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Abstract

For a Darcy flow coupled system modeling fluid exchange between two regions with fluid resistance at different

scale, we address the question of continuity of the solution with respect to geometric perturbations of the interface.

The original interface and its perturbation define three flow regions exchanging fluid, these are modeled as a

coupled system in mixed variational formulation. For numerical purposes a-posteriori perturbation/error estimates

are given.

Keywords: porous media, fissures, multiscale coupled systems

1. Introduction

Layered media is a common structure in the analysis of fluid flow through geological systems, as in oil extraction

or subsurface water preferential flow. Modeling this phenomenon presents naturally a multiple scale flow problem

with regions of slow velocity of order O(1) in a rock matrix and fast flow of order O(1/ε) in the fissures. Here,

the small number ε > 0 is introduced to account the order of scale at which the physical phenomenon is taking

place in agreement with field data. A common approach consists in introducing a lower dimensional interface

manifold Γ between regions, model each region with a suitable law and boundary conditions and finally state

fluid transmission conditions between them across the interface, namely: normal stress and normal flux balance.

Therefore, the placement and description of such interface becomes a delicate issue since it couples two physical

phenomena occurring at different scale, hence a perturbation of the interface geometry can introduce a substantial

error which needs to be addressed see Figure 2. On one hand such perturbation comes from the natural limitations

when collecting data field of geological strata, on the other hand the numerical discretization of the models can not

describe exactly a curved interface which is not a piecewise polynomial surface.

In the present work the stationary problem is modeled by a coupled system of partial differential equations with

Darcy flow in both regions in a well-posed mixed variational formulation. The analysis will be centered at the weak

variational formulation of the equations without stepping in critical point theory. Using coupled partial differential

equations systems in analyzing this phenomenon has been largely studied with notorious success. From the analytic

point of view see Arbogast and Lehr (2006) for a Darcy-Stokes coupled system model and Morales and Showalter

(2010, 2012). for a Darcy-Darcy coupled model, see Chen, Gunzburger, and Wang (2009), Cao, Gunzburger, Hua,

and Wang (2010) for discussion of the interface conditions, see Babus̆ka and Gatica (2010), Gatica, Meddahi, and

Oyarzúa (2009), Martı́n, Scheid, and Smaranda (2012) for the study of finite element discretization of the systems

and Arbogast and Brunson (2007), Chen, Gunzburger, Hua, and Wang (2011), Martin, Jaffré, and Roberts (2005)

for modeling these phenomena from the numerical point of view.

A problem such as this has two sources of singularity: the geometric one coming from the width of the cracks which

is much smaller than the porous medium and the physical one coming from the resistance to the flow much lower

in the fractures than in the pores. However, most of the literature of theoretical approach in the field is focused on

appropriate scaling the governing laws as in Lévy (1983), removing the singularity of the system by techniques of
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homogenization see Hornung (1997, Ed.) or studying the interface conditions as in Saffman (1971) which provide

well-posed problems; in particular the mixed variational formulations and their associated finite element schemes

have become a vigorous research area see Layton, Scheiweck, and Yotov (2003). However, the continuity of the

solution with respect to the geometry of the interface is yet to be studied.

We introduce now equations, boundary and interface conditions modeling the problem in general, the unknowns

are the fluid velocity u and pressure p. The constitutive law for Darcy’s flow

R(x) u + ∇p + g = 0, (1a)

together with the mass conservation law

∇ · u = F in Ω. (1b)

Here Ω is the domain of interest, g(x) denotes the gravity force, F(x) the sources and R(x) is the flow resistance

i.e. the fluid viscosity times the inverse of the permeability of the medium, to be scaled consistently with the fast

and slow flow regions of the medium. Drained and non-flux boundary conditions on different parts of the domain

boundary will be specified to set a boundary value problem. The fluid exchange across the interface separating the

regions, see Figure 1 are given by

p1 − p2 = α u1 and (1c)

u1 · n̂− u2 · n̂ = fΓ on Γ. (1d)

The coefficient α indicates the fluid entry resistance of the rock matrix.

Figure 1. Curved interface perturbation

Next we describe the geometry of the problem. The original and perturbed interfaces define three regions: two

disconnected O1,O3 where the permeability of the original an perturbed systems agree and a third region O2

trapped between the interfaces, where the permeability of the original and perturbed systems disagrees, as Figure 1

depicts. The identification of these three regions suggests formulating the problem with a triple coupled system in

mixed variational formulation in order to introduce the necessary degrees of freedom on the test functions and to

make both solutions, the original and the perturbed one, comparable i.e. belonging to the same space. We analyze

the particular geometric setting in which the interface Γ is a horizontal flat surface and the perturbation Γ ζ is a

piecewise C 1 surface always above the original interface as in Figure 2. It is clear that such case is not useful

in practice since flat surfaces do not induce curved perturbations in a natural way, nevertheless it gives significant

simplicity to the notation and calculations without being conceptually far from the practical scenario. It is important

to stress that the analysis should include continuous perturbations Γζ which are not differentiable everywhere as the

red line in Figures 1 and 2, because this is the natural type of perturbation introduced by numerical discretization.

