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Abstract

In this paper, we do a cryptanalyse of the so called “Strong Diffie-Hellman-DSA Key Exchange (briefly: SDH-

DSA-KE)” and after we propose “Strong Diffie-Hellman-Exponential-Schnnor Key Exchange (briefly: SDH-XS-

KE)” which is an improvement for efficiency and security. SDH-XS-KE protocol is secure against Session State

Reveal (SSR) attacks, Key independency attacks, Unknown-key share (UKS) attacks and Key-Compromise Im-

personation (KCI) attacks. Furthermore, SDH-XS-KE has Perfect Forward Secrecy (PFS) property and a key

confirmation step. The new proposition is not vulnerable to Disclosure to ephemeral or long-term Diffie-Hellman

exponents. We design our protocol in finite groups therefore this protocol can be implemented in elliptic curves.
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1. Introduction

Diffie-Hellman (DH) protocol (Diffie & Hellman, 1976) is the most popular key exchange protocol. Since the

basic protocol is vulnerable to a large class of attacks against protocols, many proposals were done to improve the

security of DH protocol (see Nyberg & Rueppel, 1994; Krawczyk, 2005). But, most of the proposals have been

broken or shown to suffer from weaknesses.

In 2007, in IEEE Communications letters journal (see Jeong, Kwon, & Lee, 2007), Jeong et al. prove that the pre-

vious scheme is insecure against session state reveal attack. After, the authors propose the “Strong Diffie-Hellman-

DSA Key Exchange” (briefly: SDH-DSA-KE) where the mutual authentication is done by DSA signatures but it

use 5 exponents and is vulnerable to some attacks.

In this paper, we propose a cryptanalyse of SDH-DSA-KE by showing that it is insecure against KCI attacks

and is vulnerable to Disclosure to ephemeral and long-term CDH exponents. After, we propose “Strong Diffie-

Hellman-Exponential-Schnorr Key Exchange” (briefly: SDH-XS-KE) which is an improvement of SDH-DSA-KE

for efficiency and security. Our protocol use 4 exponents and is secure against Session State Reveal (SSR) attacks,

Key independency attacks, Unknown-key share (UKS) attacks and Key-Compromise Impersonation (KCI) attacks.

Furthermore, SDH-XS-KE has Perfect Forward Secrecy (PFS) property. For the mutual authentication, instead of

DSA signatures, we use a modified Exponential Schnorr protocol.

Note that SDH-DSA-KE was designed only over Z/pZ but our protocol is designed over an arbitrary finite (mul-

tiplicative) group therefore our protocol can be implemented in elliptic curves.

2. Preliminaries

2.1 Discrte Logarithm Problem

The Discrete Logarithm Problem (DLP) is the following: given a finite group G of order n and a cyclic subgroup

〈g〉 of prime order q generated by g. If y
Rand←− 〈g〉, find the integer x, 0 ≤ x ≤ q − 1, such that gx = y.

The Computational Diffie-Hellman Problem (CDH) is the following: given a finite group G of order n and a cyclic

subgroup 〈g〉 of prime order q generated by g. If y = ga Rand←− 〈g〉 and z = gb Rand←− 〈g〉, find the group element gab.
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2.2 Diffie-Hellman Key Exchange

The key exchange Diffie-Hellman protocol was developed in 1976 and published in the paper: New directions in
cryptography.

Diffie-Hellman Protocol

Public data: G a finite group, and 〈g〉 a cyclic subgroup of G generated by g with prime order q.

• A selects an integer a such that 1 < a < q − 1, keeps it secret and sends ga to B.

• B selects an integer b such that 1 < b < q − 1, keeps it secret and sends gb to A.

• Both A and B compute k = (gb)a = (ga)b.

2.3 Exponential Schnorr Identification Protocol

Let G be a multiplicative group and 〈g〉 a cyclic subgroup of prime order q with generator g ∈ G. The secret key

sk is an integer x in [1, q]. Put y = gx, the public key pk is (G, g, y).

Let G be a multiplicative group and 〈g〉 a cyclic subgroup of prime order q with generator g ∈ G.

In this protocol the prover is P and the verifier isV.

The secret key sk of P is an integer x in [1, q]. Put y = gx, the public key pk of P is (G, g, y).

(1)V chooses a random w
Rand←−]1, q[ and sends the “challenge” W = gw to P.

(2) P chooses a random v
Rand←−]1, q[ and sends V = gv toV.

