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Abstract

This paper introduces the Frobenius endomorphism on the the binary Edwards elliptic curves proposed by Bern-

stein, Lange and Farashahi in 2008 and by Diao and Lubicz (2010). To speed up the scalar multiplication on binary

Edwards curves, we use the GLV method combined with the Frobenius endomorphism over the curve.
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1. Introduction

In 2007, H. Edwards introduced a new elliptic curve model. This model, called Edwards curves later, gain more

interest and is widely investigated during the last six years. The binary version of the curve were proposed by

Bernstein et al. (2008) and by Diao et al. (2010).

In this paper, we defined and study the Frobenius endomorphism over the Edwards elliptic curves model on a field

of characteristic 2. It’s well known that such an endomorphism can be used to derive fast algorithm to perform

scalar multiplication over elliptic curves.

In the next section, we recall some basic notions on Edwards curves and Frobenius endomorphism. We also give

the expression of the group law and the birational equivalence between elliptic curves in Edwards model and

elliptic curves in Weierstrass model when considering a finite field of characteristic 2.

In section 2, we introduce the Frobenius endormphism for Edwards models cited above.

2. Preliminaries

This section recall some definitions and notations related to Edwards elliptic curve in characteristic 2.

2.1 Binary Edwards Curves

2.1.1 Binary Edwards Curves of Bernstein and Lange (2008)

Edwards curves was introduced by Harold Edwards in 2007. Bernstein and Lange generalize this work to twisted

Edwards curve in (Bernstein & Lange, 2008). In 2008, they introduce the binary version of Edwards curves in

(Bernstein et al., 2008). In the following we recall the main results for binary Edwards curves.

Definition 2.1 (Binary Edwards curve) Consider a finite field K, with #K = 2n (n ≥ 1) and let d1, d2 ∈ K such that

d1 � 0 and d2 � d2
1 + d1. The Edwards model in K with elements d1 and d2 is given by the affine equation

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

Let P1 = (x1, y1) and P2 = (x2, y2) be two points of EB,d1,d2
, then P1 + P2 = P3 = (x3, y3), where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1
)(x2 + y2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1
)(x2 + y2)

.
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If the denominators d1 + (x1 + x2
1)(x2 + y2) and d1 + (y1 + y2

1)(x2 + y2) are nonzero, then the sum (x3, y3) is a point

on EB,d1,d2
: i.e., d1(x3 + y3) + d2(x2

3 + y2
3) = x3y3 + x3y3(x3 + y3) + x2

3y2
3.

Birational Equivalence

Generally, elliptic curves are defined by the Weierstrass model. When considering a finite field of characteristic 2,

the curve defined by the equation

v2 + uv = u3 + a2u2 + a6

with a6 � 0 is an elliptic curve in short Weierstrass model. Addition law has the point at infinity as neutral element

and the inverse element of the point (u1, v1) is −(u1, v1) = (u1, v1 + u1).

Consider the elliptic curve E defined by: v2 + uv = u3 + (d2
1 + d2)u2 + d4

1(d4
1 + d2

1 + d2
2) with j−invariant 1/(d4

1(d4
1 +

d2
1 + d2

2)).

Then, we have a birational equivalence between E and EB,d1,d2
via the map ϕ defined by ϕ(x, y) = (u, v) with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u =
d1(d2

1 + d1 + d2)(x + y)

xy + d1(x + y)
,

v = d1(d2
1 + d1 + d2)

(
x

xy + d1(x + y)
+ d1 + 1

)
.

The inverse of ϕ is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =
d1(u + d2

1 + d1 + d2)

u + v + (d2
1
+ d1)(d2

1
+ d1 + d2)

,

y =
d1(u + d2

1 + d1 + d2)

v + (d2
1
+ d1)(d2

1
+ d1 + d2)

.

By putting ϕ(0, 0) = P∞, and P ∈ EB,d1,d2
, then the function ϕ can be extended on P, see Bernstein et al. (2008).

Theorem 2.2 Consider K a field with #K = 2n(n ≥ 3) and d1, d2 in K such that d1 � 0. Let s ∈ K, with
s2 + s + d2 = 0. Then the completeness of the addition law on the Edwards model EB,d1,d2

(K) in K is satisfied.