We state sufficient conditions on the forcing terms as well as the geometric perturbation in order to conclude

continuity statements with respect to the interface perturbation for fixed data. The structure of the continuity

estimates hints the necessity of introducing a-posteriori perturbation/error estimates for practical purposes i.e. in

terms of the approximate solution obtained from numerical computation; these will be presented too.
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Figure 2. Flat interface perturbation

2. Setting the Problem and Its Perturbation

Vectors are denoted by boldface letters, as are vector-valued functions and corresponding function spaces. We use

x̃ to indicate a vector in �N−1; if x ∈ �N then the �N−1 × {0} projection is identified with x̃ def
= (x1, x2, . . . , xN−1)

so that x = (̃x, xN). The symbol ˜∇ is the gradient in the first N − 1 derivatives. Given a function f : �N → �

then
∫

A f ,
∫

M f dS are the notations for its volume integral in the set A ⊆�N and its surface integral on the N − 1

dimensional submanifold M ⊆ �N respectively. For any given set A we write �A for its indicator function. λN ,

λN−1 will denote the Lebesgue measure in�N and�N−1 respectively. We use êN for the unitary vector in the N-th

direction and ν̂ for the outwards normal vector. Finally, n̂ denotes the normal upwards vector i.e. n̂ · êN ≥ 0.

2.1 Geometric Setting

We are to analyze the behavior of the solution under small perturbations of the interface, the essentials of this

phenomenon can be captured in a very simple geometric setting. Let Γ be a connected set in �N−1 × {0} whose

projection is relatively open in the �N−1 trace topology; in the following we make no distinction between these

two domains. Let Ω 1,Ω 2 be smooth open regions in�N separated by Γ, i.e. ∂Ω 1 ∩ ∂Ω 2 = Γ.

In order to represent perturbations of the interface Γ we introduce the following definition

Definition 2.1 We say the set T (Γ,G) of piecewise C 1 perturbations of the interface Γ contained in Ω is given by

T (Γ,Ω)
def
=
{
ζ ∈ W1,∞ (Γ ) : (̃x, ζ (̃x )) ∈ Ω, ∀ x̃ ∈ Γ , ζ ∈ C(Γ) , ζ |∂Γ = 0 and ζ is a piecewise C 1 function

}
. (2)

Where Γ indicates the closure of Γ. The interface associated to ζ ∈ T (Γ,Ω) is given by the set

Γ ζ
def
=
{
(̃x, ζ (̃x )) ∈�N : x̃ ∈ Γ

}
. (3a)

The domains associated to ζ ∈ T (Γ,Ω) are defined by the sets

Ω
ζ
1

def
=
{
(̃x, xN) ∈ Ω : x̃ ∈ Γ, xN < ζ (̃x )

}
(3b)

Ω
ζ
2

def
=
{
(̃x, xN) ∈ Ω : x̃ ∈ Γ, ζ (̃x ) < xN

}
(3c)

Remark 2.1 Notice the following facts

∂Ω
ζ
1
∩ ∂Ω ζ

2
= Γ ζ (4a)

Ω
ζ
1
∪ Γ ζ ∪Ω ζ

2
= Ω (4b)

∂Ω
ζ
1
− Γ ζ = ∂Ω 1 − Γ (4c)

∂Ω
ζ
2
− Γ ζ = ∂Ω 2 − Γ (4d)
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2.2 The Strong Problem and Its Interface Perturbation

Consider the solution of the strong problem (5) presented in Morales and Showalter (2012) and in a less general

version in Morales and Showalter (2010). Such solution is to be compared with the solution of the system (6)

corresponding to a geometric perturbation of the interface

R u + ∇p + g = 0 , (5a)

∇ · u = F in Ω 1. (5b)

p = 0 on ∂Ω 1 − Γ. (5c)

p1 − p2 = h , (5d)

−u1 · n̂+ u2 · n̂ = f on Γ. (5e)

ε R u + ∇p + g = 0 , (5f)

∇ · u = F in Ω 2. (5g)

u2 · n̂ = 0 on ∂Ω 2 − Γ. (5h)

R v + ∇q + g = 0 , (6a)

∇ · v = F in Ω
ζ
1
. (6b)

q = 0 on ∂Ω
ζ
1
− Γ ζ . (6c)

q1 − q2 = h , (6d)

−v1 · n̂+ v2 · n̂ = f on Γ ζ . (6e)

ε R v + ∇q + g = 0 , (6f)

∇ · v = F in Ω
ζ
2
. (6g)

v2 · n̂ = 0 on ∂Ω
ζ
2
− Γ ζ . (6h)

Here u, v are the velocities and p, q the pressures, g is the gravity force and F the fluid sources of the medium. It

is assumed that the forcing terms of normal stress h and normal flux f are defined on Γ as well as on Γ ζ ; for a full

exposition of their associated interface balance statements see Morales and Showalter (2012). Drained (5c), (6c)

and null normal flux (5h), (6h) boundary conditions on the indicated parts of the boundary are a natural choice.

