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Abstract

Liu (2001) derived the first augmented Lie-group S Oo(n, 1) symmetry for the nonlinear ordinary differential equa-

tions (ODEs): ẋ = f(x, t), and developed the corresponding group-preserving scheme (GPS). However, the earlier

formulation did not consider the rotational effect of nonlinear ODEs. In this paper, we derive the second augmented

Lie-group S Oo(n, 1) symmetry by taking the rotational effect into account. The numerical algorithm exhibits two

solutions of the Lie-group G ∈ S Oo(n, 1), depending on the sign of ‖f‖2‖x‖2 − 2(f · x)2, which means that the

algorithm may be switched between two states, depending on x. We give numerical examples to assess the new

algorithm GPS2, which upon comparing with the GPS can raise the accuracy about three orders. It is interesting

that for the chaotic system the signum function sign(‖f‖2‖x‖2 − 2(f · x)2) is frequently switched between +1 and −1

in time.

Keywords: ordinary differential equations, chaotic system, Jordan dynamics, Lie-group S Oo(n, 1) symmetry,
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1. Introduction

There are a lot of numerical methods developed to solve the ordinary differential equations (ODEs), which are

effective for most situations. However, when the ODEs possess special structures, like the conserved integrals and

the Lie-group symmetries, those numerical methods designed for the general purpose cannot maintain the special

structures, unless we can design a particular algorithm to do that. There was a substantial development in the

Lie-group geometric integrators for solving ODEs (Iserles, Munthe-Kaas, Nørsett, & Zanna, 2000; Hairer, Lubich,

& Wanner, 2002).

The majority of the Lie-group integrator is for providing a good performance algorithm that can enforce the orbit

of numerical solution on the Lie-group manifold, which is a key way to retain qualitatively correct behavior, and

also to reduce numerical errors. At the present time, there are many famous geometric integration methods, like

the Crouch-Grossman, the RKMK, the Magnus, and the Fer methods. The existent studies clearly indicated that

the Lie-group methods can improve the qualitative behavior and for a long term integration.

Basically, we have two approaches in the higher-order Lie-group integration methods. One is using the Lie group

property and another is employing the Lie algebra structure, of which the geometric integrators developed by

Hairer, Lubich and Wanner (2002), Iserles (1984), Iserles and Nørsett (1999), Iserles, Munthe-Kaas, Nørsett and

Zanna (2000), Lee and Liu (2009), Munthe-Kaas (1998, 1999), and Zhang and Deng (2004, 2006) can be referred.

The remaining parts of this paper are organized and arranged as follows. In Section 2 we review the first augmented

Lie-group S Oo(n, 1) symmetry derived by Liu (2001), and introduce the group-preserving scheme (GPS). Section

3 explores the concepts from the Jordan algebra and the Jordan dynamics to help us for finding the Lie-group

DS O(n) symmetry of nonlinear ODEs. The new developments of the second augmented Lie-group S Oo(n, 1)

symmetry are described in Section 4, while the explicit formulas for the Lie-group S Oo(n, 1) integration method

are derived in Section 5. In Section 6 we derive a novel explicit group-preserving scheme GPS2, which is used to

solve nonlinear ODEs. In particular, we will emphasize the chaotic behavior of some well known chaotic systems
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as being observed from the new method. Finally, the conclusions are drawn in Section 7.

2. The First Augmented Lie-Group Symmetry

Let us consider

ẋ = f(x, t), x(0) = x0, t ∈ R, x ∈ Rn, (1)

which is an n-dimensional ODEs system for depicting an initial value problem. Generally speaking, the flow

mapping given by

φt(x0) = x(t; x0) (2)

satisfies φt1 ◦ φt2 = φt1+t2 as being a one-parameter semi-group. Although the ODEs possess such a property of

being a semi-group, but in general, the ODEs do not necessarily have the Lie-group structure.

For Equation (1) we can consider an orientation of state vector (Liu, 2001):

n :=
x
‖x‖ , (3)

where ‖x‖ :=
√

x · x is the length of x, and the dot in x · x signifies the inner product. We suppose that x � 0.

Upon using Equations (1) and (3), ‖x‖ is depicted by

d
dt
‖x‖ = ẋ · x√

x · x = f(x, t) · n. (4)

Then, from Equations (1), (3) and (4) it follows that

ṅ =
f(x, t)
‖x‖ −

( f(x, t)
‖x‖ · n

)
n. (5)

Therefore, we have decomposed Equation (1) for x into Equations (4) and (5), respectively, for ‖x‖ and n with

‖x‖n = x.