Proof. See Bernstein et al. (2008). �
Definition 2.3 Consider K a field with #K = 2n (n ≥ 3) and d1, d2 in K such that d1 � 0. Suppose that s2+ s+d2 � 0

for all s ∈ K. Then, the complete Edwards elliptic curve with elements d1 and d2 is given by the equation

EB,d1,d2
: d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

Theorem 2.4 Consider n ∈ N and n ≥ 3. Let E be an elliptic curve in Weierstrass model over F2n and EB,d1,d2
be a

complete Edwards model over F2n . Then EB,d1,d2
� E over F2n .

Proof. See Bernstein et al. (2008). �
2.1.2 Binary Edwards Curves of Diao and Lubicz (2010)

Definition 2.5 In Diao and Lubicz (2010), Diao and Lubicz introduce the following Edwards model:

x2 + y2 +
1

c
xy = 1 + x2y2,

c ∈ K∗, with K a field of characteristic 2. We denote this curve EDL,c and consider the point (0, 1) as neutral

element of the following group law.

The addition law can be performed as follows:

Let P1(x1, y1) and P2(x2, y2) be two points on the curve.

If P1 � P2 then, P1 + P2 = P3(x3, y3) with

x3 =
(x1 + x2)(1 + y1y2)

(y1 + y2)(1 + x1x2)
,
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y3 =
(x1 + y2)(y1 + x2)

(1 + x1y2)(1 + y1x2)
.

And if P1 = P2 then,

x3 =
x1(y1 + 1)2

y1(x1 + 1)2
,

y3 =
(x1 + y1)2

(x1y1 + 1)2
.

Birational Equivalence

Every Edwards model defined over a field K of characteristic 2 is birationally equivalent to an ordinary elliptic

curve defined by the equation: z2 + tz = t3 + c4 of j−invariant 1
c4 via (the change of coordinates) the map

ϕ : (x, y) �−→ (t, z),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t =

c
x
,

z = c(y + cx(y + 1))/(x(y + 1)).

ϕ−1 : (t, z) �−→ (x, y),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x =

c
t
,

y = (z + c2)/(t + z + c2).

The map ϕ is not defined at point (0, 1) and we have ϕ(0, 1) = P∞.

2.2 Frobenius Map on Elliptic Curves

Let Fq be a finite field of characteristic two with q elements (q = 2k) and Fq be its algebraic closure. We consider

nonsingular elliptic curves defined over Fq

E : y2 + xy = x3 + ax2 + b

with a, b ∈ Fq, b � 0.

The symbol E(Fq) is denoted as the additive abelian group of Fq−rational points on E with identity P∞.

This is the groupe on which most public-key protocols are performed. The Frobenius endomorphism φ on E(Fq)

is given by

φ : E(Fq) −→ E(Fq)

(x, y) �−→ (xq, yq).

The map φ satisfies the equation

φ2 − cφ + q = 0

where c is the trace of φ so that |c| ≤ 2
√

q is odd.

This means

φ2(P) − cφ(P) + qP = P∞

for all points P ∈ E(Fq).

3. Frobenius Map on Binary Edwards Curves

3.1 Diao and Lubicz’s Binary Edwards Curve

In this subsection, we introduce the Frobenius endomorphism for the Edwards model proposed by Diao and Lubicz

(2010).

Let Fq be a finite field with q = 2k and EDL,c defined. In this section, we consider the q−Frobenius map πq of EDL,c

πq : EDL,c −→ EDL,c

(x, y) �−→ (xq, yq).

The following theorem is the core of this section.

95



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 1; 2014

Theorem 3.1 Let Fq be a finite field with q = 2k and let EDL,c be an Edwards model defined over Fq and πq the
Frobenius map defined above. Then, we have

(π2
q − tπq + q)P = P∞

for all P ∈ EDL,c.

Before proving the Theorem 3.1, we give the following important lemmas.

Lemma 3.2 Let K be a finite field with #K = 2n (n ≥ 3). Every Edwards model defined over K is birationally
equivalent over k to a Weierstrass elliptic curve given by equation: z2 + tz = t3 + c4 of j−invariant 1

c4 .

