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Abstract

Every Clifford algebra C�(V, q) contains a Lipschitz monoid Lip(V, q), which is in general (but not always) the

multiplicative monoid generated by all vectors; its even and odd components are closed irreducible algebraic

submanifolds. In this article, an algorithm allows to decide whether a given even or odd element of C�(V, q)

belongs to Lip(V, q); it is minimal because the number of required verifications is equal to the codimension of the

even and odd components of Lip(V, q). There is an immediate application to Vahlen matrices, since the Vahlen

monoid is the image of a Lipschitz monoid.
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Let V be a vector space of finite dimension n ≥ 1 over a field K, let q be a quadratic form V → K, and bq the

associated bilinear form V × V → K:

bq(x, y) = q(x + y) − q(x) − q(y) ;

although the field K will later be especially the field R of real numbers, the preliminary theory is valid for every

field K, even for a field of characteristic 2 that does not allow to define the polar form bq/2. Let C�(V, q) be the

associated Clifford algebra, that is the associative and unital K-algebra generated by the elements x ∈ V with the

relations x2 = q(x) (whence xy + yx = bq(x, y)). The reversion ρ is the involutive anti-automorphism of C�(V, q)

that extends the identity mapping of V , and the grade automorphism σ is the involutive automorphism that extends

x �−→ −x. The name of σ refers to the parity gradation C�(V, q) = C�0(V, q) ⊕ C�1(V, q), where C�0(V, q) is the

even subalgebra, generated by all xy, and C�1(V, q) the odd subspace which contains V; the dimension of each

component is 2n−1.

When (e1, . . . , en) is a basis of V , there is a basis of C�(V, q) made of all products e j1 e j2 · · · e jk such that 0 ≤ k ≤ n
and jr < jr+1 for r = 1, 2, . . . , k − 1 (if k ≥ 2). For such a product, we will often use the short notation e j1, j2,..., jk
(only allowed if j1 < j2 < . . . < jk), or eJ (where J = { j1, j2, . . . , jk}); this product means 1 when k = 0 and J = ∅.
The Lipschitz monoid (or Lipschitz semi-group) Lip(V, q) shall be defined in Section 2; in general, it is the mul-

tiplicative monoid generated in C�(V, q) by the vectors x ∈ V; its elements are called lipschitzian elements. Its

even (resp. odd) component Lip0(V, q) (resp. Lip1(V, q)) is a closed irreducible algebraic submanifold of C�0(V, q)

(resp. C�1(V, q)), of dimension 1 + 1
2
n(n − 1) (when its dimension can be defined). When a is lipschitzian, then

ρ(a) is lipschitzian too, and commutes with a, the product aρ(a) is a scalar, and azρ(a) is a vector for every z ∈ V;

a is invertible if and only if aρ(a) � 0; and when it is invertible, it determines an orthogonal transformation

x �−→ ±axa−1of (V, q); the sign ± means + or − according as a is even or odd.

The first problem tackled in this paper is this one: if a is a given even or odd element of C�(V, q), how can we find

out whether a is lipschitzian? When n ≤ 3, the answer is always positive because Lipp(V, q) = C�p(V, q) for each

parity p. When n = 4, let us use a basis (e1, e2, e3, e4) of V; there are eight scalars κ, κ′, λ, λ′, μ, μ′, ν, ν′ ∈ K such

that, according to the parity of a,

a = κ + λe1,2 + μe1,3 + νe1,4 + ν
′e2,3 + μ

′e2,4 + λ
′e3,4 + κ

′e1,2,3,4 ,

or

a = κe1 + λe2 + μe3 + νe4 + ν
′e1,2,3 + μ

′e1,2,4 + λ
′e1,3,4 + κ

′e2,3,4 ;
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as explained in Section 4, a is lipschitzian if and only if

κκ′ − λλ′ + μμ′ − νν′ = 0. (0.1)

The calculation of aρ(a) (which is very toilsome if the basis (e1, e2, e3, e4) is not orthogonal) would show that (0.1)

is equivalent to aρ(a) ∈ K. This Equation (0.1) is valid for all bases of V and does not involve q. In Section 4,

these features are confirmed for every dimension n ≥ 5: if we use a basis (e1, . . . , en) of V , and the derived basis

(eJ) of C�(E, q) (where J runs through the set P(N) of all subsets of N = {1, 2, . . . , n}), then the quadratic form

q is not involved in the answer, which even ignores whether q is degenerate or not. The answer follows from

an algorithm that is minimal in the sense of Section 1: the number of necessary verifications is the codimension

2n−1 − 1 − 1
2
n(n − 1) of Lipp(V, q) in C�p(V, q) (for p = 0, 1).

This minimal algorithm is presented in Section 4; it is based on the invariance theorem which is presented in

Section 3. Examples follow in Section 5.

This study has an immediate application to Vahlen matrices; this is explained in Sections 6 and 7, and examples

follow in Section 8.

1. Minimal Algorithms

Let E be a vector space of dimension d over K, with a basis (ε1, . . . , εd), and let M be a closed algebraic submanifold

of codimension c in E. A minimal algorithm for M is an algorithm that allows to find out whether an element

a =
∑d

k=1 akεk of E belongs to M just by verifying the vanishing at the point (a1, ..., ad) of c polynomial functions

Kd → K.

For instance, let V be a vector space of dimension n ≥ 3 provided with a basis (e1, ..., en), and let M be the subset of

all (a, b) ∈ V×V such that a and b are colinear vectors in V; here, M is a closed algebraic manifold of codimension

n − 1 in V × V . The following well known theorem gives a minimal algorithm for M in V × V .

Theorem 1.1 Let a =
∑n

k=1 akek and b =
∑

k bkek be two vectors in V such that (a j, b j) � (0, 0) for some
j ∈ {1, 2, . . . , n}. These two vectors are colinear if and only if a jbk − b jak = 0 for all k other than j.

The preliminary condition (a j, b j) � (0, 0) is important; although all equations a1bk − b1ak = 0 are satisfied

when a = e2 and b = e3, the violation of the condition (a1, b1) � 0 prevents us from concluding that e2 and e3

are colinear. Most minimal algorithms require such preliminary conditions, and there must be enough of such

conditions to foresee all possible cases.