From Equations (4) and (5) it follows that
d
dt

(‖x‖n) = f(x, t), (6)

which shows that the length ‖x‖ is an integrating factor of the governing Equation (5) for n. Then, inserting

‖x‖n = x into the above equation and combining with Equation (4) we can write a Lie-form system:

Ẋ = AX, (7)

where

X =
[

x
‖x‖
]
, A :=

⎡⎢⎢⎢⎢⎢⎣ 0n×n
f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤⎥⎥⎥⎥⎥⎦ . (8)

X has one dimension higher than x, and is called the augmented state vector, satisfying

XTgX = 0, (9)

where

g =
[

In 0n×1

01×n −1

]
(10)

is the metric of the Minkowski space M
n+1. In is an n × n identity matrix.

By employing the ODEs in Equation (7) with A ∈ so(n, 1), i.e.,

ATg + gA = 0, (11)

Liu (2001, 2006) has developed a group-preserving scheme (GPS):

xk+1 = xk + ηkfk, (12)

‖xk+1‖ = ak‖xk‖ + bk

‖fk‖xk · fk, (13)
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where

ak := cosh

(
h‖fk‖
‖xk‖
)
, bk := sinh

(
h‖fk‖
‖xk‖
)
, (14)

ηk :=
(ak − 1)fk · xk + bk‖xk‖‖fk‖

‖fk‖2 , (15)

and h = Δt is a time increment. The values of x and f at a discrete time t = tk are simply denoted by xk and

fk = f(xk, tk), respectively.

Because the above Lie-group S Oo(n, 1) symmetry of Equation (7) is realized in the Minkowski space for the

augmented state vectors, this kind symmetry may be termed the augmented Lie-group symmetry, and the Lie-

group symmetry found by Liu (2001) is the first augmented Lie-group symmetry for Equation (1).

It is known that a matrix A of the real Lie algebra so(n, 1) of the Lorentz group S Oo(n, 1) has the general form

(Hong & Liu, 1999):

A =
[

As
s As

0

A0
s 0

]
, (16)

where

(As
s)

T = −As
s, A0

s = (As
0)T. (17)

The matrix A in Equation (7) is a special case of Equation (16) with As
s = 0 and As

0
= f/‖x‖. In this paper, we

attempt to derive the second augmented Lie-group symmetry for Equation (1), of which the Lie-algebra is in the

form of Equation (16) with As
s � 0. This new method can generate a new algorithm which is better than the GPS.

The following ODEs system:

Ẋ = A(X, t)X (18)

is termed a Lie-form system if A satisfies the properties of Lie-algebra.

3. The Jordan Structure

From the Jordan structure (Iordanescu, 2007, 2009) we can give a new aspect of Equation (5), and then the second
augmented Lie-group symmetry for Equation (1) can be deduced. To derive the novel Lie-symmetry, we will use

the Jordan algebra and the triple system developed by Liu (2000), who was the first one to develop a dynamical

system based on the triple-vector (y, z,u):

ẋ = [y, z,u] = y · zu − u · zy. (19)

The triplet y, z and u can be functions of x and t. Liu (2000) has shown that y · zu is a conservative term, while

u · zy represents a dissipative term.

By using the Jordan dynamics in Equation (19) and using n · n = ‖n‖2 = 1, we can write Equation (5) to be

ṅ =
[
n,n,

f
‖x‖
]
. (20)

Moreover, Equation (20) can be recast to

ṅ =
[

f
‖x‖ ⊗ n − n ⊗ f

‖x‖
]

n, (21)

where u ⊗ y is defined by (u ⊗ y)z = y · zu, which is a dyad of u and y. Due to

[
f
‖x‖ ⊗ n − n ⊗ f

‖x‖
]T
= −
[

f
‖x‖ ⊗ n − n ⊗ f

‖x‖
]
,

the Lie-group symmetry for Equation (21) is S O(n).

The pair (
f
‖x‖ ,n

)
(22)
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in Equation (21) is called a Jordan pair, and the following operation:

f
‖x‖ ⊗ n − n ⊗ f

‖x‖ (23)

is called the Jordan cross product of the Jordan pair, which is an extension of the usual cross product of vectors in

three-dimensional space R
3.

From Equations (4) and (21) and x = ‖x‖n we have

ẋ =
f · x
‖x‖2 x +

[
f
‖x‖ ⊗

x
‖x‖ −

x
‖x‖ ⊗

f
‖x‖
]

x, (24)

which can be re-formulated as

ẋ = [S +W]x, (25)

where

S =
f · x
‖x‖2 In, W =

f
‖x‖ ⊗

x
‖x‖ −

x
‖x‖ ⊗

f
‖x‖ . (26)

As shown by Liu (2013a), Equation (25) is equipped with a Lie-group DS O(n) symmetry, with Sx rendering a

dilation/contraction and Wx causing a rotation. It is interesting that the coefficient matrices S and W are fully de-

termined by the Jordan pair in Equation (22); they are, respectively, the inner product and the Jordan cross product
of the Jordan pair. Recently, Liu (2013a) has developed a DS O(n) Lie-group algorithm based on Equation (25).

