a straight line and 180◦-rotations around a straight segment. The segment crosses the line orthogonally
and both determine a plane Π.

(c) The boundary of the fundamental piece consists of two parallel lines in Π and two planar closed curves of
reflectional symmetry. The curves are parallel to but not contained in Π, and one is the image of the other under
the symmetries of the fundamental piece. By successive 180◦-rotations around the lines of the boundary and
reflections in the closed curves, one generates the doubly periodic surface.

The crucial example for the proof of Theorem 1 is the Callahan-Hoffman-Meeks’ surface of genus 3, described in

Callahan, Hoffman, and Meeks (1989). In this work the authors construct singly periodic examples, of which the

quotient by translation has two planar ends and genus 2k + 1, where k ranges in N
∗. Our surfaces build a family

with boundary that limit to their example k = 1. Figures 1 and 7 may be compared to understand this fact.
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The present work uses part of our doctoral theses Lübeck (2007) and Ramos Batista (2000), supported by CAPES

(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior) and DAAD (Deutscher Akademischer Austausch

Dienst), respectively. Professor Hermann Karcher, from the University of Bonn in Germany, was adviser of the

second author, who thanks him for his dedication, which greatly helped in the realisation of this work. The second

author was advisor of the first.

2. Preliminaries

In this section we state some well known theorems on minimal surfaces. For details, we refer the reader to Karcher

(1989), López and Martı́n (1999), Nitsche (1989), and Osserman (1986). In this paper all surfaces are supposed to

be regular.

Theorem 2 (Weierstraß representation) Let R be a Riemann surface, g and dh meromorphic function and 1-
differential form on R, respectively, such that the zeros of dh coincide with the poles and zeros of g. Consider the
(possibly multi-valued) function X: R→ R

3 given by

X(p) := Re
∫ p

(φ1, φ2, φ3), where (φ1, φ2, φ3) :=
1

2
(g−1 − g, ig−1 + ig, 2)dh.

Then X is a conformal minimal immersion. Conversely, every conformal minimal immersion X: R → R
3 can be

expressed as above for some meromorphic function g and 1-form dh.

Definition 1 The pair (g, dh) is the Weierstraß data and φ1, φ2, φ3 are the Weierstraß forms on R of the minimal

immersion X : R→ X(R) = S ⊂ R
3.

Definition 2 A complete, orientable minimal surface S is algebraic if it admits a Weierstraß representation such

that R = R \ {p1, . . . , pr}, were R is compact, and both g and dh extend meromorphically to R.

Definition 3 An end of S is the image of a punctured neighbourhood Vp of a point p ∈ {p1, . . . , pr} such that

({p1, . . . , pr}\{p})∩V p = ∅. The end is embedded if this image is embedded for a sufficiently small neighbourhood

of p.

Theorem 3 Let S be a complete minimal surface in R
3. Then S is algebraic if and only if it can be obtained from

a piece S̃ of finite total curvature by applying a finitely generated translation group G of R
3.

From now on we consider only algebraic surfaces. The function g is the stereographic projection of the Gauß map

N: R → S 2 of the minimal immersion X. This minimal immersion is well defined in R
3/G, but allowed to be a

multivalued function in R
3. The function g is a covering map of Ĉ and the total curvature of S̃ is −4πdeg(g).

3. The Compact Riemann Surfaces M and the Functions z

Denote by M the surface represented in Figure 1, and let M be the quotient of M by its translation group. A

compactification of the Scherk ends ofMwill lead to a compact Riemann surface that we call M. The fundamental

piece of M is represented in Figure 2(a), together with some special points on it. The Scherk ends are E1 and E2.

We have that M is invariant under reflections in the closed bold curve, indicated in Figure 2(a). The images of

S , F, E1 and E2 under this reflection will be called S ′, F′, E1 and E2, respectively.