It is easy to show that the classical algorithm for lipschitzian elements is not minimal; moreover, it requires the

given element a ∈ C�(V, q) to be invertible, and q to be nondegenerate (or at least, dim(ker(bq)) ≤ 3). It is based

on this statement: a is an invertible lipschitzian element if an only if a is even or odd, aρ(a) is an invertible scalar,

and azρ(a) is a vector for every z ∈ V . An orthogonal basis (e1, . . . , en) of V much simplifies the application

of this classical algorithm, because on one side, ρ(eJ) = ±eJ (see (2.7) below), and on the other side, ρ leaves

invariant aρ(a) and azρ(a). Thus, to verify aρ(a) ∈ K, the number of verifications is (n
4
) + (n

8
) + · · · ; and to verify

ae jρ(a) ∈ V (for one index j), the number of verifications is (n
5
)+ (n

9
)+ · · · . When n = 4, 5, 6, 7, 8, . . ., the number of

necessary verifications is equal to 1, 10, 51, 182, 519, . . ., much more than the codimension 1, 5, 16, 42, 99, . . .
of Lipp(V, q) in C�p(V, q). Moreover, the complete calculation of aρ(a) is necessary to verify that a is invertible;

and the invertibility of a is really indispensable, as it appears in the following counter-example, where (e1, . . . , e6)

is an orthogonal basis such that q(e3) = q(e4) = 1 and q(e5) = q(e6) = −1:

a = (1 + e1,2,3,4)(e3 + e5)(e4 + e6)

= −e1,2 + e3,4 + e3,6 − e4,5 + e5,6 − e1,2,3,5 − e1,2,4,6 + e1,2,3,4,5,6;
(1.1)

in Section 5, it shall be proved that this a is not lipschitzian; nevertheless, aρ(a) = 0, and azρ(a) = 0 or all z ∈ V .

2. Lipschitz Monoids

The following definition is justified by all the simple and effective theorems that it allows to state.

Definition 2.1 The Lipschitz monoid (or Lipschitz semi-group) Lip(V, q) is the multiplicative monoid generated

in C�(V, q) by all scalars in K, all vectors in V and all 1 + xy where x and y are vectors such that q(x) = q(y) =

bq(x, y) = 0 (but xy � 0). It is the union of its intersections Lip0(V, q) and Lip1(V, q) with C�0(V, q) and C�1(V, q).

Definition 2.1 is meaningful even when q vanishes everywhere. When q = 0, then C�(V, 0) �
∧

(V), and it is clear

that Lip(V, 0) needs the three kinds of generators mentioned in Definition 2.1. When there is a vector z such that
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q(z) � 0, then every scalar λ is the product of λz and z−1 = z/q(z). When the plane spanned by two vectors x and

y contains an invertible vector z, it is easy to prove that (1 + xy)z is a vector, and that 1 + xy is a product of two

vectors. When q(x) = q(y) = bq(x, y) = 0, it is more difficult to prove that 1 + xy is a product of four vectors,

provided that V contains an invertible vector, and that K contains at least three elements. Although we are here

interested in the field R, and not in Z/2Z = {0, 1}, the importance of Definition 2.1. justifies the statement a precise

theorem (Helmstetter & Micali, 2008).

Theorem 2.2 The vectors of V are sufficient to generate the monoid Lip(V, q) except in these three cases:

(1) when q = 0;

(2) when K � Z/2Z, dim(V) ≥ 4, and V contains a basis (e1, e2, . . .) such that q(
∑

j λ je j) = λ1λ2 + λ3λ4. In this
case (Dieudonné’s exceptional case), Lip(V, q) is generated by the vectors and 1 + e2e3.

(3) when K � Z/2Z, dim(V) ≥ 3, and V contains a basis (e1, e2, . . .) such that q(
∑

j λ je j) = λ1λ2. In this case,
Lip(V, q) is generated by the vectors and all 1 + e2e j with j ≥ 3.

Definition 2.1 ensures the equalities Lipp(V, q) = C�p(V, q) when n ≤ 3; and when n = 4, it ensures that the

Equation (0.1) is necessary and sufficient for a to be lipschitzian, even if q = 0. Moreover, it ensures the following

theorem (Helmstetter, 2005), which involves a subspace U of V; the notation C�(U, q) means the subalgebra of

C�(V, q) generated by U (and the unit element, indispensable if U is totally isotropic); it is canonically isomorphic

to the Clifford algebra of the restriction of q to U.

Theorem 2.3 An element of C�(U, q) is lipschitzian in C�(V, q) if and only if it is lipschitzian in C�(U, q).

From Definition 2.1, it immediately follows that Lip(V, q) is invariant by ρ, that aρ(a) = ρ(a)a ∈ K and azρ(a) ∈ V
for all a ∈ Lip(V, q) and all z ∈ V . Consequently, the subset GLip(V, q) of all invertible lipschitzian elements is a

group, and each element a of this group gives an orthogonal transformation z �−→ ±aza−1 of (V, q). In this way we

obtain all orthogonal transformations g of V such that firstly, q(g(z)) = q(z) for all z ∈ V , and secondly (when q
is degenerate), g(z) = z for all z ∈ ker(bq). When dim(V) is infinite, these conditions on g must be strengthened

(Helmstetter, 2005; Helmstetter & Micali, 2008; Helmstetter, 2012).

The neutral Lipschitz monoid Lip(V, 0) shall play a capital role, and we need a precise description of Lip(V, 0).

Since C�(V, 0) �
∧

(V), the neutral algebra C�(V, 0) is graded over the group Z, and we can define the space

C�2(V, 0) of bivectors, which is spanned by all products xy of two vectors; since every u ∈ C�2(V, 0) is nilpotent,

we can define exp(u) in the commutative algebra C�0(V, q); if u = x1y1 + x2y2 + · · · + xryr (for some r ≥ 1), then

exp(x1y1 + x2y2 + · · · + xryr) = (1 + x1y1)(1 + x2y2) · · · (1 + xryr); (2.1)

this equality eschews the exponential series and determines a mapping exp: C�2(V, 0) → C�0(V, 0) even when K
is a field of characteristic � 0 (Chevalley, 1954). To describe Lip(V, 0), we also need the decomposable elements,

which are the elements of the multiplicative monoid generated in C�(V, 0) by the scalars and the vectors.

Theorem 2.4 An element a ∈ C�(V, 0) is lipschitzian if and only if a = d exp(u) for some decomposable element d
and for some u ∈ C�2(V, 0).

The forthcoming calculations are easier with the following notation. The cardinal of a subset F of N is denoted

by |F|. The boolean sum F + G of two subsets is F ∪ G \ F ∩ G; thus |F + G| ≡ |F| + |G| modulo 2. With the

boolean addition, P(N) becomes a vector space of dimension n over Z/2Z, with basis ({1}, {2}, . . . , {n}). Let S :

P(N) × P(N) → Z/2Z be the bilinear form such that S ({i}, { j}) is equal to 0 modulo 2 if i ≤ j, to 1 modulo 2 if

i > j. When |F| = f and |G| = g, this definition implies

S (G, F) − S (F,G) = f g + |F ∩G| modulo 2, (2.2)

S (F, F) =
1

2
f ( f − 1) modulo 2. (2.3)

Let us calculate exp(u) when u is given by its coordinates uJ (with |J| = 2) in the basis (eJ) derived from some

basis (e1, . . . , en) of V . Let us write a = exp(u) =
∑

J aJeJ with a sum running on all subsets J of even cardinal.