(3)V chooses a random “challenge” e
Rand←−]1, q[ and sends e to P.

(4) P computes s = v + xe (mod q) and sends S = W s toV.

V accepts if S = (Vye)w.

It is known that this protocol is a proof of the ability ofV to compute CDH(y,V) for any value V ∈ G. Moreover,

the protocol is zero-knowledge against a verifierV that chooses e at random (while V may be chosen arbitrarily).

(see Krawczyk, 2005).

2.4 Security Notions

Let us recall some security notions used in key exchange protocols.

(1) Key independency. This is a stronger notion of security and means that session keys are computationaly

independent from each other.

(2)Session state reveal attack. The protocols providing security against session state reveal attacks maintain the

secrecy of session keys even when an adversary is able to obtain the random numbers used to make the session

keys.

(3) Perfect forward secrecy (PFS). a key-exchange protocol is said to have the PFS property if the leakage of

the long-term key of a party does not compromise the security of session keys established by that party and erased

from memory before the leakage occurred.

(4) Resistance to key-compromise impersonation (KCI) attacks. it provides the assurance that sessions estab-

lished by a party Alice while not being actively controlled by the attacker, remain secure even if her private key is

learned by the attacker.

(5) The case of Diffie-Hellman key exchange protocol (see Krawczyk, 2005). Consider a session (idA, idB,VA =

gvA ,VB = gvB ) between two parties A and B with the following pair of private/public key (xA, gxA ) and (xB, gxB ); the

computation of the session key involves the four secret values xA, xB, vA, vB. Obviously the disclosure of {xA, vA},
or {xB, vB}, allows the attacker to learn the session key.

For the secure of the communication between A and B, one must prove that the disclosure of any other pair of

values (except {xA, vA} and {xB, vB}) in the set {xA, xB, vA, vB} is insufficient for the attacker to success in any kind

of attack. This includes the cases in that the attacker learns:

• {xA, xB} and try to compute the session key of old sessions: this is the PFS property;
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• {vA, vB} : this follows from the security to State reveal attack;

• {xA, vB} or {xB, vA} : this follows from the security to KCI attacks;

• gxA xB without learning (xA, xB): this follows from the security of the disclosure of long-term DH exponents;

• gvAvB , without learning {vA, vB}: this follows from the security of the disclosure of ephemeral DH exponents.

3. Attacks on Strong DH-DSA Key Exchange

3.1 SDH-DSA-KE Protocol

Let us recall the design of the Strong DH-DSA key exchange protocol.

Let p, q be two sufficiently large primes such q divides p − 1 and g ∈ Z/pZ is an element of order q. Let H:

{0, 1}∗ → Z/qZ be a hash function.

We assume that Alice (respectively: Bob) has a pair of private/public key (xA, yA = gxA ) (respectively: (xB, yB =

gxB ) ).

1) Alice generates vA
Rand←− ]1, q[, computes mA = gvA mod p and sends mA to Bob.

2) • Bob generates vB
Rand←− ]1, q[ and computes mB = gvB mod p;

• Bob computes DH1 = mvB
A mod p = gvAvB mod p, DH2 = yxB

A mod p = gxA xB mod p, rB = mB mod p;

• Bob signs sB =
(
v−1

B (H(mB||DH1||DH2) + xBrB)
)

mod q;

• Bob sends (mB, sB) to Alice.

3) • Alice computes DH1 = mvA
B mod p = gvAvB mod p, DH2 = yxA

B mod p = gxA xB mod p, rB = mB mod q,

rA = mA mod q;

• Alice check DSA.veryB

(
mB||DH1||DH2, rB, sB

) ?
= 1;

• Alice computes KAB = H(A||B||DH1||DH2) and KBA = H(B||A||DH1||DH2);

• Alice signs sA =
(
v−1

A (H(mA||DH1||DH2) + xArA)
)

mod q;

• Alice sends sA to Bob.

4) • Bob computes rA = mA mod q;

• Bob checks if DSA.veryA

(
mA||DH1||DH2, rA, sA

) ?
= 1;

• Bob computes KAB = H(A||B||DH1||DH2) and KBA = H(B||A||DH1||DH2).

3.2 Cryptanalysis of SDH-DSA-KE Protocols

3.2.1 KCI Attack on SDH-DSA-KE

Theorem 3.1 SDH-DSA-KE is insecure against Key-Compromise Impersonation (KCI) attack.

