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Abstract

In this paper, new bounds of zeros of polynomials of the monic polynomial of order n will be introduced by apply-
ing famous matrix norms to the QR-decomposition of C(p). The LU decomposition of C(p) will be investigated
and will be used to find more bounds of the zeros of p(z).
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1. Introduction

Companion matrices play an important role in matrix theory, numerical analysis, and numerical linear algebra.
Their importance comes from their role in canonical forms and their connection with the location of zeros of
polynomials. Finding bounds for zeros of polynomials is an important and old issue to study. In this paper we
will introduce a new bounds for the zeros of polynomials using decomposition of companion matrices and we will
apply some of the well-known bounds to these decompositions.

Let ) )
—ap, —dp-1 —ap-2 —a —a
1 0 0 0 0
0 1 0 0 0
¢ (p) =C= : . : : . ’
0 0 0 0 0
0 0 0 1 0

be the Frobenius companion matrix corresponding to the complex monic polynomial p (z) = 2" + @,2" ' +--- +
a»7 + ay, it is will known that the zeros of p (z) and the eigenvalues of C (p) are the same. For more details about
the companion matrix and the complex monic polynomial one may refer to Horn and Johnson (1985). Also if
r(C) denote the spectral radius of C then it can be shown that r(C) < N (C), where N(.) is any matrix norm, see
for example Bahatia (1997) or Horn and Johnson (1991). Moreover, geometry of polynomials and other details
about the zeros of polynomials are explained in Marden (1969) or Kittaneh (2003). Kittaneh and Shabrawi (2007),
established some bounds for the zeros of monic polynomial depending on some matrices norms.

Kittaneh and Shebrawi (2006) proved an important theorem about the OR decomposition. They introduced the OR
decomposition for the companion matrix C(p) corresponding to p(z) of degree n > 2 with a; # 0, They proved
that C = OR, where
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, k
is upper triangular, with 1 = |1 + |an_j+1|2 fork=1,2,..,n—1,uo =1, and u, = |a;|.
=1

In this paper, we will introduce some new bounds for the zeros of polynomials depending on the QR and LU
decompositions of the companion matrix C(p). The Euclidian norm (||.||,), the maximum column norm (|||.|||;) and
the maximum row sum norm (|||.|||,) Will be applied for the above mentioned decompositions of the companion
matrix to obtain the needed bounds.

2. The LU Decomposition of the Frobenius Companion Matrix

Issa (2009) established an LU decomposition for the companion matrix corresponding to the complex monic
polynomial p(z) of degree n > 2 with a; # 0,7 = 1,2, ..., n. Here, he proved that the companion matrix C could be
written as a product of L (lower triangular matrix) and U (upper triangular matrix).

Theorem 1 Let C (p) be the Frobenius companion matrix corresponding to the complex monic polynomial p (z) =
P+ ap "+ an 12+ axz + ay of degree n > 2 with a; # 0,i = 1,2, ..., n. Then the LU decomposition for C
is given by C = LU, where L is given by the matrix
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and U is given by the matrix
[ —a, -4, —a,2 —a,3 —a,4 ) —a
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. T T
Proof. To compute the matrices U = [ul TUp e un] and L = [11 iy ln] , we apply the theorem men-
Vl,j =1
1 .
tioned in section 3.10 of Meyer (2000) which give us that u; = { o 1 ">/ = where r; and u;
An43—j .
s ]uj_l +rj,j=3,4,..,n,
Ap+2—j
represent the j rows of C and U, respectively.
So we get that,
uy=r = [ —dy —dp—1 —Ap2 —ap-3 —dy4 —a; —a ]
1 Ay an-2 an-3 a4 a ap
= —u+rm=[{0 —— —— ——= —— - =
n ay ay [25% ay a, a,
a Gny  Gn3  Qps a aj
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Resuming like this until we get
a ap aj
,,,n_lz_“un_zﬂn_l:[o 000 0 _2 ——],
as as as
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w=Lu +r=[0 0000 0o -4
as ap
Consequently, the upper triangular matrix
I —day —dp-1 —Ap-2 —Ap-3 —Ap—4 —ap —aj
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Now we find the lower triangular matrix L.
T T
Let] = [11;12; ‘. ;In] be the identity matrix of order n. Then the rows of the matrix L = [ll; by ;ln] are
Ii,j=1
! L+Dh,j=2
givenby, [; =4 4! +h,j= which gives us that,
Api3—;
S 41 j=3.4, ..,
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1 1
l2=——11+12= -—— 1 0 O 0O 0 0.
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l3 = - [2 =+ 13 = 0 - 1 O O O 0
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=2 =]0 0 0 22 00 0]
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Resuming like this until we get
ay aq
1,1_1=__1n_2+1n_1=[0 000 R o]
as as
1,1:_51,,_1””:[0 000 — 1],
ap ap

Consequently, the lower triangular matrix L is
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3. Bounds of the Zeros of Polynomials Based on the QR-Decomposition of C(p)

In this section, we introduce some new bounds for the zeros of the complex monic polynomial p(z). These bounds
are based on the QR—decomposition for the companion matrix C(p).

Theorem 2 If p(z) = 2" + a,2" ' + a2 2 + - -

+ apz + a) of degree n > 2 with a; # 0 be a complex monic
polynomial and let 7 be a zero of p (z) then

|
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where i, = |1+ 3, |an,j+1|2 fork=1,2,...,n
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Proof. The proof comes by noting the following inequalities,
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Theorem 3 If p(z) = 7" + a,2"' + a,.17"
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polynomial and let 7 be a zero of p (z) then
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lai].
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4. Bounds of the Zeros of p (z) Based on the LU Decomposition of C (p)

Here in this section, we establish some new bounds for the zeros of the complex monic polynomial p(z). These
bounds are depending on the LU decomposition for the companion matrix C(p) stated in section 2 above.

Theorem S If p(z) = 7" + a7V a7 oy of degree n > 2 with a; # 0 be a complex monic

polynomial and let 7 be a zero of p (z) then
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Theorem 6 If p(z) = 2" + a,2" ' + ay_12" 2 + -+ + a2z + a; of degree n > 2 with a; # 0 be a complex monic
polynomial and let 7 be a zero of p (z) then
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