Obviously a∅ = 1 and aJ = uJ when |J| = 2. Let J be a subset of even cardinal ≥ 2, and let i be an element of J; it

is convenient, but not obligatory, to choose the smallest element of J; from (2.1), it follows that

aJ =
∑

j∈J+{i}
(−1)r u{i, j} aJ+{i, j}, (2.4)
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where r is the number of elements of J between i and j (the number of k ∈ J such that i < k < j if i < j, such that

j < k < i if i > j). Since J + {i} = J \ {i}, the sum runs on all j ∈ J other than i; and u{i, j} means either ui, j if i < j,
or u j,i if i > j. This equality allows to deduce all aJ from a∅ = 1, when all uJ (with |J| = 2) are known.

When i and j belong to J, it is easy to verify that the parity of the number r of elements of J between i and j is

equal to S ({i, j}, J + {i, j}) = S ({i, j}, J) + 1. This fact allows to improve (2.4):

aJ = −
∑

j∈J+{i}
(−1)S ({i, j},J) u{i, j} aJ+{i, j}. (2.5)

The above bilinear form S is also useful in another context: if the basis (e1, . . . , en) is orthogonal, then for all
F, G ∈ P(N),

eFeG = (−1)S (F,G) eF+G

∏
j∈F∩G

q(e j), (2.6)

ρ(eF) = (−1)S (F,F) eF . (2.7)

3. The Invariance Theorem

The invariance theorem states that the Lipschitz monoids are invariant by deformation, and the concept of defor-

mation needs the preliminary definition of interior multiplications. Beside (V, q), we still consider two spaces U
and W and two bilinear mappings η: U × V → K and θ: V × W → K. There are two bilinear mappings (called

interior multiplications)∧
(U) × C�(V, q)→ C�(V, q), (a, b) �−→ a η b,

C�(V, q) ×
∧

(W)→ C�(V, q), (b, c) �−→ b θ� c,
satisfying the following properties for all a, a′ ∈ ∧

(U), all b, b′ ∈ C�(V, q), all c, c′ ∈ ∧
(W), and for all x ∈ U,

y ∈ V and z ∈ W:

1 η b = b, b θ� 1 = b,

(a ∧ a′) η b = a η (a′ η b), b θ� (c ∧ c′) = (bθ� c) θ� c′,
x η y = η(x, y), y θ� z = θ(y, z),

x η bb′ = (x η b)b′ + σ(b)(x η b′), bb′ θ� z = b(b′ θ� z) + (b θ� z)σ(b′).

The first two lines, together with (a η b) θ� c = a η (b θ� c), mean that the space C�(V, q) is a bimodule over the

algebras
∧

(U) and
∧

(W), while the last two lines describe the operations of the elements x ∈ U and z ∈ W.

Now let β: V × V → K be a bilinear form on V; it determines two interior multiplications β and β� , and a

deformation C�(V, q; β) of the algebra C�(V, q). This deformation is the space C�(V, q) provided with the associative
multiplication (b, b′) �−→ b�b′ that is characterized by (3.1), or equivalently by (3.2) (when b runs through C�(V, q),

and y through V):

1 � b = b and y � b = yb + y β b; (3.1)

b � 1 = b and b � y = by + b β� y. (3.2)

Let q′: V → K be the quadratic form defined by q′(y) = q(y) + β(y, y); from y � y′ = yy′ + β(y, y′), it follows that

y� y = q′(y); consequently, the identity mapping of V extends to an isomorphism C�(V, q′)→ C�(V, q; β). Because

of this isomorphism, all properties of C�(V, q′) are also valid for C�(V, q; β).

Many things are invariant by deformation. The parity gradation is obviously invariant. The reversion is invariant if

and only if β is symmetric; this condition is obviously necessary since ρ(y � y′) − y′ � y = β(y, y′) − β(y′, y). The

invariance of the interior multiplications is less evident; it means that

x η (b � b′) = (x η b) � b′ + σ(b) � (x η b′),

and

(b � b′) θ� z = b � (b′ θ� z) + (b θ� z) � σ(b′).

Consequently, the deformation of C�(V, q; β) by a bilinear form γ: V × V → K is equal to C�(V, q; β + γ). In

particular, C�(V, q) is the deformation of C�(V, q; β) by means of −β.
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If γ is a bilinear form such that q(y) = γ(y, y) for all y ∈ V , then C�(V, q;−γ) is isomorphic to the exterior

algebra
∧

(V), and it is convenient to use the symbol ∧ for the multiplication in C�(V, q;−γ); since C�(V, q) is the

deformation of C�(V, q;−γ) by means of γ, we can write:

yb = y ∧ b + y γ b , by = b ∧ y + b γ� y. (3.3)

Here is the invariance theorem for Lipschitz monoids.

Theorem 3.1 The image of Lip(V, q′) by the above isomorphism C�(V, q′) → C�(V, q; β) is equal to Lip(V, q) as a
subset of C�(V, q).

This theorem is the main justification of Definition 2.1. It allows to reduce the proof of many theorems (for instance

Theorem 2.3) to the case q = 0, by means of a neutral deformation C�(V, q;−γ). It is also clear that, if we must

find out whether a given a ∈ C�(V, q) is lipschitzian, we can use Theorem 2.4 to test its lipschitzian property in

C�(V, q;−γ); this idea leads directly to the algorithm presented in Section 4.

Theorem 3.1 is also involved in many other arguments, for instance in the proof of this other theorem (which

is meaningful for any infinite field K): for each parity p = 0, 1, Lipp(V, q) is an irreducible closed algebraic
submanifold of dimension 1 + 1

2
n(n − 1) in C�p(V, q). Moreover, for every sensible topology (the usual topology if

K is R or C, or the Zarisky topology if K is just an infinite field), Lip0(V, q) is always the topological closure of
the group GLip0(V, q), while Lip1(V, q) is the topological closure of GLip1(V, q) if q � 0 (remember that C�1(V, 0)

contains no invertible elements).

Comments My concept of deformation stems from Chevalley (1954), who wrote the first formula (3.3), and from

Bourbaki, who suggested the more general formula (3.1). The formulas (3.3) are well known when γ = bq/2; but in

many problems, like here, bq/2 has very little, or even nothing, to do; after the work of the Turkish mathematician

Cahit Arf (1910-1997), it is known that almost all the core of Clifford algebra theory can be covered by theorems

that are valid also over a field of characteristic 2, when bq/2 does not exist.