4. The Second Augmented Lie-Group Symmetry

By the definition of Equation (3), Equation (4) can be written as

d
dt
‖x‖ = f · x

‖x‖ , (27)

and then Equations (24) and (27) can be written together as

d
dt

[
x
‖x‖
]
=

⎡⎢⎢⎢⎢⎢⎢⎣
W (f·x)x

‖x‖3
(f·x)xT

‖x‖3 0

⎤⎥⎥⎥⎥⎥⎥⎦
[

x
‖x‖
]
. (28)

Moreover, in terms of

X :=

[
x
‖x‖
]
, B :=

⎡⎢⎢⎢⎢⎢⎢⎣
W (f·x)x

‖x‖3
(f·x)xT

‖x‖3 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (29)

we can find three inherent structures about Equation (28):

Cone: XTgX = 0, (30)

Lie-algebra: B ∈ so(n, 1), BTg + gB = 0, (31)

Lie-group: G ∈ S Oo(n, 1), GTgG = g, (32)

where g := diag(In,−1) is a signature (n, 1) metric tensor, and G is the Lie-group generated from B, which can be

expressed as

G =
[

Gs
s Gs

0

G0
s G0

0

]
. (33)

In the above, Gs
s is an n × n matrix, Gs

0
is an n × 1 matrix, G0

s is an 1 × n matrix, and G0
0

is a scalar. Corresponding

to the first augmented Lie-group symmetry found by Liu (2001), the above Lie-group symmetry is the second
augmented Lie-group symmetry in the Minkowski space M

n+1 for Equation (1).

By using Equation (33) we can identify two types internal symmetries for n and x, respectively:

n(t) =
Gs

s‖x0‖n0 +Gs
0
‖x0‖

G0
s‖x0‖n0 +G0

0
‖x0‖
, (34)

x(t) = Gs
sx0 +Gs

0‖x0‖, (35)
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where x0 and n0 denote, respectively, the initial values of x and n. It can be seen that the symmetry for n is more

complex than that for x, because its symmetry is a projective type. On the other hand, the above two Lie-group

transformations are different from the S O(n) for n as shown in Equation (21), and the DS O(n) for x as explored

by Liu (2013a). While the Lie-group symmetry for n in Equation (34) is a projective type of S Oo(n, 1), denoted

by PS Oo(n, 1), the Lie-group symmetry for x in Equation (35) is a Poincaré type: a Minkowskian rotation Gs
sx0

follows by an Euclidean translation ‖x0‖Gs
0
.

It can be seen that the augmented coefficient matrix B of Equation (28) is fully determined by the Jordan pair (22)

with

B =
[

W Sn
(Sn)T 0

]
=

⎡⎢⎢⎢⎢⎢⎣
f
‖x‖ ⊗ n − n ⊗ f

‖x‖
(

f
‖x‖ · n

)
n(

f
‖x‖ · n

)
nT 0

⎤⎥⎥⎥⎥⎥⎦ , (36)

where the scalar in the symmetric part is the inner product of the Jordan pair, and the skew-symmetric part is the

Jordan cross product of the Jordan pair.

Now we can observe that the above B is of the general form in Equation (16), as being a full Lie-algebra of so(n, 1).

Upon comparing the above B with the coefficient matrix A in Equation (7):

A =
⎡⎢⎢⎢⎢⎢⎣ 0n×n

f
‖x‖

fT

‖x‖ 0

⎤⎥⎥⎥⎥⎥⎦ , (37)

the matrix B includes a skew-symmetric part W, which is absent in A. It can take the rotational effect of nonlinear

dynamical flow into account.

From Equation (24), by using the dyadic operation for the last term, we have

ẋ =
f · x
‖x‖2 x +

[
f
‖x‖ ⊗

x
‖x‖
]

x − x
‖x‖

f · x
‖x‖ . (38)

Then the first term and the last term are cancelled out, which leads to

ẋ =
[

f
‖x‖ ⊗

x
‖x‖
]

x. (39)

This ODEs system is the most simple Lie-form representation of Equation (1). Liu (2013b) has developed a

GL(n,R) Lie-group symmetry and used it to develop a Lie-group algorithm based on Equation (39). Up to here

we have derived four types Lie-group symmetries about Equation (1).

5. Two Solutions of G

From Equation (28) we can develop a numerical scheme, by supposing that the Jordan pair

(a,b) =

(
f̄
‖x̄‖ , n̄

)
(40)

is constant within a small time step h, where the bar means that they are taking values at a mid-point t̄ ∈ [0, h].

