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Abstract

In this paper, we consider the multiplicative orders of the MacWilliams matrix of order N(MN)i j and the Chebyshev

matrix of order N(DN)i j according to modulo m for N ≥ 1. Consequently, we obtained the rules for the orders of

the cyclic groups and semigroups generated by reducing the MacWilliams and Chebyshev matrices modulo m and

the deteminats of these matrices.

Keywords: MacWillams matrix, Chebyshev matrix, group, order

2000 Mathematics Subject Classification: 15A15, 20H25, 15A15, 20F05

1. Introduction

The rth Krawtchouk polynomial of order N, is defined as (See Hirvencalo, 2003; MacWilliams & Sloane, 1977)

KN
r (x) =

r∑
i=0

(−1)i
(

N − x
r − i

) (
x
i

)

where K0
0

(0) = 1.

The MacWilliams matrix of order N has been given as (See Gogin & Hirvencalo, 2012; Gogin & Myllari, 2007)

(MN)i j = KN
i ( j) for 0 ≤ i, j ≤ N.

where (M0) i j = (1).

The rth discrete Chebyshev polynomial of order N, is defined as (See Bateman & Erdelyi, 1953; Hirvencalo, 2003)

DN
r (x) =

r∑
i=0

(−1)i
(

r
i

) (
N − x
r − i

) (
x
i

)

where D0
0

(0) = 1.

In Gogin and Hirvencalo (2012), the Chebyshev matrix of order N has been given as

(DN)i j = DN
i ( j) for 0 ≤ i, j ≤ N.

Note that if N = 0, (D0) i j = (1). It is important to note that (M1) i j = (D1) i j =
(

1 1

1 −1

)
.

Recently, MacWilliams and Chebyshev matrices and their properties have been studied by some authors; see for

example (Bateman & Erdelyi, 1953; Gluesing-Luerssen & Schneider, 2008; Gogin & Hirvencalo, 2012, 2007;

Gogin & Myllari, 2007; Hirvencalo, 2003; MacWilliams & Sloane, 1977; Pan & Wang, 2012; Szegö, 1975). Lü

and Wang (2007) obtained the rules for the orders of the cyclic groups generated by reducing the k-generalized

Fibonacci matrix modulo m. Deveci and Karaduman (2012a) extended the concept to Pascal and generalized Pascal

matrices. Now we extend the concept to the MacWilliams matrix of order N(MN)i j and the Chebyshev matrix of

order N(DN)i j for N ≥ 1.

In this paper, the usual notation p is used for a prime number.
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2. Method

For given a matrix M =
[
mi j

]
with mi j’s being integers, M (mod m) means that each element of M are re-

duced modulo m, that is, M (mod m) =
(
mi j (mod m)

)
. Let us consider the set 〈M〉m =

{
Mi (mod m)

∣∣∣ i ≥ 0
}
. If

gcd (m, det M) = 1, then the set 〈M〉m is a cyclic group; if gcd (m, det M) � 1, then the set 〈M〉m is a semigroup.

Let the notation |〈M〉m| denotes the order of 〈M〉m.

By matrix algebra it is easy to prove that

(
(MN)i j

)2k
=
[
mi j

]
(N+1)×(N+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2kN 0 · · · 0 0

0 2kN · · · 0 0

0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 2kN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (k ≥ 0) (1)

that is, the matrix
(
(MN)i j

)2k
is an (N + 1) × (N + 1) diagonal matrix with 2kN , · · · , 2kN as diagonal entries.

Also, we obtain det
(
(MN)i j

)
, (N ≥ 1) as following

det
(
(MN)i j

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2

N2+N
2 , N ≡ 1, 2 mod 4,

2
N2+N

2 , N ≡ 0, 3 mod 4.
(2)

It is easy to see from (2) that 〈MN〉m is a cyclic group if m is an odd integer and 〈MN〉m is a semigroup if m is an

even integer.