1 E
1

E
1,2

E
1,2

E
2

2
3

F

F

F’ ’

x

ρ
x

x

S
S

S’

(a) (b)

Figure 2. (a) The fundamental piece of M; (b) the torus T = ρ(M)

Let us call ρ the quotient of M by the 180◦-rotation around the axis x3, indicated in Figure 2(a). It is easy to see

that M has genus 3 and that rotation has 4 fixed points, namely S ,T, S ′, F′. Therefore, the Euler-Poincaré formula

gives

χ(ρ(M)) =
χ(M)

2
+

4

2
= 0.
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Because of that, ρ(M) is a torus T . A horizontal reflectional symmetry of M is induced by ρ on T , and since this

symmetry has two components, we conclude that T is a rectangular torus, represented in Figure 2(b). Now we can

choose an elliptic function Z on T , define z := Z ◦ρ and then try to deduce Weierstraß data of M on M in terms of z.

Consider Figure 3(a) and the points marked with a black square (�) on it, which are the branch points of a certain

meromorphic function Z: T → C with deg(Z)=2. Let us now take an angle α ∈ (0, π/4). As indicated in Figure

3(a), we choose Z such that it takes the values ±i tanα and ±i cotα at its branch points. Up to a biholomorphism,

such a function is unique, and α determines the rectangular torus. The torus is square if and only if α = π/8.

tan α  i

αtan− cot α−

tan α  i

cot α  i

cot α  i

0 8

0 8−1 1

i

1

i

−1

tan α cot α

i i

−x x y

− −− −

(a) (b)

Figure 3. (a) Important values of Z on T ; (b) the function W on T

The most important values of Z are indicated in Figure 3(a). We have Z(ρ(F)) = −Z(ρ(S )) = x for some x ∈ (0,∞),

and Z(ρ(E1,2)) = y, where y−1 ∈ (−x−1, x−1). This means, we include the possibility of y to be ∞. Consequently,

Z(ρ(S ′)) = −Z(ρ(F′)) = x and Z(ρ(E1,2)) = −y.

In the next section, we shall write the function g on M in terms of z := Z ◦ ρ. However, this task will be simpler if

we introduce another function W: T → C, of which the important values are presented in Figure 3(b). In fact, W
is a “shift” of iZ. We can write W in terms of Z and Z′ by using an addition theorem for elliptic functions, or apply

some easier arguments which will be explained in the next paragraph. Nevertheless, they will give us an explicit

formula for W2 instead of W.

Consider the following picture where ξ is a pure imaginary value to be determined later:

ξ

ξ

ξ −ξ

−ξ−ξξ0 8
8

■ ■

■

−1 1

i ■

1

i

−1

−1

−1

■

■

■

■

■

■

■

■

8
8

0

0

8−1

−1

i i

y

−y

y

−yyy

− −

−

0

0

0

−ξ−y −y 8

(a) (b)

Figure 4. (a) Poles and zeros of Z; (b) poles and zeros of Z′/Z

Let us define

f :=
Z2 − y−2

Z
(
Z′
Z + ξ

) .

From Figures 3(a) and 4 it is easy to see that, for a certain complex constant c, the equality c f 2 = W2 − tan2 α
W2 − cot2 α

holds. Based on Figure 3(a), we can easily write down an algebraic equation of T as follows:

Z′2 = −(Z2 + tan2 α)(Z2 + cot2 α). (1)

Therefore,
(
Z′
Z

)2
= −(Z2 + Z−2 + tan2 α + cot2 α) and consequently we fix ξ = i(y2 + y−2 + tan2 α + cot2 α)

1
2 . From

Figure 3, it is not difficult to prove that W = ∞ implies Z = ±i
(
1 + y2 cot2 α

y2 + cot2 α

) 1
2

. Hence,
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c = f −2|W=∞ = cot2 α · y2

[2 + cot2 α · (y2 + y−2)]2
· (tan2 α − cot2 α + |ξ|2)2.

The explicit relation between W2 and Z,Z′ can be given as follows

W2 = cot2 α +
cot2 α − tan2 α

c f 2 − 1
, where f =

Z2 − y−2

Z′ + ξZ
. (2)

4. The Gauß Map of M and the Function g on M

Consider z := Z ◦ ρ and w := W ◦ ρ. Therefore, z and w are meromorphic functions on M and deg(z)=deg(w)=4.