From Equation (4), Liu (2013a) has written the ODE for the length to be

d
dt
‖x‖ =

(
f
‖x‖ · n

)
‖x‖. (41)

Under the above assumption in Equation (40) we can obtain

‖x(t)‖ = exp(a · bt)‖x0‖. (42)

However, a more subtle representation of the ODE for the length is in terms of the Jordan pair (40):

d
dt
‖x‖ = a · bb · x, (43)

which is the second equation in Equation (28). Below, we will derive a new symmetry based on Equation (28).
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From Equations (28) and (40) it follows that

ẋ = b · xa − a · xb + ‖x‖a · bb. (44)

Let

z = a · x, w = b · x, y = ‖x‖, (45)

c0 = a · b, (46)

and Equations (44) and (43) become

ẋ = wa − zb + c0yb, (47)

ẏ = c0w. (48)

Consequently, we can derive

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z
w
y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−c0 a2

0 c2
0−1 c0 c0

0 c0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z
w
y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (49)

where a0 = ‖a‖.
For the special case with c0 = 0 we have

x(t) = x0 +

[
[cos(ωt) − 1]z0

ω2
+

sin(ωt)w0

ω

]
a +
[
[cos(ωt) − 1]w0 − sin(ωt)z0

ω

]
b, (50)

where ω = ‖a‖, z0 = a · x0 and w0 = b · x0. For this case ‖x‖ is a constant.

In Appendix A we give a detailed derivation of the solutions for (z,w, y) with c0 � 0. Depending on the signum

function of

sign(a2
0 − 2c2

0) =
a2

0 − 2c2
0

|a2
0
− 2c2

0
| = sign(‖f‖2‖x‖2 − 2(f · x)2), (51)

there exist two different types solutions of (z,w, y). We give the solutions of X(t) = (x(t), ‖x(t)‖)T and G in the

following.

5.1 The Solution of X(t) When sign = −1

For the case with a2
0 − 2c2

0 < 0, inserting Equation (A5) for z, w and y into Equation (47) and integrating it we have

x(t) = x0 + [G1(t)z0 +G2(t)w0 +G5(t)‖x0‖]a + [G3(t)z0 +G4(t)w0 +G6(t)‖x0‖]b, (52)

where

G1(t) =
c2[1 − f2(t)]

c2
0

,

G2(t) =
c2[ f2(t) − 1]

c0

+
f1(t)
ω
,

G3(t) =
d1[1 − f2(t)]

ω
− (c2 + c3) f1(t)

ω
,

G4(t) =
(c2

0 − d2ω)[ f2(t) − 1]

ω2
+

(c0c2 − d3) f1(t)
ω

,

G5(t) =
c2[ f2(t) − 1]

c0

,

G6(t) =
c0 f1(t)
ω

− c2[ f2(t) − 1], (53)

in which ω =
√

2c2
0
− a2

0
, f1(t) = sinh(ωt), and f2(t) = cosh(ωt).

On the other hand, by using the last equation in Equation (A5) and inserting z0 = a · x0, and w0 = b · x0 we can

obtain

‖x(t)‖ = −G5(t)a · x0 +G7(t)b · x0 + [c3 + c2 f2(t)]‖x0‖, (54)
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where

G7(t) =
c0 f1(t)
ω

+ c2[ f2(t) − 1]. (55)

5.2 The Solution of X(t) When sign = +1

Next we consider the case with a2
0 − 2c2

0 > 0, of which by inserting Equation (A9) for z, w and y into Equation (47)

and integrating it, render

x(t) = x0 + [g1(t)z0 + g2(t)w0 + g5(t)‖x0‖]a + [g3(t)z0 + g4(t)w0 + g6(t)‖x0‖]b, (56)

where

g1(t) =
c2[1 − f4(t)]

c2
0

,

g2(t) =
c2[ f4(t) − 1]

c0

+
f3(t)
ω
,

g3(t) =
d1[ f4(t) − 1]

ω
− (c2 + c3) f3(t)

ω
,

g4(t) =
(c2

0 − d2ω)[1 − f4(t)]
ω2

+
(c0c2 − d3) f3(t)

ω
,

g5(t) =
c2[ f4(t) − 1]

c0

,

g6(t) =
c0 f3(t)
ω

− c2[ f4(t) − 1], (57)

in which ω =
√

a2
0
− 2c2

0
, f3(t) = sin(ωt), and f4(t) = cos(ωt).

By using the last equation in Equation (A9) and inserting z0 = a · x0, and w0 = b · x0 we can obtain

‖x(t)‖ = −g5(t)a · x0 + g7(t)b · x0 + [c3 + c2 f4(t)]‖x0‖, (58)

where

g7(t) =
c0 f3(t)
ω

+ c2[ f4(t) − 1]. (59)

To find G in Equation (33), which corresponding to a constant matrix B in Equation (36), is equivalent to find the

augmented state transition matrix from X0 to X(t).