In both problems the scaling of the resistance coefficient R and ε R in different parts of the domain will impose the

flow field velocity been slow and fast flow in the corresponding regions. Due to the physics of the problem it can

be assumed that R0 ≤ R(x) ≤ R1 for positive constants Ri, i = 0, 1. For notation clarity, the resistance coefficient

will be omitted in the following.

Definition 2.2 Define the open set where the perturbation Γ ζ is above the original interface Γ

Oζ def
= {(̃x, z) ∈ Ω : 0 < z < ζ (̃x)} = Ω ζ

1
−Ω 1, (7a)

and the open set where the perturbation Γ ζ is below the original interface Γ

U ζ def
= {(̃x, z) ∈ Ω : ζ (̃x) < z < 0} = Ω ζ

2
−Ω 2. (7b)

A complete analysis of the question would demand both of the above sets not to be trivial. However, in order to

ease calculations we assume ζ (̃x) ≥ 0 for all x̃ ∈ Γ. Then Ω1 ⊆ Ω ζ1, Ω
ζ
2
⊆ Ω 2, Oζ = Ω ζ

1
∩ Ω 2 and U ζ = ∅.

Furthermore, due to these observations the following notation is introduced

Definition 2.3 Let ζ ∈ T (Γ,Ω) a non-negative function, then define the following associated domains

O1
def
=
{
(̃x, xN) ∈ Ω : xN < 0

}
= Ω 1, (8a)

O2
def
=
{
(̃x, xN) ∈ Ω : 0 < xN < ζ (̃x)

}
= Oζ , (8b)

O3
def
=
{
(̃x, xN) ∈ Ω : ζ (̃x) < xN

}
= Ω

ζ
2
. (8c)

Remark 2.2 Observe the following identities

∂O1 ∩ ∂O2 = Γ, (9a)

∂O2 ∩ ∂O3 = Γ
ζ , (9b)

∂O1 − Γ = ∂Ω 1 − Γ = ∂Ω ζ1 − Γ ζ , (9c)

∂O2 = Γ ∪ Γ ζ , (9d)

∂O3 − Γ ζ = ∂Ω 2 − Γ = ∂Ω ζ2 − Γ ζ . (9e)

It is also immediate that Ω = O1 ∪ Γ ∪ O2 ∪ Γ ζ ∪ O3.
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Remark 2.3 For the treatment of the general case, when the perturbation ζ is allowed to change sign see part (vi)
in section 5.

Finally, in order to make comparable the solutions (u, p), (v, q) of problems (5) and (6) we force them to be in

the same space introducing an artificial interface in each system. Problems (5) and (6) are reformulated in the

following way

u + ∇p + g = 0 , (10a)

∇ · u = F in O1. (10b)

p = 0 on ∂O1 − Γ. (10c)

p1 − p2 = h , (10d)

−u1 · n̂+ u2 · n̂ = f on Γ. (10e)

ε u + ∇p + g = 0 , (10f)

∇ · u = F in O2. (10g)

p2 − p3 = 0 , (10h)

−u2 · n̂+ u3 · n̂ = 0 on Γ ζ . (10i)

ε u + ∇p + g = 0 , (10j)

∇ · u = F in O3. (10k)

u3 · n̂ = 0 on ∂O3 − Γ ζ . (10l)

v + ∇q + g = 0 , (11a)

∇ · v = F in O1. (11b)

q = 0 on ∂O1 − Γ. (11c)

q1 − q2 = 0 , (11d)

−v1 · n̂+ v2 · n̂ = 0 on Γ. (11e)

v + ∇q + g = 0 , (11f)

∇ · v = F in O2. (11g)

q2 − q3 = h , (11h)

−v2 · n̂+ v3 · n̂ = f on Γ ζ . (11i)

ε v + ∇q + g = 0 , (11j)

∇ · v = F in O3. (11k)

v3 · n̂ = 0 on ∂O3 − Γ ζ . (11l)

Remark 2.4 (i) Notice that the modeling technique used in Morales and Showalter (2012) shows that in order

to have the well-posedness of the problems (10) and (6) the presence of the three regions is not necessary. This

question can be addressed using only two regions as in problems (5) and (6) respectively.

(ii) The Equations (10f), (10g) as well as the statements of balance across the interface Γ ζ (10h) and (10i) ensure

that the solutions of problems (6) and (10) coincide. Similarly, the Equations (11f), (11g) and the statements of

balance across the interface Γ (11d) and (11e) are introduced to make the solutions of problems (6) and (11) agree.

(iii) Overall the introduction of artificial interfaces permits the treatment of the problems in a common geometric

setting, consequently the solutions to both problems can be modeled in the same space of functions. Without

the presence of artificial interfaces, common spaces could not be established and consequently it is impossible to

compare the solutions. This will be seen more clearly in section 3.