Based on Figures 1 and 2(a), one easily sees that the unitary normal vector on M is expected to be vertical at S , F, E1

and E2. From now on, we are going to use some heuristic arguments: if the normal vector points downwards at S ,

it will then point upwards at F, E1 and E2. Consequently, g({S , F′, E1,2}) = {0} and g({S ′, F, E1,2}) = {∞}. We do

not expect the normal vector to be vertical at any other point of M, except at the ones just mentioned. Moreover,

all the poles and zeros of g are simple. Hence, deg(g)=4.

8 8

8 0

0 0

(a) (b)

Figure 5. (a) Poles and zeros of g; (b) poles and zeros of dh

Based on Figures 3 and 5(a), one easily concludes that

g2 =
x + z
x − z

· cotα + w
cotα − w

. (3)

Of course, a priori both sides of 3 are just proportional. However, since the unitary normal vector is expected to

be horizontal on the closed bold curve in Figure 2(a), this must imply that g is unitary there. Both z and w are pure

imaginary on this curve. Therefore, the proportional constant at (3) must be unitary. Moreover, based on Figures

2(a) and 3, the first picture suggests that g is real for z ∈ (−x, x) and pure imaginary for z ∈ R \ (−x, x). Since

w ∈ [− cotα, cotα] whenever z is real, we conclude that the unitary proportional constant is 1. Thus, (3) itself is

already consistent with our analysis. From now on, we define M as a member of the family of compact Riemann

surfaces given by (3).

By applying the Riemann-Hurwitz formula to (3), one obtains

4(2 − 1) + 8(2 − 1)

2
− 4 + 1 = 3.

Thus, the genus of M is three. Now we must verify that M really has all the symmetries we supposed at the

beginning, and g really corresponds to the unitary normal vector on M. First of all, let us show that w(z) = w(z)

and w(−z) = −w(z). From (1) we have Z′(Z) = ±Z′(Z). But according to (1), Z′ is pure imaginary where Z is real.

Hence Z′(Z) = −Z′(Z). Now we recall that ξ = i|ξ|, use (2) and get f (Z) = − f (Z) and W2(Z) = W
2
(Z). Hence

W(Z) = ±W(Z), but since W ∈ [− cotα, cotα] whenever Z is real, then W(Z) = W(Z). Now apply z = Z ◦ ρ and

w = W ◦ ρ to these relations.

By recalling (1) again, in the case Z → −Z we do have two possibilities: either Z′(−Z) = Z′(Z) or Z′(−Z) = −Z′(Z).

Nevertheless, our assumptions about the symmetries of M do not imply that ρ induces from M the involution

(Z′,Z)→ (−Z′,−Z) on T . Hence, we only consider (Z′, Z)→ (Z′,−Z). From (2) it follows that W(−Z) = ±W(Z).

Since W must be pure imaginary for Z ∈ i · [− cotα, cotα], then W(−Z) = −W(Z) and consequently we get

w(−z) = −w(z).

Now we can summarize our study of the symmetries of M and the behaviour of g in the following table:
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involution z−values g−values

(g, z)→ (g, z) z = t,−x < t < x g ∈ R
(g, z)→ (−g, z) z = t, x < t < y g ∈ iR
(g, z)→ (−g, z) z = t, y < t < −x g ∈ iR

(g, z)→ (1/g,−z) z = it, tanα < t < cotα |g| ≡ 1

(g, z)→ (1/g,−z) z = it,− cotα < t < − tanα |g| ≡ 1

(4)

5. The Height Differential dh on M

Now we are going to write down an explicit formula for dh, which will take into account the regular points and

types of ends we want the surface M to have. Based on Figures 2(a) and 3(a), one sees that S and F correspond

to regular points of M, at which the normal vector is vertical. The same is valid for S ′ and F′. Therefore,

dh({S , F, S ′, F′}) = {0}. Since M has only Scherk-type ends, all in the x2-direction, then dh has no poles and is

holomorphic on M. Moreover, since deg(dh) = 4, we conclude that all zeros of dh are simple. They are represented

in Figure 5(b).