5.3 The Solution of G When sign = +1

From Equations (56) and (58) we can obtain

Gs
s = In + g1(t)aaT + g2(t)abT + g3(t)baT + g4(t)bbT,

Gs
0 = g5(t)a + g6(t)b,

G0
s = −g5(t)aT + g7(t)bT,

G0
0 = c3 + c2 f4(t). (60)

Besides the property in Equation (32), we can prove that

G0
0 ≥ 1, (61)

which is important in the numerical scheme to preserve the orientation of ‖x‖ > 0. From Equation (A10) we have

c3 + c2 = 1.

By using

c2 =
c0

c0 − c1

, c3 = −c1c2

c0

,
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we can obtain

1 − c2 = 1 − c0

c0 − c1

= −c1

c0

c0

c0 − c1

= −c1c2

c0

= c3,

which leads to c3 + c2 = 1.

Because of
1

c2

= −ω
2

c2
0

< 0, 0 < cos(ωt) ≤ 1,

we have

G0
0 = c3 + c2 f4(t) = c3 + c2 cos(ωt) ≥ c3 + c2 = 1.

This ends the proof of Equation (61).

5.4 The Solution of G When sign = −1

For the case with a2
0 − 2c2

0 < 0 we have a similar G with

Gs
s = In +G1(t)aaT +G2(t)abT +G3(t)baT +G4(t)bbT,

Gs
0 = G5(t)a +G6(t)b,

G0
s = −G5(t)aT +G7(t)bT,

G0
0 = c3 + c2 f2(t) ≥ 1. (62)

The last inequality follows from

c3 + c2 = 1,
1

c2

=
ω2

c2
0

> 0, f2 = cosh(ωt) ≥ 1,

by using Equation (A6).

Up to here we have derived two different G’s as shown in Equations (60) and (62). For the ODEs: ẋ = f(x, t),
depending on the value of sign(‖f‖2‖x‖2 − 2(f · x)2) we may alternatively use Equation (52) or Equation (56) to

compute the solution of x(t) step-by-step. Hence, we have developed a two-phase Lie-group algorithm to solve

Equation (1), where the algorithm may be switched between two states detected by the solution of x.

6. Numerical Examples

In order to distinct the present method from the group-preserving scheme (GPS) developed by Liu (2001), we may

call the new algorithm to be the second GPS, simply denoted by GPS2, which is summarized as follows.

(i) Give an initial value of x0 at an initial time t = t0 and a time stepsize h.

(ii) For k = 0, 1, . . ., we repeat the following computations to a specified terminal time t = t f :

ak =
fk

‖xk‖ ,

bk =
xk

‖xk‖ ,
ak

0 = ‖ak‖,
ck

0 = ak · bk,

zk
0 = ak · xk,

wk
0 = bk · xk,

sign =
(ak

0
)2 − 2(ck

0
)2

|(ak
0
)2 − 2(ck

0
)2| ,
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if sign = +1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωk =

√
(ak

0
)2 − 2(ck

0
)2,

ck
1
=

(ck
0
)2+ω2

k

ck
0

,

ck
2
=

ck
0

ck
0
−ck

1

,

ck
3
= − ck

1
ck

2

ck
0

,

dk
1
=

ck
2
ωk

ck
0

,

dk
2
=

ck
0
ck

1

ωk
− ck

2
ωk,

dk
3
= ck

0
+ ck

1
ck

2
,

ak = sin(ωkh),
bk = cos(ωkh),

gk
3
=

dk
1
(bk−1)

ωk
− (ck

2
+ck

3
)ak

ωk
,

gk
4
=

[(ck
0
)2−dk

2
ωk](1−bk)

ω2
k

+
(ck

0
ck

2
−dk

3
)ak

ωk
,

(63)

if sign = −1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωk =

√
2(ck

0
)2 − (ak

0
)2,

ck
1
=

(ck
0
)2−ω2

k

ck
0

,

ck
2
=

ck
0

ck
0
−ck

1

,

ck
3
= − ck

1
ck

2

ck
0

,

dk
1
= − ck

2
ωk

ck
0

,

dk
2
=

ck
0
ck

1

ωk
+ ck

2
ωk,

dk
3
= ck

0
+ ck

1
ck

2
,

ak = sinh(ωkh),
bk = cosh(ωkh),

gk
3
=

dk
1
(1−bk)

ωk
− (ck

2
+ck

3
)ak

ωk
,

gk
4
=

[(ck
0
)2−dk

2
ωk](bk−1)

ω2
k

+
(ck

0
ck

2
−dk

3
)ak

ωk
,

(64)

gk
1 =

ck
2
(1 − bk)