By Lemma 3.2, there exists an elliptic curve E over Fq defined by z2+ tz = t3+c4, which verifies EDL(Fq) � E(Fq).

Let ϕ be the isomorphism. Then,

ϕ : (x, y) �−→ (t, z) =

[
c
x
,

c(y + cx(y + 1))

x(y + 1)

]

is a birational equivalence from EDL,c to E, with inverse

ϕ−1 : (t, z) �−→ (x, y) =

[
c
t
,

z + c2

t + z + c2

]
.

Lemma 3.3 Let EDL,c an Edwards model over Fq (q = 2k) which is birationally equivalent to Weierstrass curve E
over Fq. Let N be the cardinal of the group of rational points of EDL,c (N = q − t + 1) and let ϕ a birational map
from EDL,c to E. Consider πq as the qth−pow Frobenius map of E. Put ψ = ϕ−1 ◦ π ◦ ϕ. Thus

• ψ is in End(EDL,c), the endomorphism group of EDL,c;

• ∀P ∈ EDL,c(Fq),

ψ2(P) − [t]ψ(P) + [q](P) = OEDL,c .

Proof. ϕ is isomorphism from EDL,c to E (see Bernstein, Birkner, Joye, Lange, & Peters, 2008), therefore we can

see that ψ is an isogeny of EDL to itself, since πq is an isogeny.

Let P in EDL(Fq) and let Q = ϕ(P) in E(Fq), then

(π2
q − tπq + q)Q = OE .

Since

ϕ−1(π2
q − tπq + q)ϕ(P) = EDL

we can deduce that

ψ2(P) − [t]ψ(P) + [q](P) = OEDL .

�
Proof of Theorem 3.1. Let EDL be a binary Edwards model and let E be the Weierstrass elliptic curve such that

EDL(F) � E(F) and let ψ be the endomorphism defined in Lemma 3.2. Then, for all P ∈ EDL(Fq), we have:

ψ(x, y) = (ϕ−1 ◦ πq ◦ ϕ)(x, y)

= (ϕ−1 ◦ πq)

[
c
x
,

c(y + cx(y + 1))

x(y + 1)

]

= ϕ−1

[( c
x

)q
,

(
c(y + cx(y + 1))

x(y + 1)

)q]

= ϕ−1

[
cq

xq ,
cq(yq + cqxq(yq + 1))

xq(yq + 1)

]

= (xq, yq)

�
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3.2 Bernstein and Lange’s Binary Edwards Curve

We consider now the Bersntein and Lange’s model (2008).

Consider Fq) as a finite field with q = 2k and let EB,d1,d2
be a binary Bersntein and Lange’s model defined over Fq).

Let q−Frobenius map πq of EB,d1,d2
,

πq : EB,d1,d2
−→ EB,d1,d2

(x, y) �−→ (xq, yq).

The following theorem is the core of this section.

Theorem 3.4 Consider EB,d1,d2
be a binary Edwards model defined over Fq with q = 2k and let N be the cardinal

of the group of rational points of EB,d1,d2
(N = q − t + 1). The Frobenius map πq of EB,d1,d2

verifies

(π2
q − tπq + q)P = P∞ = (0, 1), ∀P ∈ EB,d1,d2

.

Before proving the Theorem 3.4, we give the following lemmas.

Lemma 3.5 Let K be a finite field with #K = 2n (n ≥ 3). Every Edwards model defined over K is birationally
equivalent over K to a Weierstrass elliptic curve given by the equation: z2 + tz = t3 + c4 of j−invariant 1

c4 .

By Lemma 3.5, there exists a Weierstrass elliptic model E over Fq which verifies EB,d1,d2
(Fq) � E(Fq). Consider ϕ

as the isomorphism, thus E(Fq) can be defined as z2 + tz = t3 + c4.