For convenience of the reader, we reproduce here the algebraic equation of T already established in (1):

Z′2 = −(Z2 + tan2 α)(Z2 + cot2 α). (5)

From Figure 5(b) one immediately verifies that

dh =
dz

Z′ ◦ ρ . (6)

A priori, both sides of (6) are just proportional, but since z is real on the straight lines of M, from (5) we get pure

imaginary values for Z′ ◦ ρ on these lines. Therefore, the proportional constant at (6) must be real, and we choose

it to be 1. This will imply that (6) is also consistent with Re{dh} = 0 on the closed bold curve in Figure 2(a). There

we have z = it, tanα < |t| < cotα, which leads to real values for Z′ ◦ ρ.
Analogously, we could also have defined the algebraic equation of T by W ′2 = (W2 − tan2 α)(W2 − cot2 α) and so

dh = dw/W′ ◦ ρ, namely

dh =
dw√

(w2 − tan2 α)(w2 − cot2 α)
. (7)

Exactly at this point, we need to prove that M really has the planar geodesics and straight lines of our initial

assumption. This task is summarized in the following table:

z = t,−x < t < x g ∈ R dh(ż) ∈ iR
z = t, x < t < y g ∈ iR dh(ż) ∈ iR

z = t, y < t < −x g ∈ iR dh(ż) ∈ iR
z = it, tanα < t < cotα |g| ≡ 1 dh(ż) ∈ iR

z = it,− cotα < t < − tanα |g| ≡ 1 dh(ż) ∈ iR

From this table, it is immediate to verify that dh · dg/g is real on the expected planar geodesics of M, and pure

imaginary on the expected straight lines of M. We now have the Weierstraß data (g, dh) on T , given by (3) and (7),

and the free parameters α, x and y.

6. Solution of the Period Problems

Let us consider Figure 6. It reproduces Figure 2(a) and its image under z with some special paths indicated there.

Around the punctures of M, namely w−1({± cotα}), we consider small curves given by w(t) = ± cotα+ δeit, where

δ is a positive real and t varies in the interval [0, 4π] (we recall that w takes the values ± cotα with multiplicity 2).

All these curves are homotopically equivalent for sufficiently small values of δ. Therefore, by letting δ → 0 an

immediate calculation leads to Re
∮

(φ1, φ3) = 0, and up to a minus sign, Re
∮
φ2 = Res(φ2)|w=cotα, where

Res(φ2)|w=cotα =
2π√

cot2 α − tan2 α
·
√

y + x
y − x

. (8)
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Figure 6. The fundamental piece of M and its image under z

Based on this analysis and (7), it is clear that Re
∫

(1)
φ3 = 0. Moreover, (7) also gives us Re

∫
(2)
φ3 = 0. The curve

(2) from Figure 6 is homotopically equivalent to the sum of (1) with its image under the maps (g, z) → (g, z) and

(g, z) → (−g, z), composed in this order (see Table 4). Actually, this composition corresponds to the rotation ρ,
explained at the beginning of Section 3. Since

∫
ρ◦(1)

(φ1, φ2) = − ∫
(1)

(φ1, φ2), then Re
∫

(2)
(φ1, φ2) = 0. It remains to

prove that

Re
∫

(1)

(φ1, φ2) = 0. (9)

In Figure 6, the curve (3) is symmetric with respect to the geodesic (2). Because of that, the only non-zero

component of the period vector Re
∫

(3)
φ1,2,3 must be the third one. Moreover, Re

∫
(3)
φ3 � 0 because (7) implies

that dh is real and never vanishes on the dashed lines of Figure 3(b). In fact, this component provides the vertical

period of M, suggested by Figure 1. The horizontal period is given by (8).

We have just reduced the period problems to the proof of (9). For this purpose, we shall apply the limit-method
cited at the introduction. Let us show that the Weierstraß data (3) and (6) converge to the Weierstraß data from

Callahan-Hoffman-Meeks’s surface of genus 3 (see Figure 7).