My first versions of the invariance theorem are in the references (Helmstetter, 1977, 1985, 1987, 1992), where the

name “Clifford monoid” is used instead of “Lipschitz monoid”. But to-day, I recommend (Helmstetter, 2005) for

the proofs of the theorems about Lipschitz monoids, (Helmstetter, 2011) for more information, and (Helmstetter,

2012) for a survey of the subject. A quite different version of the invariance theorem was published by Sato, Miwa

and Jimbo (1978); it was preceded in 1977 by preliminary publications in Japanese.

There is a premonition of the invariance theorem in Lipschitz’s work of 1880-1886; in 1880, Lipschitz used the

algebra C�(V, q) of a real positive definite quadratic form q, without knowing that Clifford discovered it two years

before him; he considered an orthogonal transformation g of (V, q) such that g + 1 was invertible; therefore, g =
(1 − f )−1(1 + f ) for some skew symmetric operator f ; to-day, it is convenient to use the neutral deformation

C�(V, q;−bq/2), and to say that f (z) = (uz − zu)/2 for some u ∈ C�2(V, q;−bq/2); Lipschitz discovered that

g(z) = aza−1 for some a ∈ C�0(V, q), and explained how to derive a from u, by means of pfaffians of skew

symmetric matrices, as it is reported in the chapter 22 of (Porteous, 1995); to-day, it is easier to write a = exp∧(u)

in C�(V, q;−bq/2).

4. An Algorithm for Lipschitzian Elements

An even or odd element a (other than 0) has been given in C�(V, q) by means of its coordinates in the basis (eJ)

(with J ∈ P(N)) derived from some basis (e1, . . . , en) of V , and we must find out whether a is lipschitzian.

It suffices to test the lipschitzian property of a in a neutral deformation C�(V, q;−γ) such that the basis (eJ) is also

the basis derived from (e1, . . . , en) in the algebra C�(V, q;−γ); in other words, ei ∧ e j = eie j and γ(ei, e j) = 0

whenever i < j. The condition q(y) = γ(y, y) (for all y ∈ V) gives γ(ei, ei) = q(ei) and γ(ei, e j)+γ(e j, ei) = bq(ei, e j)

for all i, j ∈ N. Since γ(ei, e j) = 0 if i < j, we must set γ(ei, e j) = bq(ei, e j) if i > j. Now γ is well determined; it is

equal to bq/2 if (e1, . . . , en) is an orthogonal basis, but there is no pressing reason to assume that it is orthogonal.

According to Theorems 3.1 and 2.4, a is lipschitzian if and only if a = d ∧ exp∧(u) for some u ∈ C�2(V, q;−γ), and

for some element d decomposable in C�(V, q;−γ).
For every r (an integer ≥ 0 that has the parity of a), let a|r be the component of a in C�r(V, q;−γ); it is the sum of

all aJeJ with |J| = r. If a is even, and if a∅ � 0, then a is lipschitzian if and only if a = κ exp∧(u) for some κ ∈ K
and some u ∈ C�2(V, q;−γ); it is clear that κ = a∅ and u = a|2/a∅. With the formula (2.5) we obtain the following

theorem.
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Theorem 4.1 When a∅ � 0, then a is lipschitzian if and only if

a = a∅ exp∧
(a|2

a∅
)

with a|2 =
∑
|J|=2

a jeJ . (4.1)

This equality in C�0(V, q;−γ) is equivalent to this family of equalities in K:

a∅ aJ +
∑

j∈J+{i}
(−1)S ({i, j},J) a{i, j} aJ+{i, j} = 0; (4.2)

there is one such equality for every J ⊂ N of even cardinal ≥ 4, and a particular element i must be chosen in each
of these subsets.

The number of equations like (4.2) is (n
4
) + (n

6
) + (n

8
) + · · · = 2n−1 − 1 − 1

2
n(n − 1); since it is the codimension

of Lip0(V, q) in C�0(V, q), the resulting algorithm is minimal. This algorithm requires the preliminary condition

a∅ � 0, which can be satisfied only if a is even; therefore, we must propose an alternative algorithm for the other

cases.

When a � 0, then aF � 0 for some F ∈ P(N), and when F � ∅, we begin with a deformation C�(V, q; β)
satisfying these two conditions: firstly, the basis (eJ) is still the basis derived from (e1, . . . , en) in C�(V, q; β);
secondly, the basis (e1, . . . , en) is orthonormal for the resulting quadratic form q′ (defined by q′(y) = q(y)+β(y, y)).

The first condition means that β(ei, e j) = 0 if i < j, so that ei � e j = eie j. Then, to make the basis (e1, . . . , en)

become orthonormal for q′, we must set β(ei, e j) = −bq(ei, e j) if i > j (so that ei � e j + e j � ei = 0), and also

β(e j, e j) = 1 − q(e j) for all j ∈ N, so that q′(e j) = 1. Now eF is an invertible lipschitzian element in C�(V, q; β),
and its inverse is ρβ(eF) = (−1)S (F,F)eF (see (2.7)). Therefore, a is lipschitzian if and only if the same is true for

b = ρβ(eF) � a. And since b∅ = aF � 0, we can test the lipschitzian property of b with Theorem 4.1. The formula

(2.6), together with S (F, F) + S (F, J) = S (F, F + J), enables us to write

b = (−1)S (F,F)eF � a =
∑

J

(−1)S (F, F+J)aJ eF+J =
∑

J

(−1)S (F,J)aF+J eJ .

If we apply (4.2) to b, and if we remember the bilinearity of S , we obtain the next theorem.

Theorem 4.2 When aF � 0 for some F ⊂ N, then a is lipschitzian if and only if the same is true for

b =
∑

J∈P(N)

(−1)S (F,J) aF+J eJ; (4.3)

and b is lispchitzian if and only if

aF aF+J +
∑

j∈J+{i}
(−1)S ({i, j},J) aF+{i, j} aF+J+{i, j} = 0 (4.4)

for every subset J of even cardinal ≥ 4 (where a particular element i has been freely chosen).

When V has dimension 4, all Equation (4.4) lead to the Equation (0.1) mentioned in the introduction. The Equation

(4.4) is still meaningful when |J| = 2, but its meaning is trivial: aF aF+J − aF+J aF = 0 (because {i, j} = J).

Moreover, since {i} + { j} means {i, j} if i � j, and ∅ if i = j, the Equation (4.4) can also be written in this way:

∑
j∈J

(−1)S ({i}+{ j}, J) aF+{i}+{ j} aF+J+{i}+{ j} = 0. (4.5)

When |J| = 4, this equation does not depend on the choice of i in J. But when |J| ≥ 6, each choice of i gives a

different equation; nevertheless, if we take into account the equations corresponding to the subsets of N of even

cardinal between 4 and |J|−2, the equations associated with two choices of i in J are equivalent because both mean

that the coordinate bJ of b agrees with the equality b = b∅ ∧ exp∧(b|2/b∅).