3. Results

Theorem 3.1 If m is an odd integer, the order of the cyclic group 〈MN〉m is 2k where k is least positive integer such
that 2kN ≡ 1 (mod m).

Proof. It is easy to see from (1) that
(
(MN)i j

)2k
(mod m) ≡ I(N+1) where I(N+1) is identity matrix of size (N + 1) ×

(N + 1). If we choose k as least positive integer such that 2kN ≡ 1 (mod m), then we obtain |〈MN〉m| = 2k. �
Theorem 3.2 Let m be an even integer, then two cases occur for order of the semigroup 〈MN〉m:

(i) If m = 2u (u ∈ N), then the order of the semigroup 〈MN〉2u is 2k where k is least positive integer such that
2kN ≡ 0 (mod m).

(ii) If m = 2ut (u ∈ N) such that t is an odd integer, then |〈MN〉2ut | = |〈MN〉2u | + |〈MN〉t | − 1.

Proof. (i) It is easy to see from (1) that

(
(MN)i j

)2k
(mod m) ≡ 0(N+1)

where 0(N+1) is zero matrix of size (N + 1) × (N + 1). If we choose k as least positive integer such that 2kN ≡
0 (mod m), then we obtain |〈MN〉m| = 2k.

(ii) Let |〈MN〉t | = 2α and |〈MN〉2u | = 2β. Then

2αN = k1t + 1 and 2βN = k22u

where k1, k2 ∈ N and gcd (t, k2) = 1. Thus, we have 2(α+β)N ≡ 2uk2 (mod m), that is
(
(MN)i j

)2α+2β
(mod m) ≡(

(MN)i j

)2β
. So, we get |〈MN〉2ut | = |〈MN〉2u | + |〈MN〉t | − 1. �

Remark 3.1 If p is the greatest prime factor det
(
(DN)i j

)
, then p!| det

(
(DN)i j

)
.

Theorem 3.3 Let gcd
(
p, det

(
(DN)i j

))
= 1 and let t be the largest positive integer such that

∣∣∣〈DN〉p
∣∣∣ = ∣∣∣〈DN〉pt

∣∣∣.
Then

∣∣∣〈DN〉pα
∣∣∣ = pα−t

∣∣∣〈DN〉p
∣∣∣ for every α ≥ t. In particular, if

∣∣∣〈DN〉p
∣∣∣ � ∣∣∣〈DN〉p2

∣∣∣, then
∣∣∣〈DN〉pα

∣∣∣ = pα−1
∣∣∣〈DN〉p

∣∣∣
holds for every α > 1.
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Proof. We first note that 〈DN〉pu is a cyclic group for every u ≥ 1. Let θ be a positive integer and let |〈DN〉m|
be denoted by hN (m). Since (DN)

hN(pθ+1)
i j ≡ IN+1

(
mod pθ+1

)
, that is, (DN)

hN(pθ+1)
i j ≡ IN+1

(
mod pθ

)
, we get that

hN

(
pθ
)

divides hN

(
pθ+1
)
. On the other hand, writing (DN)

hN(pθ)
i j = IN+1 +

(
a(θ)

i j pθ
)
, we have

(DN)
hN(pθ)p
i j =

(
IN+1 +

(
a(θ)

i j pθ
))p
=

p∑
i=0

(
p
i

) (
a(θ)

i j pθ
)i ≡ IN+1

(
mod pθ+1

)
.

