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2 Département Mathématiques, Ecole polytechnique, Thiès, Senegal
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Abstract

For univariate polynomials with complex coefficients there are many estimates about the roots of polynomials.

Moreover, the result corresponding to the “continuity of the zeroes which respect to the coefficients” is generally

obtained as a corollary of Rouché’s theorem and is rarely precise. Here we prove an explicit result for algebraically

closed fields with an absolute value, in any characteristic.
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1. Introduction

The first motivation of this paper was the following: try to perturb slightly polynomials with integer coefficients

with the hope of finding examples with very small root separation. At the beginning of the work we noticed that it

is very difficult to find explicit statements of the theorem of “Continuity of the roots of a polynomial with respects

to the coefficients”. For this reason we decided to write the section 1 of this paper. Then we studied examples and

we had the bad surprise to see that in each case a perturbation of a “good” example leads to a “poor” example.

Preliminaries We begin by a general lemma in algebra.

Lemma 1 Let R be any ring and let P ∈ R[X] be a polynomial of degree n � 1. Let us define the k−hyperderivative
by the formula

(Xm)<k> =

(
m
k

)
Xm−k, where

(
m
k

)
= 0 if k > m,

and the linearity properties

(S + T )<k> = S <k> + T<k>, (λS )<k> = λS <k>,

when λ ∈ R. So that P<k> ∈ R[X] for all k. Then, for any a ∈ R, we have the formula

P(x + a) = P(X) + aP<1>(X) + a2P<2>(X) + · · · + anP<n>(X).

Moreover, if R = K is a field and if P has all its roots, say α1, . . . , αn, in some extension L of K, then for all a ∈ K
and all k ∈ N, we have

P<k>(a) = (−1)n−k
∑

1� j1<···< jn−k�n

(α j1 − a) · · · (α jn−k − a).

Proof. The first assertion is well-known (in the case of a field of characteristic zero, this is just Taylor’s formula

for polynomials). To prove it, by linearity, it’s enough to verify that it’s true if P(X) = Xm for m � n. Then, one

notices that this case is just Newton’s formula for the expansion of (X + a)m.

For a = 0, the second relation is again well-known: this is Vieta’s formula. The general case is obtained by the

translation X �→ X + a. �
Remark 1 If K is of characteristic zero, then

P<k>(X) =
P(k)(X)

k!
,

where P(k)(X) is the usual k−derivative of P.
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2. Continuity of the Roots of Polynomials in Terms of the Coefficients

We want to prove the following result which is a generalization of a classical one when K is the field of complex

numbers, whose proof is generally obtained as a corollary of Rouché’s theorem.

Theorem 1 Let K be an algebraically closed field with an absolute value and let f ∈ K[X] be a fixed polynomial
with the decomposition

f (x) = a(x − α1)m1 (x − α2)m2 · · · (x − αk)mk , a � 0,

where αi � α j for i � j and m1, m2, . . . , mk are positive integers.

Let n = m1+m2+ · · ·+mk be the degree of f . Let 0 < ε < sep(P) a given real number then there exist a real number
η > 0, such that if g ∈ K[X] is a polynomial of degree n, satisfying H( f − g) < η (where H() is the height of a
polynomial and sep(P) = mini� j

∣∣∣αi − α j

∣∣∣ , i, j = 1, . . . , k). Then all the roots of g belong to the union for 1 � i � k
of the disks Di = {z ∈ K; |z − αi| < ε}. Moreover if ε is sufficiently small, then for i = 1, . . . , k, there exists exactly
mi roots of g which belong to the disk Di.

Proof. Without loss of generality, we may assume that f is monic and that f and f are of the same degree n. Let

H = H( f ).

Let us first notice that, the roots αi, i = 1, . . . , n, and any root β satisfy

|αi| < H + 1 and |β| < H + 2. (1)

Put r = f − g. If we assume η < 1. Since g(β) = 0, we have

k∏
i=0

|β − αi|mi = | f (β)| = |r(β)| � η(1 + (H + 2) + · · · + (H + 2)n) = η
[(H + 2)n+1 − 1]

H + 1
.