It is clear that the Equation (4.4) or (4.5) remains the same if F is replaced with F + J. If i and i′ are two elements

of J, the Equation (4.5) also remains the same if i is replaced with i′, and F with F + {i} + {i′}.
The number of terms in (4.4) or (4.5) is |J|, and every term requires a multiplication of two scalars; therefore, the

total number of multiplications in this algorithm is 4 (n
4
) + 6 (n

6
) + 8 (n

8
) + · · · = n(2n−2 − n + 1).
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5. Examples

First example

Let us prove that the element a in (1.1) is not lipschitzian. Since a∅ = 0, we must begin with the deformation

C�(V, q; β) that makes the basis (e1, . . . , en) become orthonormal; the multiplication by ρβ(e1,2) gives

e2 � e1 � a = −1 − e3,5 − e4,6 − e1,2,3,4 − e1,2,3,6 + e1,2,4,5 − e1,2,5,6 + e3,4,5,6 ;

since the right hand member is not equal to − exp∧(e3,5 + e4,6) in C�(V, q;−γ), that is −1 − e3,5 − e4,6 + e3,4,5,6 , we

know that a is not lipschitzian. We can also consider

e4 � e3 � a = 1 + e3,5 + e4,6 + e1,2,3,4 + e1,2,3,6 − e1,2,4,5 + e1,2,5,6 − e3,4,5,6 ;

again a is not lipschitzian because the right hand member is not equal to exp∧(e3,5 + e4,6) = 1+ e3,5 + e4,6 − e3,4,5,6 .

Second example

In this example and the following ones, V is a vector space of dimension 6 over R. Let us consider this even

element a:

a = 6e1,2 − 2e1,3 + 2e1,5 + 18e2,4 + 9e2,6 − 6e3,4 − 3e3,6 − 6e4,5 + 3e5,6 − 6e1,2,3,5 − 12e1,2,4,6 + 4e1,3,4,6

+4e1,4,5,6 + 18e2,3,4,5 − 9e2,3,5,6 − 12e1,2,3,4,5,6;

Let us calculate b = e2 � e1 � a in C�(V, q; β):

b = 6 − 18e1,4 − 9e1,6 − 2e2,3 + 2e2,5 − 6e3,5 − 12e4,6 + 6e1,2,3,4 + 3e1,2,3,6 + 6e1,2,4,5 − 3e1,2,5,6 − 18e1,3,4,5

+9e1,3,5,6 + 4e2,3,4,6 + 4e2,4,5,6 − 12e3,4,5,6;

let us separate the components in C�(V, q;−γ): b = 6 + b|2 + b|4 since b|6 = 0. This b is lipschitizan if and only if

the equality b = 6 exp∧(b|2/6) holds in C�(V, q;−γ); a straightforward calculation shows that 1
2
b|2 ∧ b|2 = 6b|4 and

b|2 ∧ b|4 = 0 ; it proves that b is lipschitzian. Therefore, a is lipschitzian too.

I emphasize the fact that this algorithm absolutely ignores q. Nevertheless, if we need a decomposition of a into a

product of vectors, we must apply a much longer and harder algorithm which cannot ignore q. I shall present this

algorithm in a forthcoming work (entitled “Factorization of lipschitzian elements”), but here I will already show

what it gives for four different choices of q. When q coincides with q′, then

5a = e1e2(e2 − 3e3)(3e1 + 4e4)(e3 − e5)(6e1 − 2e4 − 5e6) .

When (e1, . . . , e6) is an orthogonal basis such that q(ei) = 1 for i = 1, 2 and q(ei) = −1 for i = 3, 4, 5, 6, a similar

calculation gives

28a = e1e2(e2 − 3e3)(3e1 + 4e4)(3e2 − 5e3 − 4e5)(18e1 + 10e4 − 7e6).

When (e1, . . . , e6) is an orthogonal basis such that q(ei) = 1 for i = 1, 2 and q(ei) = 0 for i = 3, 4, 5, 6, this very

degenerate q leads to

9a = e1e2(e2 − 3e3)(3e1 + 4e4)(3e2 − 10e3 + e5)(−6e1 + 10e4 + 9e6).

When q(ei) = 0 for all i, bq(e1, e2) = bq(e3, e4) = bq(e5, e6) = 1, and all bq(ei, e j) other than these three ones vanish,

then
72a = (e1 + e2)(e1 + e2 − 3e3)(2e1 + 3e3 + 4e4)(10e1 − 3e3 + 12e4)

(4e1 − 27e2 − 3e3 − 9e5)(3e2 − e3 + 4e4 + e5 + 2e6).

It is much easier to find a factorization of a that proves its lipschitzian property in the neutral algebra C�(V, 0); after

the factorization a|2 = (2e1 − 6e4 − 3e6)(3e2 − e3 + e5), it soon appears that

a = (2e1 − 6e4 − 3e6)(3e2 − e3 + e5)(1 − e3,5)(1 − 2e4,6) .

Third example

a = 2e1 + e2 − e3 + 2e4 + e6 − 2e1,2,3 + 4e1,2,5 − 2e1,3,5 + 2e1,3,6 − 2e1,5,6 − 2e2,3,4 + e2,3,5 − 4e2,4,5

+e2,5,6 + 2e3,4,5 − 2e3,4,6 − 2e4,5,6 − 2e1,2,3,5,6 − 2e2,3,4,5,6.
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To test this odd element a, we consider b = e1 � a in C�(V, q; β):

b = 2 + e1,2 − e1,3 + 2e1,4 + e1,6 − 2e2,3 + 4e2,5 − 2e3,5 + 2e3,6 − 2e5,6 − 2e1,2,3,4 + e1,2,3,5 − 4e1,2,4,5

+e1,2,5,6 + 2e1,3,4,5 − 2e1,3,4,6 − 2e1,4,5,6 − 2e2,3,5,6 − 2e1,2,3,4,5,6;

this b (and consequently, a too) is lipschitzian because 1
2
b|2 ∧ b|2 = b∅b|4 and 1

3
b|2 ∧ b|4 = b∅b|6. The equations

(4.2) allow to make the verifications with a reduced number of multiplications; the 15 equations involving a subset

J of cardinal 4 do not depend on the choice of i in J; but the equation with J = N depends on the choice of i. The

choice i = 4 gives the equation

b∅bN − b1,4b2,3,5,6 + b2,4b1,3,5,6 − b3,4b1,2,5,6 − b4,5b1,2,3,6 + b4,6b1,2,3,5 = 0 ;

here, this choice is clever because b{4, j} = 0 for j = 2, 3, 5, 6.