2.3 The Weak Problem and Its Perturbation in Three-Region Mixed Formulation

Consider the spaces endowed with their corresponding norms

V def
=
{
w ∈ L2(Ω) : ∇ · w1 ∈ L2(O1), ∇ · w3 ∈ L2(O3), w1 · n̂ |Γ ∈ L2(Γ), w3 · n̂ |Γζ ∈ L2(Γ ζ)

}
‖w‖V def

=
{
‖w‖2L2(Ω)

+ ‖∇ · w1‖ 2
L2(O1)

+ ‖∇ · w3‖ 2
L2(O3)

+ ‖w1 · n̂‖ 2
L2(Γ
+ ‖w3 · n̂‖ 2

L2(Γζ )

}1/2 (12a)

Q def
= {r ∈ L2(Ω) : ∇r2 ∈ L2(O2)}

‖r ‖Q def
=
{
‖r ‖ 2

L2(Ω)
+ ‖∇r ‖ 2

L2(O2)

}1/2 (12b)

With the spaces described above the problem (10) has the following mixed variational formulation.

Find u ∈ V, p ∈ Q :

∫
O1

u · w −
∫
O1

p∇ · w + ε
∫
O2

u · w +
∫
O2

∇p · w + ε
∫
O3

u · w−

−
∫
O3

p∇ · w +
∫
Γ

p2 w1 · n̂ dS −
∫
Γζ

p2 w3 · n̂ dS = −
∫
Ω

g · w +
∫
Γ

h w1 · n̂ dS , (13a)
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∫
O1

∇ ·u r−
∫
O2

u ·∇r+
∫
O3

∇ ·u r−
∫
Γ

u1 · n̂ r2 dS +
∫
Γζ

u3 · n̂ r2 dS =
∫
Ω

F r+
∫
Γ

f r2 dS ∀ w ∈ V, r ∈ Q.

(13b)

Similarly, the mixed variational formulation of the perturbed problem (11) is given by.

Find v ∈ V, q ∈ Q:∫
O1

v · w −
∫
O1

q∇ · w +
∫
O2

v · w +
∫
O2

∇q · w + ε
∫
O3

v · w−

−
∫
O3

q∇ · w +
∫
Γ

q2 w1 · n̂ dS −
∫
Γζ

q2 w3 · n̂ dS = −
∫
Ω

g · w +
∫
Γ ζ

h w3 · n̂ dS , (14a)

∫
O1

∇ ·v r−
∫
O2

v ·∇r+
∫
O3

∇ ·v r−
∫
Γ

v1 · n̂ r2 dS +
∫
Γζ

v3 · n̂ r2 dS =
∫
Ω

F r+
∫
Γ ζ

f r2 dS ∀ w ∈ V, r ∈ Q.

(14b)

The variational statements (13) and (14) are problems in mixed variational formulation, see section 8.6 in Atkinson

and Han (2005) or chapter II in Brezzi and Fortin (1991).

Theorem 2.4 The problems (13) and (14) are well-posed.

Proof. See Morales and Showalter (2012). �
Remark 2.5 (i) It is paramount to observe that the spaces defined in Equations (12) are fully decoupled, i.e. they

do not require matching conditions of fluid exchange on the test functions. The properties of normal balance stress

(10d), (10h), (11d), (11h) and mass conservation balance (10e), (10i), (11e), (11i) across the interfaces Γ and Γ ζ

occur only on the solutions (u, p), (v, q) ∈ V × Q. Such freedom of the quantifiers w ∈ V and r ∈ Q allows to test

the variational statements of problems (13) and (14) with great flexibility; this property is crucial in the following

section and consequently for the whole technique.

(ii) Also notice that the condition ζ ∈ W1,∞(Γ) and ζ ∈ C(Γ) implies that the domains Oi for i = 1, 2, 3 are smooth

and therefore the integration by parts applies on the function spaces. Without these conditions the weak variational

formulations (13) and (14) would not be possible.

3. Perturbation Estimates and Geometric Aspects

In the present section we obtain estimates in norm for the difference of solutions, original and perturbed and

derive sufficient conditions on the forcing terms as well as the geometric perturbations ζ which allow to conclude

continuity and convenient estimates. Test (13a) with (u − v)�O1
+

1

ε
(u − v)�O2

+ (u − v)�O3
and get

∫
O1

u · (u− v)+

∫
O2

ε u · 1
ε

(u− v)+ ε

∫
O3

u · (u− v)−
∫
O1

p∇ · (u− v)+

∫
O2

∇p · 1
ε

(u− v)−
∫
O3

p∇ · (u− v)+

+

∫
Γ

p2 (u1−v1)·n̂dS−
∫
Γζ

p2 (u3−v3)·n̂dS = −
∫
O1

g·(u−v)−
∫
O2

g·1
ε

(u−v)−
∫
O3

g·(u−v)+

∫
Γ

h (u1·n̂−v1·n̂) d S .