(ck
0
)2
,

gk
2 =

ck
2
(bk − 1)

ck
0

+
ak

ωk
,

gk
5 =

ck
2
(bk − 1)

ck
0

,

gk
6 =

ck
0
ak

ωk
− ck

2(bk − 1),

xk+1 = xk + (gk
1zk

0 + gk
2wk

0 + gk
5‖xk‖)ak + (gk

3zk
0 + gk

4wk
0 + gk

6‖xk‖)bk. (65)

We may see that the most nonlinear ODEs fall into the first class with sign = +1 and use Equation (63) for the

numerical integration, because in Equation (63) there are sin(ωkh) and cos(ωkh), while that in Equation (64) there

are sinh(ωkh) and cosh(ωkh). However, for the chaotic system the situation is quite different, with Equations (63)

and (64) both being used in the numerical integration. We use the following examples to assess the performance

of the GPS2.

6.1 Example 1

Let us consider the following periodic system:

ẋ1 = x2, x1(0) = 0,

ẋ2 = −2.25x1 − (x1 − 1.5 sin t)3 + 2 sin t, x2(0) = 1.59929. (66)
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Figure 1. For Example 1 with stepsize h = 0.1, the numerical errors of GPS2 and RK4

Figure 2. For Example 1 with stepsize h = 0.01, the numerical errors of GPS, DSON and GPS2
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The exact solutions are

x1(t) = 1.59941 sin t − 0.00004 sin 3t,

x2(t) = 1.59941 cos t − 0.00012 cos 3t. (67)

In Figure 1 we compare the numerical errors obtained by the GPS2 and the RK4, both using a stepsize h = 0.1.

Under the stepsize h = 0.1, the GPS2 is better than RK4, while the GPS is failure. Under a small stepsize h = 0.01,

these two schemes of GPS2 and RK4 have the same accuracy in the orders of 10−9 −10−5. In Figure 2 we compare

the numerical errors obtained by the GPS2, the DS O(n) method (Liu, 2013a), and the GPS under the same stepsize

h = 0.01, of which we can find that the DS O(n) and the GPS2 method is much better than the GPS with the

accuracy being raised three to four orders. For this system, the signum function defined by Equation (51) is +1,

because the solutions are bounded.

6.2 Example 2

Then we consider

ẍ = −ẋ2 − x + ln t, x(1) = 0, ẋ(1) = 1, (68)

which can be recast to

ẋ1 = x2, x1(1) = 0,

ẋ2 = −x1 − x2
2 + ln t, x2(1) = 1, (69)

and has the solution:

x(t) = ln t. (70)

Figure 3. For Example 2 with stepsize h = 0.001, (a) the numerical errors of GPS and GPS2, and (b) showing the

sign function

We use h = 0.001. In Figure 3(a) the numerical errors obtained by GPS and GPS2 are compared. The accuracy

of the above two methods are the same under a small time stepsize. In Figure 3(b) we show the signum function

defined by Equation (51) for this system, which is regular and is changed from +1 to −1. For this system the

solution x(t) = ln t is unbounded, such that after a certain time the signum function becomes −1.
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This example motivates us to prove the following result. If Equation (1) satisfies

f(x(t0), t0) · x(t0) > 0, and sign(‖f‖2‖x‖2 − 2(f · x)2) = −1, ∀t ≥ t0,

then x(t)→ ∞, t → ∞. (71)

There are two disconnected sets of ‖f‖2‖x‖2 − 2(f · x)2 < 0:

f · x < − 1√
2
‖f‖‖x‖, f · x > 1√

2
‖f‖‖x‖,

where the first case is impossible because it contradicts to f(x(t0), t0) · x(t0) > 0. Then under the condition of

sign(‖f‖2‖x‖2 − 2(f · x)2) = −1, it is always

f · x > 1√
2
‖f‖‖x‖, ∀t ≥ t0, (72)

because the two sets are disconnected, and from the second set to the first set it must be sign(‖f‖2‖x‖2−2(f·x)2) = +1

on some time interval. Then, using Equations (27) and (72) we have

d
dt
‖x‖ > 1√

2
‖f‖ > 0, (73)

which means that the length grows with time. Thus, Equation (71) is proven.

6.3 Example 3

We consider an index 3 differential algebraic equations system, which describes the position of a particle on a

circular track:

ü1 = 2u2 + λu1, (74)

ü2 = −2u1 + λu2, (75)

u2
1 + u2

2 = 1. (76)

For (u1(0), u2(0)) = (0, 1), λ(0) = 0, the exact solution is u1(t) = sin t2, u2(t) = cos t2 and λ(t) = −4t2.