Fourth example

Here is an unusual application which shows how easily the proposed algorithm can be adapted to unexpected

problems. An element a of C�4(V, 0) has been given, and we must find out whether a is decomposable:

a = 2e1,2,3,4 + 3e1,2,3,6 − 6e1,2,4,5 − 2e1,2,4,6 + 9e1,2,5,6 − 2e1,3,4,5 + 3e1,3,5,6

−2e1,4,5,6 − 2e2,3,4,5 + 4e2,3,4,6 + 3e2,3,5,6 − 14e2,4,5,6 − 4e3,4,5,6.

Because of Theorem 2.4, it is decomposable if and only if it is lipschitzian. Let us calculate b = e4�e3�e2�e1�a :

b = 2 + 2e1,5 − 4e1,6 − 2e2,5 + 6e3,5 + 2e3,6 + 3e4,6 + 4e1,2,5,6 − 14e1,3,5,6 − 3e1,4,5,6 + 2e2,3,5,6 + 3e2,4,5,6 − 9e3,4,5,6

= 2 + b|2 + b|4;

since 1
2
b|2 ∧ b|2 = 2b|4 and b|2 ∧ b|4 = 0, we conclude that b = 2 exp∧(b|2/2), that b is lipschitzian, and that a is

decomposable in C�4(V, 0).

There is an alternative algorithm, which is not much longer, and which has the advantage of giving a decomposition

of a when a is decomposable. It uses the dual basis (e∗1, . . . , e
∗
6
) of the dual space V∗, and the interior multiplication∧

(V∗) × C�(V, 0) → C�(V, 0). For every φ ∈ ∧3(V∗), the vector φ  a belongs to the support of a in V; since the

coordinate a1,2,3,4 does not vanish, it allows to find four independent vectors in the support of a:

x1 = (e∗4 ∧ e∗3 ∧ e∗2)  a = −2e1 − 2e5 + 4e6 ,

x2 = (e∗4 ∧ e∗3 ∧ e∗1)  a = 2e2 − 2e5 ,

x3 = (e∗4 ∧ e∗2 ∧ e∗1)  a = −2e3 − 6e5 − 2e6 ,

x4 = (e∗3 ∧ e∗2 ∧ e∗1)  a = 2e4 + 3e6 ;

if a is decomposable, (x1, x2, x3, x4) is a basis of its support; consequently, a is decomposable if and only if

a = λ x1x2x3x4 for some scalar λ, and since a1,2,3,4 = 2, it is clear that λ = 1/8. It remains to verify that

8a = x1x2x3x4 in C�(V, 0).

6. Vahlen Matrices

Let (V†, q†) be the orthogonal sum of (V, q) and a plane spanned by two isotropic vectors ε and ε′ such that

q†(ε + ε′) = 1. Thus for all z ∈ V and all λ, μ ∈ K we can write q†(z + λε + με′) = q(z) + λμ . The following

equalities hold in C�(V†, q†):

ε2 = ε′2 = 0 , εε′ + ε′ε = 1 , εε′ε = ε , ε′εε′ = ε′ ;
∀a ∈ C�(V, q), εa = σ(a)ε , ε′a = σ(a)ε′ .

The linear mapping V† → Mat(2, C�(V, q)) defined by

z + λε + με′ �−→
(
z λ
μ −z

)
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extends to an algebra isomorphism M from C�(V†, q†) onto Mat(2, C�(V, q)). It is not difficult to calculate the

reciprocal isomorphism:

M−1

(
a1 a2

a3 a4

)
= εε′a1 + a2ε + ε

′a3 + ε
′a4ε (6.1)

for all a1, a2, a3, a4 ∈ C�(V, q). It follows that, for every α ∈ C�(V†, q†),

M(α) =

(
εε′αεε′ + ε′σ(α)ε εε′αε′ − ε′σ(α)ε′ε
εαεε′ − ε′εσ(α)ε εαε′ + ε′εσ(α)ε′ε

)
. (6.2)

The Vahlen monoid Vah(V, q) is the image of Lip(V†, q†) by this isomorphism. Many works have been devoted to

the Vahlen group GVah(V, q) which is the image of GLip(V†, q†), or equivalently, the group of invertible matrices

in Vah(V, q); and they assume q to be nondegenerate. But here we are concerned neither about invertibility of

matrices, nor about extra hypotheses on q.

If we carry the mappings σ and ρσ from C�(V†, q†) into Mat(2,C�(V, q)) by means of the isomorphismM, we find

that

σ

(
a1 a2

a3 a4

)
=

(
σ(a1) −σ(a2)

−σ(a3) σ(a4)

)
, ρσ

(
a1 a2

a3 a4

)
=

(
ρ(a4) −ρ(a2)

−ρ(a3) ρ(a1)

)
.

When M is a Vahlen matrix, the product Mρσ(M) = ρσ(M)M is a scalar Det(M) which several authors called the

pseudo-determinant:

Det

(
a1 a2

a3 a4

)
= a1ρ(a4) − a2ρ(a3) = ρ(a1)a4 − ρ(a3)a2; (6.3)

a Vahlen matrix M is invertible if and only if Det(M) � 0.

Here is the problem: and even or odd matrix is given in Mat(2,C�(V, q)), and we must find out whether it is a

Vahlen matrix. There is an evident solution: we calculate its image in C�(V†, q†) by means of (6.1), and we apply

the algorithm of Section 4 to find out whether it is lipschitzian. In V† we can use the basis (e1, . . . , en, ε, ε
′) which

obliges to write the right hand member of (6.1) as σ(a4)+ a2ε+σ(a3)ε′ + (a1 −σ(a4))εε′. This solution is correct,

but here we want an algorithm that uses only the smaller algebra C�(V, q).

Some information is necessary before this algorithm is presented in Section 7. The next theorem is easy and well

known.

Theorem 6.1 If M is a Vahlen matrix, we obtain another Vahlen matrix if we inflict one of these operations on it:

(1) to permute its two rows, or its two columns.

(2) to multiply the two entries of a same row, or of a same column, by the same scalar.

(3) to multiply all four entries by the same lipschitzian element, either all on the left side, or all on the right side.

Another definition is needed in the next theorems (Helmstetter, 2005).

Definition 6.2 Two lipschitzian elements a and b are said to be adjacent if at least one of these four conditions

(L1), (L2), (R1), (R2) is satisfied:

(L1) ∃x ∈ V, b = xa ; (R1) ∃y ∈ V, b = ay ;

(L2) ∃x′ ∈ V, a = x′b ; (R2) ∃y′ ∈ V, a = by′ .

When a and b are adjacent lipschitzian elements, in general all four conditions in Definition 6.2 are satisfied; but

sometimes, only two of them are satisfied; the pair of satisfied conditions may be a row or a column, but never
a diagonal (neither (L1,R2) nor (L2,R1)). For instance, when x and y are isotropic vectors such that xy � 0, the

adjacency between a = y and b = xy satisfies (L1,R1) if bq(x, y) = 0 (whence b = −yx), but it satisfies (L1, L2) if

bq(x, y) � 0 (because x + y is invertible and b = (x + y)a).