Figure 7. The Callahan-Hoffman-Meeks’s surface of genus 3

Consider K a compact subset of T \ w−1({± cotα}). From Figure 8 one sees that ( x+z
x−z )2 converges uniformly in K

to ( w−tanα
w+tanα

)( cotα+w
cotα−w ) when both x and y approach 1. Thus, from (3) it follows that

g4 =

(w − tanα

tanα + w

)(
cotα + w
cotα − w

)3
. (10)

By comparing (7) and (10) with Callahan, Hoffman, and Meeks (1989, p. 502), one sees that the Weierstraß

data of our surfaces coincide in the limit, inside the compact K. The uniform convergence, applied to Theorem

2, guarantees that the three coordinate functions of the minimal immersion X|K will give as limit the Callahan-

Hoffman-Meeks’ example of genus 3. Of course, the convergence is restricted to K, but one may take this compact
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as T minus arbitrarily small neighbourhoods of the two points w−1({± cotα}). Therefore, we may consider that the

curve (1) is entirely in K.

0

8

8 2

2

22

2 2

2

20

8 0

0 8

(a) (b)

Figure 8. (a) Divisor of ( x+z
x−z )2; (b) divisor of ( w−tanα

w+tanα
)( cotα+w

cotα−w )

This means, although the limit passes from doubly to singly periodic surfaces, and from Scherk to planar ends, we

shall not have to worry about it. Our analysis can be restricted to φ1,2 on the curve (1) inside K. This is the first

step to solve (9).

Remark 1 If φ1,2,3 are the Weierstraß data for (g, dh), we call φ̃1,2,3 the ones for (̃g, dh) := (e−iπ/4g, dh). In the case

of Callahan, Hoffman, and Meeks (1989), one automatically has Re
∫

(1)
φ̃1 = 0 due to the additional symmetries.

x

y

−y

−x σ (1)

(1)

x

−x

Figure 9. Description of (1) and its image under σ

Let σ be the involution given by (g, z) → (−1/g,−z). From (7) and recalling that w(−z) = −w(z) we have dh →
−dh. Therefore

Re
∫
σ(1)

dh
g
= Re

∫
(1)

σ∗
(dh

g

)
= Re

∫
(1)

gdh.

Figure 9 suggests that (1) is homotopic to the concatenation of β with σ(1), where β represents the vertical loop

and σ(1) comes from the involution σ applied to (1). This fact can be verified in the complex plane. Hence

Re
∫

(1)

φ1 = Re
∫

(1)

dh
g
− Re

∫
(1)

g dh

= Re
∫

(1)

dh
g
− Re

∫
β∪σ(1)

g dh

= Re
∫

(1)

dh
g
− Re

∫
σ(1)

g dh − Re
∫
β

g dh

= −Re
∫
β

g dh, since (1) is a real curve. (11)
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We split the vertical loop as β := β+ ∪ β−, where β+ is the ascending curve from −x to x and β− the path from x to

−x. The rotation ρ, introduced in Section 3, corresponds to (g, z) → (−g, z), whence g → −g and dh → dh under

its action. Therefore, ∫
β

g dh =
∫
β+∪β−

g dh = 2

∫
β+

g dh = 2

∫
β−

g dh. (12)

Remark 2 Figure 10 represents the image under g of a fundamental domain D, namely a smallest subset of X(M)

that fully generates it by isometries of R3. The left image corresponds to g|D referring to the “front piece”, which

contains β−. The right image concerns the “back piece”, which contains β+.

IR

IR

IR

ii IR

Figure 10. The image under g of a fundamental domain

Before going ahead, notice that we had settled |y| > |x| in Section 3. By taking 0 < y < x, one simply changes the

direction of the Scherk-ends, while x = y gives a planar end (see Figure 11).

(a) (c)(b)

Figure 11. (a) x < y, (b) x > y, (c) x = y

These other choices will now be useful to close the periods. Hence, we consider the following cases:

Case I x = 1<∼ y.

For β+ we have z(t) = −eit with 0 ≤ t ≤ π. Hence dh is given by

dh =
−idz/z

[z2 + z−2 + tan2 α + cot2 α]1/2
=

dt
[2 cos 2t + tan2 α + cot2 α]1/2

,

and tanα > w(t) > − tanα. Moreover, 1+z
1−z

∣∣∣
β+
= −i sin t

1+cos t , whence cotα+w
cotα−w and consequently g2(t) vary according to

Figure 12.