If we let x1 = u1, x2 = u̇1, x3 = u2 and x4 = u̇2, then through some derivations we find that the above system can

be transformed to a system of ODEs:

ẋ1 = x2, (77)

ẋ2 = 2x3 − x1(x2
2 + x2

4), (78)

ẋ3 = x4, (79)

ẋ4 = −2x1 − x3(x2
2 + x2

4), (80)

which is subjecting to a constraint on (x1, x3):

x2
1 + x2

3 = 1, (81)

and the Lagrange multiplier λ is calculated by

λ = −x2
2 − x2

4. (82)

In Figure 4 we compare the numerical errors of u1, u2 and λ obtained by the GPS and GPS2 both with h = 0.002.

It can be seen that the accuracy is in the order of h, and the GPS gradually tends to be unstable and blows up after

t = 6 sec. For this system, the signum function defined by Equation (51) is +1.
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Figure 4. For Example 3 with stepsize h = 0.002, the numerical errors of GPS and GPS2

Figure 5. For the Duffing oscillator computed by the GPS2 under a stepsize h = 0.05, (a) the response, and (b)

showing the sign function
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6.4 Duffing Oscillator

The Duffing equation under a forcing term is given by

d
dt

[
x1

x2

]
=

[
x2

−γx2 − αx1 − βx3
1
+ f0 cosΩt

]
, (83)

where α, β and γ are physical parameters, and f0 and ω are, respectively, the amplitude and circular frequency of

external force. As shown in Figure 5(a) the numerical result is a chaos of the Duffing equation under the following

parameters α = −1, β = 1, γ = 0.3 and Ω = 1.2, and f0 = 0.32, where the time stepsize used is h = 0.05 and the

time interval is t ∈ [0, 800]. The transient part of the trajectory is starting from the initial point x1 = 2 and x2 = 0.

Under a larger h = 0.05 the GPS2 still preserves the chaotic structure very well; but, the GPS is not succeeded,

and is blowing after t = 800 sec.

In Figure 5(b) we show the signum function defined by Equation (51) for this chaotic system, which switches

irregularly and fast between +1 and −1.

6.5 Chua’s Circuit

In order to assess the performance of the GPS2, we compute the following numerical example of Chua’s circuit

(Chua, 1982, 1986):

ẋ = α[y − h(x)],

ẏ = x − y + z,

ż = −βy, (84)

where h is a piecewise-linear function:

h(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1x + m0 − m1, x ≥ 1,
m0x, |x| ≤ 1,
m1x − m0 + m1, x ≤ −1.

(85)

Figure 6. For Chua’s circuit computed by the GPS2 under a stepsize h = 0.01, (a) the response, and (b) showing

the sign function
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The parameters are supposed to be m0 = −1/7, m1 = 2/7, α = 9, and β = 100/7. The initial point is

(x(0), y(0), z(0)) = (2, 0, 0). In Figure 6(a) we show the scroll of (x, y, z) computed by the GPS2 with the step-

size h = 0.01, where the time interval is t ∈ [0, 200]. It can be seen that the main feature of the scroll is revealed,

which shows that the GPS2 can treat the chaotic problem with a larger time stepsize. In Figure 6(b) we show the

signum function defined by Equation (51) for this chaotic system, which is fast switching between +1 and −1.

6.6 Lorenz Equations

In order to further assess the performance of the GPS2, we compute the following Lorenz equations (Lorenz,

1963):
ẋ = σ(y − x),

ẏ = ρx − y − xz,

ż = xy − βz,
(86)

where we fix σ = 10, ρ = 28 and β = 8/3 and the initial point is (x(0), y(0), z(0)) = (1, 0, 1).

Figure 7. For Lorenz equations computed by the GPS2 under a stepsize h = 0.01, (a) the response, and (b)

showing the sign function

In Figure 7(a) we show the butterfly of (x, y, z) computed by the GPS2 with the stepsize h = 0.01, where the time

interval is t ∈ [0, 200]. In Figure 7(b) we show the signum function defined by Equation (51) for this chaotic

system, which is irregularly and fast switching between +1 and −1.
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6.7 Rössler Equations

Rössler (1976) has found a simple system, which is probably the most elementary geometric construction of chaos

in continuous system by using stretch and fold:

ẋ = −(y + z),

ẏ = x + ay,

ż = b + xz − cz, (87)

where we fix a = b = 1/5 and c = 5.7, and the initial point is (x(0), y(0), z(0)) = (−1, 0, 0).

Figure 8. For Rössler equations computed by the GPS2 under a stepsize h = 0.01, (a) the response, and (b)

showing the sign function

In Figure 8(a) we show the orbit of (x, y, z) computed by the GPS2 with the stepsize h = 0.01, where the time

interval is t ∈ [0, 400]. In Figure 8(b) we show the signum function defined by Equation (51), which is in the state

of +1 for most time, but sometimes it jumps to −1. When the orbit is in the folding state, the value of sign is +1,

and when the orbit is in the stretching state sometimes (where z is fast raising to a large value) the value of sign

is −1. From Figure 9 we can observe that the times of happening the stretch and the jumping from sign = +1

to sign = −1 are coincident. The signum function of the Rössler system is much simple and is quite different

from those of other chaotic systems: the Duffing equations, Chua’s equations and the Lorenz equations. The main

reason for this phenomenon is that the Rössler system does not have the mechanism of squeezing, which together

with the folding and the stretching constitute the three main mechanisms for chaos.