Theorem 6.3 If a is a nonzero lipschitzian element, the subset adj(a) of all lipschitzian elements adjacent to a is
the image of the linear mapping V∗ ⊕V → C�(V, q) defined by (�, x) �−→ xa+ �  a. It is a subspace of C�(V, q) that
has the same dimension as V.

In Theorem 6.3 we might write ax + a � � instead of xa + �  a, because a � � = ±�  a (if a is even or odd) and

xa + σ(a)x = x q a (where x q a is the interior product of a by the linear form y �−→ bq(x, y)). An easy corollary

of Theorem 6.3 states that adjacency is invariant by deformation.

47



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

Corollary 6.4 If C�(V, q; β) is the deformation of C�(V, q) by means of a bilinear form β, then two lipschitzian
elements are adjacent in C�(V, q) if and only if they are adjacent in C�(V, q; β).

All entries of a Vahlen matrix are lipschitzian; for instance, if α is lipschitzian and εε′αε � 0, the entry εε′αεε′ +
ε′σ(α)ε in (6.2) is the sum of two elements of adj(εε′αε), and it is lipschitzian because of Theorem 6.3. This

observation can be improved.

Theorem 6.5 If the matrix (a1, a2; a3, a4) is a Vahlen matrix, then κa1 + νa4 and λa2 +μa3 are adjacent lipschitzian
elements for all κ, λ, μ, ν ∈ K.

Theorem 6.6 If a1 is a nonzero lipschitzian element, and if a2 and a3 are in adj(a1), there are elements a4 ∈ C�(V, q)

such that the matrix (a1, a2; a3, a4) is a Vahlen matrix. If a4 is one of them, then the other ones are all a4 + θa1 with
θ ∈ K.

The next lemma enables us to calculate a4 when a1 = 1.

Lemma 6.7 For all x, y ∈ V, the matrix
(
1 y
x xy

)
is a Vahlen matrix.

Indeed, the image α = xy+ yε− xε′ + εε′ − xyεε′ of this matrix in C�(V†, q†) is lipschitzian; if x and y are colinear,

this is true because α is in the subalgebra generated by a subspace of dimension ≤ 3; and if they are not, the

conclusion follows from the Equation (0.1) applied to the basis (x, y, ε, ε′).

7. An Algorithm for Vahlen Matrices

In Section 4, the algorithm for lipschitzian elements carries the problem from C�(V, q) into C�(V, 0); here, the

algorithm for Vahlen matrices carries the problem from Mat(2,C�(V, q)) into Mat(2,C�(V, 0)). With every bilinear

form β on V , let us associate the bilinear form β† on V† defined by

β†(x + κε + λε′, y + με + νε′) = β(x, y).

The isomorphism M from C�(V†, q†) onto Mat(2,C�(V, q)) is also an isomorphism from C�(V†, q†; β†) onto

Mat(2,C�(V, q; β)); this assertion follows from (6.1). Therefore, the Vahlen property is also invariant by defor-

mation: an element of Mat(2,C�(V, q)) is a Vahlen matrix in the algebra Mat(2,C�(V, q)) if and only if it is a
Vahlen matrix in the algebra Mat(2,C�(V, q; β)). This property (already useful in the proof of Theorems 6.5 and

6.6) is the main piece of knowledge required by the following algorithm.

Let us consider an even matrix with entries (a1, a2; a3, a4) in C�(V, 0) such that a1 has a nonzero scalar component.

If this matrix is a Vahlen matrix, a1 is lipschitzian and a1 = κ exp(u) for some κ ∈ K and some u ∈ C�2(V, 0).

Then a2 and a3 are both adjacent to a1; in the neutral algebra C�(V, 0), these adjacencies imply equalities a2 =

ya1 and a3 = xa1 for some vectors x and y. Because of Lemma 6.7 and Theorem 6.1, the matrix with entries

(a1, ya1; xa1, xya1) is a Vahlen matrix; and because of Theorem 6.6, there is a scalar θ such that a4 = (θ + xy)a1.

Finally, it has been proved that, for some κ, θ ∈ K, for some x, y ∈ V , and for some u ∈ C�2(V, 0),

(
a1 a2

a3 a4

)
=

(
κ exp(u) κy exp(u)

κx exp(u) (θ + κxy) exp(u)

)
. (7.1)

The notation a1|k means the component of a1 in C�k(V, 0); when a basis (e1, . . . , en) has been chosen in V , then a1|k
is the sum of all a1;JeJ with |J| = k; in particular, a1|0 = a1;∅. Similar notation will be used for the other entries.

The equality (7.1) allows to calculate κ, θ, x, y and u:

κ = a1;∅, u =
a1|2
a1;∅
, y =

a2|1
a1;∅
, x =

a3|1
a1;∅
, θ = a4;∅. (7.2)

Now the algorithm can be presented and justified. It uses the same neutral deformation C�(V, q;−γ) as in Section

4, and when it is necessary, the same auxiliary deformation C�(V, q; β).

If one of the entries of the given matrix (a1, a2; a3, a4) has a nonzero scalar component, we can put this entry at

the place of a1 by means of permutations of rows or columns (see Theorem 6.1). Therefore, we can treat this case

with the hypothesis a1;∅ � 0. If a1;∅ � 0, this matrix is a Vahlen matrix if and only if these equalities hold in the

neutral deformation C�(V, q;−γ):

a1 = a1;∅ exp∧
(a1|2
a1;∅

)
, a2 = a2|1 ∧ a1

a1;∅
, a3 = a3|1 ∧ a1

a1;∅
, a4 = (a1;∅a4;∅ + a3|1 ∧ a2|1) ∧ a1

(a1;∅)2
. (7.3)
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The first Equation (7.3) can be treated as it is explained in Theorem 4.1. The second and third Equations (7.3)

mean that, for every even k ≥ 2,

a1;∅ a2|k+1 = a2|1 ∧ a1|k , a1;∅ a3|k+1 = a3|1 ∧ a1|k . (7.4)

For each even k, the Equations (7.4) give 2 ( n
k+1

) equations in K, and each of these equations requires k + 2 multi-

plications of scalars. If we take into account the second Equation (7.3), the fourth Equation (7.3) means that, for

every even integer k ≥ 2,

a1;∅ a4|k = a4;∅ a1|k + a3|1 ∧ a2|k−1 ; (7.5)

a similar equation a1;∅ a4|k = a4;∅ a1|k + a3|k−1 ∧ a2|1 can be deduced from the third and fourth Equations (7.3); it is

equivalent to (7.5) when all Equations (7.4) are fulfilled. For every even k, the Equation (7.5) gives (n
k) equations

in K, and each equation needs k + 2 multiplications in K. Thus the total number of equations in K is

∑
h≥2

( n
2h) + 2

∑
h≥1

( n
2h+1) +

∑
h≥1

( n
2h) = 2n+1 − 1 − 1

2
(n + 2)(n + 1) ;

since this number is the codimension of Lip0(V†, q†) in C�0(V†, q†), this algorithm is minimal. It has the same cost

as the algorithm presented in Section 4, if we take into account that dim(V†) is n + 2 instead of n; indeed, the total

number of necessary multiplications of scalars is

∑
h≥2

2h ( n
2h) + 2

∑
h≥1

(2h + 2) ( n
2h+1) +

∑
h≥1

(2h + 2) ( n
2h) = (n + 2)(2n − n − 1).