So we get that hN

(
pθ+1
)∣∣∣∣ hN

(
pθ
)

p. Thus, hN

(
pθ+1
)
= hN

(
pθ
)

or hN

(
pθ+1
)
= hN

(
pθ
)

p, and the latter holds if, and

only if, there is a a(θ)
i j such that p| a(θ)

i j . Since hN
(
pt) � hN

(
pt+1
)
, there is an a(t+1)

i j such that p| a(t+1)
i j , therefore,

hN

(
pt+1
)
� hN

(
pt+2
)
. The proof is finished by induction on t. �

Theorem 3.4 Let gcd
(
m, det

(
(DN)i j

))
= 1 and let m =

∏t
i=1 pei

i , (t ≥ 1) where pi’s are distinct primes, then

|〈DN〉m| = lcm
[∣∣∣∣〈DN〉pe1

1

∣∣∣∣ ,
∣∣∣∣〈DN〉pe2

2

∣∣∣∣ , · · · , ∣∣∣〈DN〉pet
t

∣∣∣].
Proof. Let

∣∣∣∣〈DN〉pek
k

∣∣∣∣ = λk for 1 ≤ k ≤ t and let |〈DN〉m| = λ. Then we have the entry (i, j) of

(DN)λk
i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
pek

k εi jKN
i ( j) , i > j,

pek
k εi jKN

i ( j) + 1, i = j,
pek

k εi jKN
i ( j) , i < j,

and the entry (i, j) of

(DN)λi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mε
′
i jK

N
i ( j) , i > j,

mε
′
i jK

N
i ( j) + 1, i = j,

mε
′
i jK

N
i ( j) , i < j,

where εi j and ε
′
i j are integers for 0 ≤ i, j ≤ N.

Therefore (DN)λi j is of the form c · (DN)λi j, (c ∈ N) for all values of k, and since any such number gives λ, we

conclude that λ = lcm [λ1, λ2, · · · , λt]. �
Corollary 3.1 The orders of the semigroups 〈D2〉2k and 〈D2〉3k are 2k + 1 and 2k (k − 1) + 2k + 1, respectively.

Proof. We first note that 〈D2〉2k and 〈D2〉3k are semigroups for every k ≥ 1 since det
(
(D2)i j

)
= −12. By matrix

algebra it is easy to prove that

(D2)2k
i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
22k 2k−1

(
2k − 3k

)
0

0 6k 0

2k
(
2k − 3k

)
2k−1
(
2k − 3k

)
6k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

(D2)2k+1
i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2k
(
2k+1 − 3k

)
22k 6k

2 · 6k 0 −2 · 6k

2k
(
2k+1 − 3k

)
2k
(
2k − 3k+1

)
6k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for k ≥ 1. Since (D2)2k+1

i j ≡ 03

(
mod 2k

)
and (D2)2k(k−1)+2k+2

i j ≡ (D2)2k
i j

(
mod 3k

)
, we get that |〈D2〉2k | = 2k + 1 and

|〈D2〉3k | = 2k (k − 1) + 2k + 1. �
4. Discussion

Wall (1960) proved that the lengths of the periods of the recurring sequences obtained by reducing a Fibonacci

sequences by a modulo m are equal to the lengths of the of ordinary 2-step Fibonacci recurrences in cyclic groups.

The theory is expanded to 3-step Fibonacci sequence by Ozkan, Aydin, and Dikici (2003). Lü and Wang (2007)

contributed to the study of the Wall number for the k-step Fibonacci sequence. In (Deveci, 2011; Deveci &

Karaduman, 2012b, to appear; Deveci, to appear), the concept has been extended to some special linear recurrence

sequences. In this paper, we obtained the cyclic groups and semigroups generated by reducing the MacWilliams
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and Chebyshev matrices modulo m. Are there groups such that the lengths of the periods of some special recurrence

sequences of elements of these groups are obtained by the orders of these cyclic groups and semigroups?
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Lü, K., & Wang, J. (2007). k-step Fibonacci sequence modulo m. Util. Math., 71, 169-178.

MacWilliams, F. J., & Sloane, N. J. A. (1977). The theory of error-correcting codes. North-Holland.

Ozkan, E., Aydin, H., & Dikici, R. (2003). 3-step Fibonacci series modulo m. Applied Mathematics and Compu-
tation, 143, 165-172.

Pan, J. H., & Wang, R. (2012). Uniform asymptotic expansions for the discrete Chebyshev polynomials. Studies
in Applied Mathematics, 128(4), 337-384.
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