From Remarks 1 and 2, we notice that the curve in Figure 12(b), rotated by −π/2, has a branch of square root

indicated in Figure 13(a). Therefore Re
∫

(1)
g̃dh < 0.
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2α 2α

β

β+

−

cos sec

IR

IR

i

g2( β+))β−(2g

(a) (b)

Figure 12. (a) Image of cotα+w
cotα−w ; (b) image of g2

IR

β+)

IR

g ( β −) (~

IRi IRi

g~ ( β ) g~ ( β −)+

g~

(a) (b)

Figure 13. (a) Branch of square root of g̃ in Case I; (b) in Case II

2α 2α

β

cos sec

IR

IR

i

g2( β ))(2g
β +

−

β
+ −

(a) (b)

Figure 14. (a) Image of β in Case II; (b) image of g2

Case II x = 1>∼ y.

Now β+ is still given by z(t) = −eit with 0 ≤ t ≤ π and 1+z
1−z =

−i sin t
1+cos t . However, since x>∼ y we have that cotα+w

cotα−w and

consequently g2(t) vary according to Figure 14. Again from Remarks 1 and 2, the branch of square root for g̃2(t)
is now indicated in Figure 13(b). Thus Re

∫
(1)

g̃dh > 0.

Therefore, Re
∫

(1)
g̃dh = 0 for some values of (x, y) in a neighbourhood of (1, 1). At this limit-point, the function

Re
∫

(1)
φ̃2 depends only on the parameter α ∈ (0, π/4). This is the one-dimensional period problem for Callahan,

Hoffman and Meeks (1989). According to Martı́n and Rodrı́guez (1997), it has only one zero that we call α∗.

We can illustrate this fact by taking a vertical axis ν and plotting a graph on the plane Oαν, which crosses the

horizontal axis at α∗. Back to our surfaces, if the extra parameters (x, y) were restricted to a curve (x(κ), y(κ))
with an extreme at (1, 1), then we could visualize κ as a third axis to Oαν. In this way, both Re

∫
(1)
φ̃1,2 turn out

to be dependent on two variables, namely (α, κ), and their graphs are surfaces like Figure 15 suggests. Notice
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that we cannot provide numeric pictures of this fact, since our analyses include limit-values. They typically make

unreliable any computational image. This is the second step to solve (9).

φ~
(1) 1

graph of Re

0

φ~
(1) 2κ

4
π

graph of Re
ν

α

Figure 15. Periods on curve (1)

Let us take, for instance, x and y as functions of (α, κ) given by x = 1 + κα, y = 1 + κα + 2κ( 4α∗+π
8
− α). Hence

κ>∼ 0 implies x = 1 < y for α ∈ (0, 4α∗+π
8
− α) and x = 1 > y for α ∈ ( 4α∗+π

8
− α, π

4
). Namely, Re

∫
(1)
φ̃1 < 0 in the

first interval and Re
∫

(1)
φ̃1 > 0 in the second. We could extend y(α, κ) to y = 1 + κα + 2κ( 4α∗+π

8
· s − α), 1 ≥ s > 0.

Consequently, there exists a curve (α(t), κ(t)) for which Re
∫

(1)
φ̃1,2 = 0, where t ∈ (0, ε) for a certain small ε > 0

and lim
t→0

(α(t), κ(t)) = (α∗, 0). Moreover, along this curve we have x � y as explained next.

If x = y � 1, we assert that the period Re
∫

(1)
φ̃1 is non-zero in the x1-direction. This is because one gets a CHM-

surface with “torsion”, as illustrated in Figure 16(b). Without torsion, on β one has real dh and g̃ = −i|̃g|, whence

Re
∫
β

g̃dh = 0. For x = y � 1, however, we may still set dh|β+ to be real and positive, but then g̃|β+ gets a never-

vanishing real part. Therefore, from (11) and (12) one has Re
∫

(1)
φ̃1dh � 0. This third step finally proves (9) and

concludes the present section.

2x

1x

2x

1x

Figure 16. Symmetries for x = y = 1 (CHM) and x = y � 1 (CHM with torsion)

7. Embeddedness of the Fundamental Piece

This chapter is strongly based on the ideas of Martı́n and Ramos Batista (2006) and Ramos Batista (2005). We

begin with by identifying a fundamental domainD of X(M) in Figure 17.