Remark 1 There are many effective methods like the power spectrum, the Lyapunov exponent, and the Poincaré

map, to investigate the chaotic behavior of a given nonlinear dynamical system. Chen, Liu, and Chang (2007)

have proposed a method by using the time sequence of η defined by Equation (15) to detect the chaos when

they used the GPS to find the numerical solutions of Duffing equations, Lorenz equations and Rössler equations.
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However, the criterion of η depends on the time stepsize h used in the numerical integration. The time sequence of

sign(‖f‖2‖x‖2 − 2(f · x)2) used to detect the chaos is independent to the time stepsize, which is fully determined by

the vector field and the orbit of the given nonlinear dynamical system.

Figure 9. For Rössler equations comparing the value of z and the sign function in time

7. Conclusions

In this paper, the nonlinear ODEs system was converted into an augmented quasi-linear ODEs system in the

Minkowski space, with the coefficient matrix being a Lie-form type. A full form of the Lie-algebra for the Lie-

group S Oo(n, 1) symmetry was provided. Based on this novel Lie-group symmetry of a full S Oo(n, 1), we have de-

duced two closed-form solutions of the Lie-group G ∈ S Oo(n, 1), and the numerical algorithm to preserve the Lie-

group properties at every time step was developed and proven. A signum function of sign(‖f‖2‖x‖2 − 2(f · x)2) was

introduced. For the chaotic systems investigated in this paper the time sequence of sign was frequently switched

between +1 and −1. Since the new method is easy to be implemented numerically and has good computational

efficiency and accuracy, it can be used to find the numerical solution of nonlinear ODEs.
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Appendix A

In this Appendix we derive the solution of Equation (49). From the first-order ODEs (49) we have

ż = a2
0w + c2

0y − c0z,

ẇ = c0w + c0y − z,

ẏ = c0w. (A1)

It follows that
d3y
dt3
+ (a2

0 − 2c2
0)ẏ = 0. (A2)

Depending on the value of a2
0 − 2c2

0, y has two different types of solutions.

For the first case with a2
0 − 2c2

0 < 0, i.e., sign = −1, we have

y(t) = k0 + k1 f1(t) + k2 f2(t), (A3)

where k0, k1 and k2 are constants and

f1(t) = sinh(ωt), f2(t) = cosh(ωt), (A4)

in which ω =
√

2c2
0
− a2

0
.

Through some elementary operations we can derive the following solutions for z, w and y:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z(t)
w(t)
y(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z0

w0

y0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c2 + d1 f1 + c3 f2 d2 f1 + d3 f2 − c0c2 c2ω f1 + c1c2( f2 − 1)

− c2ω f1
c2

0

c2ω f1
c0
+ f2

c2ω f1
c0

c2(1− f2)

c0

c0 f1
ω
+ c2( f2 − 1) c3 + c2 f2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A5)

where z0, w0 and y0 are initial values of z, w and y at an initial time t = 0, and

ω =
√

2c2
0
− a2

0
, c1 =

c2
0 − ω2

c0

, c2 =
c0

c0 − c1

, c3 = −c1c2

c0

,

d1 = −c2ω

c0

, d2 =
c0c1

ω
+ c2ω, d3 = c0 + c1c2. (A6)

For the second case with a2
0 − 2c2

0 > 0, i.e., sign = +1, we have

y(t) = k0 + k1 f3(t) + k2 f4(t), (A7)

where k0, k1 and k2 are constants and

f3(t) = sin(ωt), f4(t) = cos(ωt), (A8)

in which ω =
√

a2
0
− 2c2

0
.

Through some elementary operations we can derive the following solutions for z, w and y:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z(t)
w(t)
y(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z0

w0

y0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c2 + d1 f3 + c3 f4 d2 f3 + d3 f4 − c0c2 c1c2( f4 − 1) − c2ω f3

c2ω f3
c2

0

f4 − c2ω f3
c0

− c2ω f3
c0

c2(1− f4)

c0

c0 f3
ω
+ c2( f4 − 1) c3 + c2 f4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A9)
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where

ω =
√

a2
0
− 2c2

0
, c1 =

c2
0 + ω

2

c0

, c2 =
c0

c0 − c1

, c3 = −c1c2

c0

,

d1 =
c2ω

c0

, d2 =
c0c1

ω
− c2ω, d3 = c0 + c1c2. (A10)
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