The map

ϕ : (x, y) �−→ (u, v) =

⎡⎢⎢⎢⎢⎣d1(d2
1 + d1 + d2)(x + y)

xy + d1(x + y)
, d1(d2

1 + d1 + d2)

(
x

xy + d1(x + y)
+ d1 + 1

)⎤⎥⎥⎥⎥⎦
is a birational equivalence from EB,d1,d2

to E, and the inverse map is defined by

ϕ−1 : (u, v) �−→ (x, y) =

⎡⎢⎢⎢⎢⎣ d1(u + d2
1 + d1 + d2)

u + v + (d2
1
+ d1)(d2

1
+ d1 + d2)

,
d1(u + d2

1 + d1 + d2)

v + (d2
1
+ d1)(d2

1
+ d1 + d2)

⎤⎥⎥⎥⎥⎦ .

Lemma 3.6 Let EB,d1,d2
be a Edwards model defined over Fq with q = 2k and let E the birationally equivalent

in Weierstrass model of EB,d1,d2
over F2k . Let N be the cardinal of the group of rational points of E(Fq), i.e.

(N = q − t + 1) and let ϕ be a birational map. Consider πq as the qth−pow Frobenius endomorphism of E. Put
ψ = ϕ−1 ◦ π ◦ ϕ, thus

• ψ is in End(EB,d1,d2
), the endomorphism group of EB,d1,d2

);

• ∀P ∈ EB,d1,d2
(Fq),

ψ2(P) − [t]ψ(P) + [q](P) = OEB,d1 ,d2
.

Proof. ϕ is an isomorphism from EB,d1,d2
to E (see Bernstein, Birkner, Joye, Lange, & Peters, 2008). Therefore we

can see that ψ is an isogeny of EB,d1,d2
to itself defined over Fq since πq: E(Fq) → E(Fq) is an isogeny from E to

itself defined over Fq.

Let P ∈ EB,d1,d2
(Fq) and let Q = ϕ(P) ∈ E(Fq), then

(π2
q − tπq + q)Q = OE .

Since

ϕ−1(π2
q − tπq + q)ϕ(P) = EB,d1,d2

we can deduce that

ψ2(P) − [t]ψ(P) + [q](P) = OEB,d1 ,d2
.

�
Proof of Theorem 3.4. Let E be a Weierstrass elliptic curve and let EB,d1,d2

be the binary Edwards model such that

EB,d1,d2
(Fq) � EB,d1,d2

(Fq), and let ψ be the endomorphism defined in Lemma 3.5. Then, ∀P = (x, y) ∈ EB,d1,d2
(Fq)
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ψ(x, y) = (ϕ−1 ◦ πq ◦ ϕ)(x, y)

= (ϕ−1 ◦ πq)(u, v)

= (ϕ−1 ◦ πq)

⎛⎜⎜⎜⎜⎝d1(d2
1 + d1 + d2)(x + y)

xy + d1(x + y)
,

d1(d2
1 + d1 + d2)

x(xy + d1(x + y)) + d1 + 1

⎞⎟⎟⎟⎟⎠

= ϕ−1

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝d1(d2

1 + d1 + d2)(x + y)

xy + d1(x + y)

⎞⎟⎟⎟⎟⎠
q

,

(
d1(d2

1 + d1 + d2)

(
x

xy + d1(x + y)
+ d1 + 1

))q⎤⎥⎥⎥⎥⎦

= ϕ−1

⎡⎢⎢⎢⎢⎢⎣dq
1
(d2q

1
+ dq

1
+ dq

2
)(xq + yq)

xqyq + dq
1
(xq + yq)

, dq
1
(d2q

1
+ dq

1
+ dq

2
)

⎛⎜⎜⎜⎜⎝ xq

xqyq + dq
1
(xq + yq)

+ dq
1
+ 1

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

= ϕ−1

⎡⎢⎢⎢⎢⎣d1(d2
1 + d1 + d2)(xq + yq)

xqyq + d1(xq + yq)
, d1(d2

1 + d1 + d2)

(
xq

xqyq + d1(xq + yq)
+ d1 + 1

)⎤⎥⎥⎥⎥⎦
= (xq, yq)

�
4. Conclusion

We have successfully introduced Frobenius map on elliptic curves of characteristic 2 in particulary on Binary

Edwards curves of T. Lange and D. J. Bernstein and on Binary Edwards curves of O. Diao and D. Lubucz.

These two endomorphisms can be used to speed up the scalar multiplication over Edwards models in characteristic

two, using the GLV method for example.
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