Now we must know what can be done when the preliminary condition a1;∅ � 0 is not fulfilled, or cannot be fulfilled

by means of permutations of rows and columns. Since the given matrix is assumed to be � 0, we can assume that

a1;F � 0 for some subset F ⊂ N; even if a1 = 0, a permutation of rows or columns can ensure this assumption.

In this case, we use the deformation C�(V, q; β) for which the basis (e1, . . . , en) is orthonormal. We multiply all

entries by ρβ(eF): we may multiply them on the let side: bi = ρβ(eF) � ai for i = 1, 2, 3, 4; but we may multiply

them also on the right side: bi = ai � ρβ(eF) for i = 1, 2, 3, 4. The given matrix is a Vahlen matrix if and only if the

new matrix (b1, b2; b3, b4) is a Vahlen matrix. Since b1;∅ = a1;F � 0, the new matrix can be tested by means of the

previous algorithm.

8. Examples

First example

In all following examples, V is a vector space of dimension 4 over R. Let us begin with this odd matrix (a1, a2; a3, a4):

(
e2 − 6e3 + 2e1,2,3 + 2e2,3,4 −4 + e1,2 + 2e1,3 − 8e3,4 + 2e1,2,3,4

3 − e1,2 + 6e3,4 − 2e1,2,3,4 e1 + 2e1,3,4

)
.

The permutation of the rows gives an even matrix (b1, b2; b3, b4) where b1,∅ � 0 :

(
3 − e1,2 + 6e3,4 − 2e1,2,3,4 e1 + 2e1,3,4

e2 − 6e3 + 2e1,2,3 + 2e2,3,4 −4 + e1,2 + 2e1,3 − 8e3,4 + 2e1,2,3,4

)
;

it is a Vahlen matrix because the Equations (7.3) are fulfilled in C�(V, q;−γ):

b1 = 3 exp∧
(1

3
(−e1,2 + 6e3,4)

)
,

3b3 = (e2 − 6e3) ∧ b1, 3b2 = e1 ∧ b1,

9b4 = (−12 + (e2 − 6e3) ∧ e1) ∧ b1.

Alternatively, we can also use C�(V, q; β) and test the matrix

(
1 − 2e1,3 − 6e2,3 + 2e3,4 −e1 − 4e2 − 2e1,2,3 − 2e1,3,4 − 8e2,3,4

e1 + 3e2 + 2e1,3,4 + 6e2,3,4 −e1,2 − 2e1,2,3,4

)
;
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with entries b′i = e2 � ai (for i = 1, 2, 3, 4); it is a Vahlen matrix because

b′1 = exp∧(−2e1,3 − 6e2,3 + 2e3,4),

b′3 = (e1 + 3e2) ∧ b′1, b′2 = (−e1 − 4e2) ∧ b′1,
b′4 = (e1 + 3e2) ∧ (−e1 − 4e2) ∧ b′1.

Second example ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−e1,2 − 3e1,3 + e1,4 + 7e2,3 2e1 − 4e2 + 2e3 + 10e1,2,3

−2e2,4 + e3,4 + 9e1,2,3,4 +3e1,2,4 + e1,3,4 − 5e2,3,4

e1 − 2e2 + e3 + 10e1,2,3 −3e1,2 + e1,3 + e2,3 − 31,2,3,4

+e1,3,4 − 2e2,3,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us permute the rows, and multiply all entries by e1 on the left side in the auxiliary algebra C�(V, q; β):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2e1,2 + e1,3 + 10e2,3 −3e2 + e3 + e1,2,3 − 3e2,3,4

+e3,4 − 21,2,3,4

−e2 − 3e3 + e4 + 7e1,2,3 2 − 4e1,2 + 21,3 + 10e2,3

−2e1,2,4 + e1,3,4 + 92,3,4 +3e2,4 + e3,4 − 5e1,2,3,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let (b1, b2; b3, b4) be this matrix. It is a Vahlen matrix because the equalities (7.3) prove to be true in C�(V, q;−γ):
b1 = exp∧(−2e1,2 + e1,3 + 10e2,3 + e3,4),

b3 = (−e2 − 3e3 + e4) ∧ b1, b2 = (−3e2 + e3) ∧ b1,

b4 = (2 + (−e2 − 3e3 + e4) ∧ (−3e2 + e3)) ∧ b1.

In general, the Equations (4.2), (7.4) and (7.5) allow to verify the Equations (7.3) with a reduced number of

multiplications; here there are two Equations (7.5):

b1;∅b4|2 = b4;∅b1|2 + b3|1 ∧ b2|1 and b1;∅b4|4 = b4;∅b1|4 + b3|1 ∧ b2|3.

Third example ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + e1,2 − e1,3 + e1,4 − e2,3 −2e2 + 2e3 + 2e1,2,4 − 2e1,3,4

+e2,4 − e3,4 − e1,2,3,4

e3 − e4 + e1,2,3 − e1,2,4 1 + e1,2 − e1,3 + e1,4 + e2,3

−e2,4 + e3,4 + e1,2,3,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix (a1, a2; a3, a4) is a Vahlen matrix because

a1 = exp∧(e1,2 − e1,3 + e1,4 − e2,3 + e2,4 − e3,4),

a3 = (e3 − e4) ∧ a1 , a2 = (−2e2 + 2e3) ∧ a1,

a4 = (1 + (e3 − e4) ∧ (−2e2 + 2e3)) ∧ a1.

I emphasize the fact that this algorithm completely ignores the initial quadratic form q. In this last example, if

q is the quadratic form for which (e1, e2, e3, e4) is an orthogonal basis such that q(e1) = q(e2) = q(e3) = −1 and

q(e4) = 1, then none of the four entries of the given matrix is invertible; nevertheless, this matrix is invertible

because its pseudo-determinant (defined in (6.3)) is 8. For this algorithm, the absence of an invertible entry raises

no difficulty.
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