(15)

On the other hand, testing (13b) with (p − q)�O1
+ (p − q)�O2

+ (p − q)�O3
yields

∫
O1

∇ · u (p − q) −
∫
O2

u · ∇(p − q) +

∫
O3

∇ · u (p − q) −
∫
Γ

u1 · n̂ (p2 − q2) dS+

+

∫
Γζ

u3 · n̂ (p2 − q2) dS =
∫
Ω

F (p − q) +

∫
Γ

f (p2 − q2) d S . (16)

The sum gives of expressions (15) and (16) gives∫
O1

u · (u − v) +

∫
O2

u · (u − v) + ε

∫
O3

u · (u − v) −
∫
O1

p∇ · (u − v) +

∫
O1

∇ · u (p − q) +

∫
O2

1

ε
∇p · (u − v)−
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−
∫
O2

u · ∇(p − q) −
∫
O3

p∇ · (u − v) +

∫
O3

∇ · u (p − q) +

∫
Γ

p2 (u1 − v1) · n̂dS −
∫
Γ

u1 · n̂ (p2 − q2) dS−

−
∫
Γζ

p2 (u3 − v3) · n̂dS +
∫
Γζ

u3 · n̂ (p2 − q2) dS

= −
∫
O1

g · (u−v)− 1

ε

∫
O2

g · (u−v)−
∫
O3

g · (u−v)+

∫
Γ

h (u1 · n̂−v1 · n̂) d S +
∫
Ω

F (p−q)+

∫
Γ

f (p2−q2) d S .

(17)

We repeat the same procedure for the perturbed problem (14). Test (14a) with (u−v)�O1
+ (u−v)�O2

+ (u−v)�O3

and (14b) with (p − q)�O1
+ (p − q)�O2

+ (p − q)�O3
add them together and get

∫
O1

v · (u − v) +

∫
O2

v · (u − v) + ε

∫
O3

v · (u − v) −
∫
O1

q∇ · (u − v) +

∫
O1

∇ · v (p − q) +

∫
O2

∇q · (u − v)−

−
∫
O2

v · ∇(p − q) −
∫
O3

q∇ · (u − v) +

∫
O3

∇ · v (p − q) +

∫
Γ

q2 (u1 − v1) · n̂dS −
∫
Γ

v1 · n̂ (p2 − q2) dS−

−
∫
Γζ

q2 (u3 − v3) · n̂dS +
∫
Γζ

v3 · n̂ (p2 − q2) dS

= −
∫
O1

g · (u−v)−
∫
O2

g · (u−v)−
∫
O3

g · (u−v)+

∫
Γζ

h (u3 · n̂−v3 · n̂) d S +
∫
Ω

F (p−q)+

∫
Γζ

f (p2 −q2) d S .

(18)

Finally, subtracting the added systems (17) and (18) we have

∫
O1

|u − v| 2 +
∫
O2

|u − v| 2 + ε
∫
O3

|u − v| 2 −
∫
O1

(p − q)∇ · (u − v) +

∫
O1

(∇ · u − ∇ · v) (p − q)+

+

∫
O2

(
1

ε
∇p − ∇q) · (u − v) −

∫
O2

(u − v) · ∇(p − q) −
∫
O3

(p − q)∇ · (u − v) +

∫
O3

(∇ · u − ∇ · v) (p − q)+

+

∫
Γ

(p2−q2) (u1−v1)·n̂dS−
∫
Γ

(u1 ·n̂−v1 ·n̂) (p2−q2) dS−
∫
Γζ

(p2−q2) (u3−v3)·n̂dS+
∫
Γζ

(u3 ·n̂−v3 ·n̂) (p2−q2) dS

= (1− 1

ε
)

∫
O2

g·(u−v)+

∫
Γ

f (p2−q2) d S −
∫
Γζ

f (p2−q2) d S +
∫
Γ

h (u1 · n̂−v1 · n̂) d S −
∫
Γζ

h (u3 · n̂−w3 · n̂) d S .

(19)

Simplification yields

∫
O1

|u − v| 2 +
∫
O2

|u − v| 2 + ε
∫
O3

|u − v| 2

= (1− 1

ε
)

∫
O2

g·(u−v)++

∫
Γ

f (p2−q2) d S −
∫
Γζ

f (p2−q2) d S +
∫
Γ

h (u1 · n̂−v1 · n̂) d S −
∫
Γζ

h (u3 · n̂−w3 · n̂) d S

= (1−1

ε
)

∫
O2

g·(u−v)+(1−ε)
∫
O2

(−1

ε
∇p)·(u−v)+

∫
Γ

f (p2−q2) d S−
∫
Γζ

f (p2−q2) d S+
∫
Γ

h (u1·n̂−v1·n̂) d S−

− ∫
Γζ

h(u3 · n̂− v3 · n̂) d S .

The association the first and second summands in the second line of (19) simplifies the integral
∫
O2
∇q · (u − v).

Recalling (10f) and reordering we have

‖u − v‖ 2
L2(O1)

+ ‖ u − v‖ 2
L2(O2)

+ ε ‖u − v‖ 2
L2(O3)

= (1−ε)
∫
O2

u·(u−v)+

∫
Γ

f (p2−q2) d S −
∫
Γζ

f (p2−q2) d S +
∫
Γ

h (u1 · n̂−v1 · n̂) d S −
∫
Γζ

h (u3 · n̂−v3 · n̂) d S .