Thus, assuming also η
[(H + 2)n+1 − 1]

H + 1
< 1, we get

min
i
{|β − αi|} �

(
η

[(H + 2)n+1 − 1]

H + 1

)1/n
.

This shows that each root of g is “close” to some root of f . For small enough η, more precisely when

η < min
{
1, (sep( f ))n} H + 1

(H + 2)n+1 − 1
=: η0. (2)

The roots of g belong to the union of the disks Di defined in the theorem. This proves the first assertion.

Now, to prove the second assertion, it is enough to prove that each Di does not contain more than mi roots of g. To

simplify the notation, let α be a root of f and let m be its multiplicity.

Suppose that the disks Di = {z ∈ K; |z − αi| < sep( f )} contains m + 1 roots of g, say β1, ..., βm+1. First notice that

∣∣∣g<m>(α)
∣∣∣ � μ

2
, where μ = min

{∣∣∣ f <m1>(α1

∣∣∣ , . . . , ∣∣∣ f <mk>(αk

∣∣∣} ,
we add the condition η < 2−nμ

H
(H + 1)n−m − 1

. But, by the lemma, we also have

g<m>(α) = ±
∑

1< j1<···< jn−m<n

(β j1 − α) · · · (β jn−m − α),

and the assumption
∣∣∣β j − α

∣∣∣ < ε for j = 1, 2, . . . ,m + 1 implies

∣∣∣g<m>(α)
∣∣∣ � ε

(
n
m

)
(2H + 3)n−m

so that, if ε is small enough, we obtain |g<m>(α)| � μ
2

. This gives a contradiction. Thus we have proved the second

assertion. �
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Remark 2 We have proved that

• for the first assertion we can take η < η0 , defined in (2),

• and for the second assertion, η < η1 = 2−nμ
H

(H + 1)n−M − 1
where M is equal to min {mi, i = 1, . . . , k}.

Notice that the argument works if η < min {η0, η1}
3. Perturbation of the Coefficients of a Polynomial

Example 1 Let P ∈ K[X] be the polynomial

P(X) = (aX − b)(X2 − X − 1),

then α = (1 +
√

5)/2 is a root of P. Let a = Fn and b = Fn+1, where (Fn)n is the Fibonacci sequence. Denote by H
the height of P. We have,

P(x) = Fnx3 − (Fn + Fn+1)x2 + (Fn+1 − Fn)x + Fn+1.

The height satisfies H = Fn+1 + Fn = Fn+2 � αn+2/
√

5. And we have

Fn+1

Fn
=
αn+1 − βn+1

αn − βn where β =
1 − √5

2
.

Thus, b/a = Fn+1/Fn = α + O(α−2n) = α + O(1/H2), and sep(P) � 1/H2.

Put P̃ = P − 1. If α + ε is a root of P̃ where ε is small, then

P̃(α + ε) = P(α + ε) − 1 = εP′(α) +
ε2

2
P′′(α) +

ε3

3!
P′′′(α) − 1 = 0.

We have P′(α) � a−1, P′(b/a) � a−1 and P′′(b/a) � 2a(2b/a − 1) � 2
√

5a. Hence

a2
√

5ε2 + ε − a = 0⇒ ε � ±1/
√

a.

Therefore, sep(P̃) � 1/
√

H.

Conclusion: When perturbating P by η = 1, the roots of perturbated polynomial deviate considerably.

Example 2 Let us consider the following polynomial

P(x) = (ax − 1)(xn − ax + 1).

Denote H the height of P . Then H = a2(a 	 1). Then one root, say α, of the second factor of this polynomial

is in the neighborhood of 1/a. Indeed, P(1/a) = 0 and aα − 1 = αn � a−n. Let ε sufficiently small such that

P(1/a + ε) = 0. We have P(1/a + ε) = εa(1/a + ε)n − εa. Thus ε � a−(n+1). Therefore,

sep(P) � a−(n+1).

Put P1(x) = P(x) + xn+1. Therefore,

P1(1/a + ε) = (1/a + ε)n+1 + εa
(
(1/a + ε)n − εa).