Proof. Assume that the attacker knows xA and vB, since yB = gxB mod p and mA = gvA mod p are public then

the attacker can easily compute DH1 = mvB
A mod p = gvAvB mod p, DH2 = yxA

B mod p = gxA xB mod q and

deduce the key. We have the same result if the attacker knows (xB and vA), Hence this protocol is vulnerable to

Key-Compromise Impersonation (KCI) attack. �
3.2.2 Disclosure to Ephemeral or Long-Term CDH Exponents

In SDH-DSA-KE protocol, the keys are computed as: KAB = H1(A||B||DH1||DH2) and KBA = H1(B||A||DH1||DH2).

Therefore, in this protocol the value DH2 = gxA xB mod p serves as a long-term shared key between parties Alice

and Bob, and therefore its disclosure suffices for impersonating Alice to Bob, and vice versa.

We will see that for our improvement, the disclosure of DH2 = gxA xB mod p does not allow impersonation Alice

or Bob.

4. Design of SDH-XS-KE Protocol

In our protocol the mutual authentications is done via a modified Exponential Schnorr protocol where each party

challenge his public key.
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4.1 Design SDH-XS-KE

Let G be a multiplicative group and 〈g〉 a cyclic subgroup of prime order q with generator g ∈ G. Let H: G×G×P →
{0, 1}l be a hash function (where l ≥ 224 and P is the set of all parties which are allowed to participate to the

protocol). Let G: G → {0, 1}l be a randomness extractor on G and and H: {0, 1}l × P × P × {0, 1} → {0, 1}l be a

hash function and MACK : G ×G × P → {0, 1}l be a keyed hash function for Mac authentication.

We assume that Alice (respectively: Bob) has a pair of private/public key (xA, yA = gxA ) (respectively: (xB, yB =

gxB )) where xA, xB < q are random integers.

4.1.1 Protocol

1) Alice (the initiator) selects a secret session’s random vA < q, computes VA = gvA , δAB = yvA+xA
B and hAB =

H
(
δAB,VA, idA

)
, discards δAB and sends (VA, hAB) to Bob;

2) • Bob (the responder) verifies if VA � 1, computes λBA = (VAyA)xB and H(λBA,VA, idA) and discards λBA; verifies

if H(λBA,VA, idA) � hAB;

• If one of the above validations fail then Bob terminates the protocol run with failure;

• Bob selects a secret session’s random vB < q, computes VB = gvB and Kmac = H(KB2, idA, idB, 1) where

KB2 = G(gKBs, l) and gKBs = (VAyA)vB+xB ;

• Bob computes δBA = yvB+xB
A , hMACB =MACKmac

(
δBA,VB, idB

)
, discards δBA and sends (VB, hMACB ) to Alice.

3) • Alice verifies if VB � 1, computes Kmac = H(KA2, idA, idB, 1) where KA2 = G(gKAs, l) and gKAs = (VByB)vA+xA ;

• Computes λAB = (VByB)xA and h′MACB
=MACKmac

(
λAB,VB, idB

)
, and discards λAB; verifies if h′MACB

� hMACB ;

• If one of the above validations fail then Alice terminates the protocol run with failure; otherwise,

• Alice computes hMACA =MACKmac

(
gKAs,VA, idA

)
, and sends it to Bob;

• Alice computes and stores KAs = H(KA2, idA, idB, 0) as her current session key.

4) • Bob computes h′MACA
=MACKmac

(
gKBs,VA, idA

)
, and verifies if h′MACA

� hMACA ;

• If the validation fails then Alice terminates the protocol run with failure, otherwise, Bob computes and stores

the key KBs = H(KB2, idA, idB, 0) as his current session key.

4.2 Security and Performance of SDH-XS-KE

In our protocol the mutual authentication is done via a modified Exponential Schnorr protocol where each party

challenge his public key. This protocol involves a key confirmation step. Note that the correctness of the protocol

depends on the honestness of the parties establishing a session. They must choose, compute and store correctly all

the values appearing in the protocol and also they must follow the steps in the good way. Therefore, in the sequel,

we assume that the parties are honest.

4.2.1 Performance

Our protocols use only 4 exponents and 4 pass with a key confirmation step, therefore it is more speed than

SDH-DSA-KE which use 5 exponents (3 exponents in the key generation and 2 exponents in the DSA verification

process) and 4 pass.