(20)
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Next the forcing terms of the interfaces need to be analyzed.

3.1 Regularity Conditions for the Interfaces Forcing Terms and Related Estimates

In this subsection we recall ν̂ denotes the unitary vector outwards normal vector to the boundary of a given open

smooth region G ⊆�N . The classical duality relation below Tartar (2007) will be frequently used

〈r, w · n̂〉H−1/2(∂G),H1/2(∂G) =

∫
G
∇r · w + r∇ · w∣∣∣〈r, w · n̂〉H−1/2(∂G),H1/2(∂G)

∣∣∣ ≤ ‖r‖H1(G) ‖w‖H div(G)

(21)

where w ∈ H div(G) and r ∈ H1(G) are arbitrary .

3.1.1 The Normal Flux Interface Forcing Term f

In order to assure continuity estimates for the normal flux forcing term f across the interfaces certain type of

regularity is required. From now on we assume there exists G ⊆ Ω a smooth open region such that Γ ∪ Γ ζ ⊆ G
and that there exists a function Φ ∈ H div(G) such that Φ · n̂|Γ∪Γζ = f ∈ L2(Γ ∪ Γζ), e.g. consider Φ a continuous

differentiable function from G to �N . Hence, the first two summands of the second line in (20) transform as

follows ∫
Γ

f (p2 − q2) d S − ∫
Γζ

f (p2 − q2) d S

=
∫
∂O2

(p2 − q2)Φ · ν̂ dS

=
∫
O2

[
Φ · ∇(p − q) + ∇ · Φ (p − q)

]
≤ ‖Φ‖L2(O2) ‖∇p − ∇q‖L2(O2) + ‖∇ · Φ‖L2(O2) ‖p − q‖L2(O2).

The equality comes from the normal trace duality relation (21) for elements Φ ∈ H div(O2) and the last inequality

is the mere application of Cauchy-Schwartz. The L2(O2)-norm of the pressures difference in the expression above

needs to be estimated, due to the drained boundary conditions (10c), (11c) we know

‖p − q‖L2(O2) ≤ ‖p − q‖L2(O1∪O2) ≤ d√
2
‖∇p − ∇q‖L2(O1∪O2).

Here d > 0 denotes the diameter of Ω1 ∪ Ω2; the above holds since the Poincaré constant is always less or equal

than the diameter of the domain divided over
√

2. Next, recall the Darcy-type relations (10a), (10f), (10a) and

(10f), therefore the expression can be estimated by∣∣∣∫
Γ

f (p2 − q2) d S − ∫
Γζ

f (p2 − q2) d S
∣∣∣

≤ ‖Φ‖L2(O2) ‖∇p − ∇q‖L2(O2) +
d√
2
‖∇ · Φ‖L2(O2) ‖∇p − ∇q‖L2(O1∪O2)

≤
{
‖Φ‖2L2(O2)

+ d 2

2
‖∇ · Φ‖2L2(O2)

}1/2 {‖∇p − ∇q‖2L2(O2)
+ ‖∇p − ∇q‖2L2(O1∪O2)

}1/2
≤ √

2 + d 2 ‖Φ‖H div(O2)

(
‖ε u − v‖2L2(O2)

+ ‖u − v‖2L2(O1)

)1/2
≤ (2 + d) ‖Φ‖H div(O2)

(
‖ε u − v‖L2(O2) + ‖u − v‖L2(O1)

)
.

(22)

Where we used the fact that ‖x‖2 ≤ ‖ x‖1 for all x ∈�2.

3.1.2 The Normal Stress Interface Forcing Term h

From now on assume there exists G ⊆ Ω a smooth open region such that Γ ∪ Γ ζ ⊆ G and that h ∈ H 1(G); without

loss of generality it can be assumed the set G is the same for both forcing terms. Recalling (10e), (10i), (11e) and

(11i) the following identity holds∫
Γ

h (u1 · n̂− v1 · n̂) dS − ∫
Γζ

h (u3 · n̂− v3 · n̂) dS

=
∫
Γ

h (u2 · n̂− v2 · n̂) dS − ∫
Γζ

h (u2 · n̂− v2 · n̂) dS − − ∫
Γ

h f d S +
∫
Γζ

h f dS

=
∫
∂O2

h(u2 − v2) · ν̂ dS − ∫
Γ

h f dS +
∫
Γζ

h f dS .

18
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Using the normal trace duality relation (21) for elements w ∈ H div(O2) and Cauchy-Schwartz inequality we have∫
Γ

h (u1 · n̂− v1 · n̂) dS − ∫
Γζ

h (u3 · n̂− v3 · n̂) dS

=
∫
O2

[∇h · (u − v) + h∇ · (u − v)] − ∫
Γ

h f dS +
∫
Γζ

h f dS

≤ ‖∇h‖L2(O2) ‖u − v‖L2(O2) + ‖h‖L2(O2) ‖∇ · u − ∇ · v‖L2(O2) −
∫
Γ

h f dS +
∫
Γζ

h f dS .