In the previous section we proved the existence of a curve (x(t), y(t)), 0 ≤ t < 1, along which (9) holds. Moreover,

lim
t→0

α(t) = α∗. Let us fix t ∈ (0, 1) and consider the minimal immersion Xt : D \ {E1,2} → R
3, defined by (3) and

(6). Consider Table (4) and take the composite of the first two involutions described there. We get (g, z)→ (−g, z),

and from the Weierstraß formula in Theorem 2, one easily sees that it leads to a 180◦-rotation about the vertical

axis, providing one takes Xt(S ) as the origin. This means, any q ∈ D \ {E1,2} is taken to a pair of points in R
3, say

Xt(q)+ and Xt(q)−, and one is the image of the other by a 180◦ rotation around Ox3.
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We now describe the fundamental piece P of M. Let P− be the image of D \ {E1,2} in R
3 under Xt, and P+ the

image of P− in R
3 under a 180◦ rotation around Xt([−x, x]). Thus P = P+ ∪ P−.

Let VE be a connected, arbitrarily small neighbourhood of the point E1,2. In Section 6, we saw that (7) and (10)

provided a uniform convergence of (g, dh) to the Weierstraß data of the embedded CHM-surface. Let us denote

this minimal embedding by X0.

E
1,2

E
1,2

F

F’ ’

S

S’

(a) (b)

Figure 17. (a) The set g(D); (b) the image of the fundamental domainD under ρ

Define K = D \ VE , which is a compact set. Since Xt converges to CHM in K , then we could have chosen VE so

small that X0|∂VE would consist of two space curves with injective projections Γ± in the plane x3 = 0 (see Figure

18). This is because a planar end is a graph, as proved in Schoen (1983). By the way, because of that we may

consider that Γ± consists of four half-lines, whose extension is Ox1 ∪ Ox2, joined at their origins by two 90◦-arcs

of circumference. Moreover, the smaller VE gets, the more g(VE) shrinks as a set containing ∞ ∈ Ĉ. In particular,

g(VE) turns out to be a subset of the upper hemisphere.

−
+Γ

Γ

Figure 18. The curves Γ±

Since the convergence Xt → X0 is uniform on compact sets, for t close enough to zero the projection of Xt |∂VE onto

x3 = 0 is close to Γ±. However, it now consists of two curves C± which determine two simply connected open

regions R+ and R− (see Figure 19).

We recall that g(VE) is contained in the upper hemisphere. Therefore, (x1, x2)|VE is an immersion whose image

has C± as boundary. Since x2 is bounded for any fixed t ∈ (0, 1), then (x1, x2)|VE = R+ ∪ R−. Since ∂R± are the

monotone curves C±, then XT |∂VE is a graph of x3 as a function of (x1, x2).

Now observe that X0|K is a compact embedded minimal surface in R
3. Since its boundary does not have self-

intersections, then Xt |K is still embedded for sufficiently small t. Moreover, Xt |K does not intercept Xt |VE , otherwise

there would be a ball in R
3 containing the whole boundary of Xt |K but not all the rest of it. This is impossible

according to the maximum principle. Hence, the pieces Xt |K and Xt |VE make together a minimal embedding Xt :

D \ {E1,2} → R
3, for t sufficiently close to zero.
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Again by the maximum principle, we may extend this conclusion for all t ∈ (0, 1). Therefore, P+ is embedded

in R
3, and since P− is its image under a 180◦ rotation about the segment of P+, the whole piece P will not have

self-intersections. Since the immersion is proper, then P is embedded in R
3.

Now P ⊂ R
3/G, where G is the group of R3 generated by (x1, x2, x3)→ (x1, x2,−x3+2Re

∫
β+

dh) and (x1, x2, x3)→
(x1, x2 + Re

∮
φ2, x3). In the horizontal faces of ∂(R3/G) we have the reflection curves of P. In the vertical faces

we have the straight lines of P. By applying G to P one generates M, which is then complete, doubly periodic and

embedded in R
3.

C+ R
C

−
−

R+

Figure 19. Regions R± and curves C±
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