4.2.2 Security

We have proven above that SDH-DSA-KE is vulnerable to KCI attacks. We will see in the following that our

proposition is secure if CDH(VA,VB), CDH(yA, yB), CDH(VA, yB), CDH(VB, yA) are computationally infeasible

and the hash function is robust.

Theorem 4.1 SDH-XS-KE key exchange protocol posses the Perfect Forward Secrecy property.

Proof. This protocol has a key confirmation step then the attacker cannot be active when the key session is building

by the two parties. The only way for the attacker, is to try to compute the session key directly, assuming that he

know the long-term secret keys (namely xA, xB) of the parties. Since the session key is KBs = H(KB2, idA, idB, 0)

where KB2 = G(gKBs, l) and gKB = g(vA+xA)(vB+xB) = gvAvB gxA xB V xB
A V xA

B and the attacker knows xA and xB then

he can compute gxA xB V xB
A V xA

B . Therefore the attacker can compute gKBs if and only if he can compute g(vAvB) =

CDH(VA,VB) which is computationally infeasible if the two parties are honest. �
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Theorem 4.2 SDH-XS-KE key exchange protocol is secure against Key-Compromise Impersonation (KCI) attack
and unknown-key share (UKS) attack.

Proof. 1) Security against Key-Compromise Impersonation (KCI) attack: This protocol use a mutual authentication

which is done via the hash of the output of a modified Exponential Schnorr protocol for mutual identification, where

each party challenge his public key: Alice computes δAB = yvA+xA
B and sends hAB = H

(
δAB,VA, idA

)
to Bob and

discards δAB; Bob computes δBA = yvB+xB
A and sends hMACB = MACKmac

(
δBA,VB, idB

)
to Alice and discards δBA.

Hence the authentication fails if the attacker is active and doesn’t know simultaneously vA and xA or vB and xB.

Therefore, the only way for the attacker, is to try to compute the session key directly, assuming that he knows the

long-term secret key of Alice (namely xA) and the session’s random of Bob (namely vB). Since the session key is

KBs = H(KB2, idA, idB, 0) where KB2 = G(gKB, l) and gKB = g(vA+xA)(vB+xB) = VvB
A yxA

B V xA
B V xB

A and the attacker knows

xA and vB then he can compute VvB
A yxA

B V xA
B . Therefore the attacker can compute gKBs if and only if he can compute

V xB
A = CDH(VA, yB) = DLPVA (V xB

A ) which is computationally infeasible if the two parties are honest.

2) Security against unknown-key share (UKS) attack: in the authentication process, Alice computes δAB = yvA+xA
B

and sends hAB = H
(
δAB,VA, idA

)
to Bob and discards δAB; Bob computes δBA = yvB+xB

A and sends hMACB =

MACKmac

(
δBA,VB, idB

)
to Alice and discards δBA. Hence the public keys and the identities of the parties (idA, idB)

are hashed. This fact prevent from UKS attacks. �
Theorem 4.3 SDH-XS-KE key exchange protocol is secure against Session State Reveal (SSR) attack.

Proof. Since the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = g(vA+xA)(vB+xB) =

gvAvB gxA xB yvB
A yvA

B and the attacker knows vA and vB then he can compute gvAvB yvB
A yvA

B . Therefore the attacker can

compute gKBs if and only if he can compute gxA xB = CDH(yA, yB) which is computationally infeasible if the two

parties are honest. �
Theorem 4.4 SDH-XS-KE key exchange protocol posses the key independency property.

Proof. Since the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = g(vA+xA)(vB+xB) =

gvAvB gxA xB V xB
A V xA

B . Then key independency property is guaranteed by the properties of the hash function and the

usage of the identities idA and idB and the session’s random vA and vB. �
Theorem 4.5 SDH-XS-KE key exchange protocol is secure against attack based on “disclosure to ephemeral and
long-term CDH exponents”.

Proof. Since the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = g(vA+xA)(vB+xB) =

gvAvB gxA xB yvB
A yvA

B and the attacker knows gvAvB and gxA xB then he can compute gvAvB gxA xB . Therefore the attacker

can compute gKBs if and only if he can compute yvB
A yvA

B = CDH(yA,VB)CDH(VA, yB) which is computationally

infeasible if the two parties are honest. �
5. Conclusion

We have successfully described in this paper an attack on SDH-DSA-KE protocol and proposed a new protocol

key exchange named SDH-XS-KE which resist for all attacks known on key exchange protocols.
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