Equations (10g) and (11g) yield ∇ · u = ∇ · v in O2. On the other hand the condition Φ · n̂| Γ∪Γζ implies that

Φ · ν̂|Γ = − f and Φ · ν̂|Γζ = f then∣∣∣∣∣
∫
Γ

h (u1 · n̂− v1 · n̂) dS −
∫
Γζ

h (u3 · n̂− v3 · n̂) dS
∣∣∣∣∣ ≤ ‖∇h‖L2(O2) ‖u − v‖L2(O2) +

∫
∂O2

h Φ · ν̂ dS . (23)

Combining (22) and (23) with (20) yields

‖u − v‖ 2
L2(O1)

+ ‖ u − v‖ 2
L2(O2)

+ ε ‖u − v‖ 2
L2(O3)

≤ (1 − ε) ∫O2
u · (u − v) + (2 + d) ‖Φ‖H div(O2)

(
‖ε u − v‖L2(O2) + ‖u − v‖L2(O1)

)
+‖∇h‖L2(O2) ‖u − v‖L2(O2) +

∫
∂O2

h Φ · ν̂ dS .

Expression (21) gives the inequality

∫
∂O2

h Φ · ν̂ dS ≤ ‖ h ‖H1(O2) ‖Φ ‖H div(O2). Finally, we reorder the expression as

follows

‖ u − v‖ 2
L2(O1)

+ ‖ u − v‖ 2
L2(O2)

+ ε ‖ u − v‖ 2
L2(O3)

≤ ‖ h ‖H1(O2) ‖Φ ‖H div(O2) + (2 + d) ‖Φ‖H div(O2)‖u − v‖L2(O1) + ‖∇h‖L2(O2) ‖u − v‖L2(O2)+

+(2 + d) ‖Φ‖H div(O2)‖ ε u − v‖L2(O2) + (1 − ε) ∫O2
u · (u − v).

(24)

Notice the first summand on the right hand side of the inequality above is independent from the solution. In the

final section the last two summands are estimated.

3.2 Flux Perturbation Estimates

In this section two possible estimates for the last two summands of the second line in (24) are given; the first one

aiming to conclude continuous dependence with respect to the geometric perturbation and the second one seeking

a-posteriori estimates.

3.2.1 Continuity Estimates

In order to attain continuity estimates we modify the last two summands of (24) in the following way

(2 + d) ‖Φ‖H div(O2)‖ ε u − v‖L2(O2) + (1 − ε) ∫O2
u · (u − v)

≤ (2 + d) ‖Φ‖H div(O2)

(
‖u − v‖L2(O2) + (1 − ε) ‖u‖L2(O2)

)
+ (1 − ε) ‖u‖L2(O2) ‖u − v‖L2(O2)

Together with (24) yields

‖ u − v‖ 2
L2(O1)

+ ‖ u − v‖ 2
L2(O2)

+ ε ‖ u − v‖ 2
L2(O3)

≤ ‖h‖H1(O2)‖Φ‖H div(O2) + (1 − ε)(2 + d) ‖Φ‖H div(O2)‖u‖L2(O2) + (2 + d) ‖Φ‖H div(O2) ‖u − v‖L2(O1)+

+
{
(2 + d) ‖Φ‖H div(O2) + ‖∇h ‖L2(O2) + (1 − ε) ‖u‖L2(O2)

}
‖u − v‖L2(O2).

(25)

3.2.2 A-Posteriori Estimates

The last two summands of the second line in inequality (24) are estimated in terms of the approximate solution v.
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We manipulate the summands and apply Cauchy-Schwartz to get

(2 + d) ‖Φ‖H div(O2)‖ ε u − v‖L2(O2) + (1 − ε) ∫O2
u · (u − v)

= (2 + d) ‖Φ‖H div(O2)

{
‖ ε u − ε v + ε v − v‖L2(O2)

}
+ (1 − ε) ∫O2

(u − v) · (u − v) + (1 − ε) ∫O2
v · (u − v)

≤ (2 + d) ‖Φ‖H div(O2)

{
ε ‖u − v‖L2(O2) + (1 − ε) ‖v‖L2(O2)

}
+ (1 − ε) ∫O2

|u − v| 2 + (1 − ε) ∫O2
v · (u − v)

≤ (2 + d) ‖Φ‖H div(O2)

{
ε ‖u − v‖L2(O2) + (1 − ε) ‖v‖L2(O2)

}
+ (1 − ε) ‖u − v‖ 2

L2(O2)
+ (1 − ε) ‖v‖L2(O2) ‖u − v‖L2(O2).