For ε sufficiently small such that P1(1/a + ε) = 0, we have the approximation:

a−(n+1) + εa−(n−1) − ε2a2 = 0.

Thus we have two possible roots, say ε1 and ε2:

ε1 � 2−1a−
(n−1)

2
−2 and ε2 � 2−3a−

(n−1)
2
−2

Hence

sep(P1) � a−
(n−1)

2
−2.
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Example 3 Let P(z) = zn − a, where a ∈ N, a 	 0. The roots of P are:

zk = a1/nexp(i2kπ/n), k = 0, 1, . . . , n − 1,

thus sep(P) = 2a1/n sin(π/n) and H = a. Moreover,

η < η0 = min
{
1, sep(P)n} H + 1

(H + 2)n+1 − 1
� min {1, a(2 sin π/n)n} a−n.

For a = 2853 and n = 16, P(z) = z16 − 2853, η0 = (2 sin π/16)16(2853)−15, η0 � 4.2710−59.We notice that in this

case, for which the roots of P are very well separated, these roots remain very “stable” under perturbation of the

coefficients, for example, the real roots of P are:

±1.644206499888864834627084840920319068838650249550067267404659982997579

where the real roots of perturbated polynomial are:

±1.644206499888864834627084840920319068838650249550067267404659984536653

We have the same remark with the other roots.

Example 4 Let P(x) = (x − 1)(x − 2)(x − 3), and Q(x) = 0.009x3 + P(x). We have sep(P) = 1. The roots of Q are:

0.9621055, 2.2712408±0.7552410i and sep(Q) � 1.500482. For ε � 1/2, D2 and D3 (see notation in the theorem)

do not contain any root of Q. We have

η0 =
H + 1

(H + 2)4 − 1
< 0.000421.

Now, by taking η = 0.000420(< η0), Q(x) = ηx3 + P(x). And then, the roots of Q are

0.99979011430215892, 2.00337844607166149, and 2.99431149002517172,

which are rather close to the roots of the initial polynomial P, and each disk Di contain exactly one root of Q.

Remark 3 To keep integer coefficients, instead of the above Q, we could consider the polynomial Q1(x) = x3+aP(x)

where a is a large positive integer.

Example 5 The polynomial P(x) =
∏20

i=1(x − i) of Wilkinson satisfies

H = 13803759753640704000 and sep(P) = 1.

By the theorem,

η < η0 =
H + 1

(H + 2)21 − 1
� 1.5810−383.

This value of η0 , is extraordinarily small and seems very pessimistic. But, indeed, Wilkinson shows that a very

small perturbation (η = 10−9) causes a dramatic change of some of the roots for example the perturbated polyno-

mial admits the complex roots 16.57173899 ± 0.8833156071 · I.

Example 6 Let P(x) be the polynomial defined by

P(x) = xn − (ax − 1)2.

The height of this polynomial is H = a2 as soon as a > 2.

Moreover, P(1/a) = a−n.We consider a 	 1. Let ε sufficiently small such that P(1/a + ε) = 0. Then

P(1/a + ε) = (1/a + ε)n − ((1/a + ε)a − 1)2 = (1/a + ε)n − ε2a2.

Hence,

P(1/a + ε) � a−n − ε2a2.

Then from a−n − ε2a2 � 0 we obtain

ε � a−(n+2)/2,
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thus we obtain

sep(P) � 2a−(n+2)/2.

Put P1(x) = P(x) + x2 . We have P1(x) = xn − (ax − 1)2 + x2.

Let ε sufficiently small such that P(1/a + ε) = 0. Then

P1(1/a + ε) = (1/a + ε)n − ε2a2 + (1/a + ε)2 = 0.

Since a 	 1 and ε 
 1, we have

P1(1/a + ε) � −ε2a2 + a−2.

Thus ε � ±a−2. Hence

sep(P1) � 2a−2.

If we consider the polynomial P2(x) = P(x) + xn, the height of P2 is a2 for a 	 1. Let ε sufficiently small such

that P(1/a + ε) = 0. We have,

2a−n − ε2a2 � 0.

Thus ε � 21/2a−(n+2)/2, hence

sep(P2) � 2
√

2a−(n+2)/2.
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