Associating the above estimate with (24), reordering and rearranging the terms ‖u − v‖ 2
L2(O2)

, (1 − ε)‖u − v‖ 2
L2(O2)

on both sides of the inequality furnishes

‖u − v‖ 2
L2(O1)

+ ε ‖ u − v‖ 2
L2(O2)

+ ε ‖ u − v‖ 2
L2(O3)

≤ ‖h‖H1(O2) ‖Φ‖H div(O2) + (1 − ε) (2 + d) ‖Φ‖H div(O2) ‖v‖L2(O2) + (2 + d) ‖Φ‖H div(O2) ‖u − v‖L2(O1)

+
{
‖∇h‖L2(O2) + ε (2 + d) ‖Φ‖H div(O2) + (1 − ε) ‖v‖L2(O2)

}
‖u − v‖L2(O2)

(26)

4. Continuity and a-Posteriori Analysis of the Perturbation

This section begins recalling a well-known result

Lemma 4.1 Let {ζ n: n ∈ �} be a sequence in C 1(G) and A, B, x: {ζ n: n ∈ �} ⊆ C 1(G) → [0,∞) three functions

such that [
x(ζ n)

]2 ≤ B(ζ n) + A (ζ n) x(ζ n), (27)

for all n ∈� then

(i) The explicit estimate holds

x(ζ n) ≤ 1

2

{
A(ζ n) +

√
4 B(ζ n) +

[
A (ζ n)

] 2} . (28)

(ii) If A(ζ n), B(ζ n)→ 0 then x(ζ n)→ 0.

Proof. (i) The inequality (28) follows from completing squares on the inequality (27); (ii) is an immediate con-

clusion of (i). It is also important to stress that, by definition, the involved functions A, B and x always assume

non-negative values. �
4.1 Continuity Analysis of the Solution

Now we prove the continuity of the flux

Theorem 4.2 Let {ζ n} ⊆ T (Γ,Ω) such that is bounded in W1,∞(Γ) and ζ n → 0 in C(Γ). Additionally, ζ n(̃x) ∈ G and
ζ n (̃x) ≥ 0 for all x̃ ∈ Γ. If (v(n), q(n)) denotes the solution of (14) for the perturbation ζ n then ‖u − v(n)‖L2(Ω) → 0.

Proof. Consider (25), applying Cauchy-Schwartz on the last two summands of the second line in right hand side

yields
ε ‖u − v(n)‖ 2

L2(Ω)
≤ ‖ u − v(n)‖ 2

L2(O n
1

)
+ ‖ u − v(n)‖ 2

L2(O n
2

)
+ ε ‖ u − v(n)‖ 2

L2(O n
3

)

≤ ‖h‖H1(O2)‖Φ‖H div(O2) + (1 − ε)(2 + d) ‖Φ‖H div(O2)‖u‖L2(O2)+

+

[
(2 + d)2 ‖Φ‖2H div(O2)

+
{
(2 + d) ‖Φ‖H div(O2) + ‖∇h ‖L2(O2) + (1 − ε) ‖u‖L2(O2)

}2]1/2 ·
·
{
‖u − v‖2L2(O1)

+ ‖u − v‖2L2(O2)
+ ‖u − v‖2L2(O3)

}1/2
Where O n

1
,O n

2
and O n

3
are the domains defined by the perturbation ζ n. From the expression above we define the

functions

A(ζ n)
def
=

1

ε

[
(2 + d)2 ‖Φ‖2H div(O2) +

{
(2 + d) ‖Φ‖H div(O2) + ‖∇h ‖L2(O2) + (1 − ε) ‖u‖L2(O2)

}2]1/2
,

B(ζ n)
def
=

1

ε

{
‖h‖H1(O2)‖Φ‖H div(O2) + (1 − ε)(2 + d) ‖Φ‖H div(O2)‖u‖L2(O2)

}
,
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and

x(ζ n)
def
= ‖u − v(n)‖L2(Ω).

It is clear that [x(ζ n)] 2 ≤ B(ζ n) + A(ζ n) x(ζ n). Also notice that u, the solution to the original problem, does

not change with ζ n and that λN(O n
2

) → 0 as n → ∞. Finally, since the functions Φ, h and u involved in the

definitions of A and B are square integrable on a region G containing O n
2

for all n ∈�, by the Lebesgue dominated

convergence theorem it holds that A(ζ n), B(ζ n)→ 0. Due to Proposition 4.1 (i) the conclusion follows. �
Theorem 4.3 Let {ζ n} ⊆ T (Γ,Ω) verify the hypothesis of Theorem 4.2 and (v(n), q(n)) be the solution of (14) for the
perturbation ζ n then ‖∇p − ∇q(n)‖L2(Ω) → 0.

Proof. Since ‖x‖2 ≤ ‖x‖1 for all x ∈�3 then

‖∇p − ∇q(n)‖L2(Ω)

≤ ‖∇p − ∇q(n)‖L2(O n
1

) + ‖∇p − ∇q(n)‖L2(O n
2

) + ‖∇p − ∇q(n)‖L2(O n
3

)

≤ ‖u − v(n)‖L2(O n
1

) + ‖ε u − v(n)‖L2(O n
2

) + ε ‖u − v(n)‖L2(O n
3

)

≤ ‖u − v(n)‖L2(O n
1

) + ‖u − v(n)‖L2(O n
2

) + ε ‖u − v(n)‖L2(O n
3

) + (1 − ε) ‖u‖L2(O n
2

)

≤ 3 ‖u − v(n)‖L2(Ω) + (1 − ε) ‖u‖L2(O n
2

) −−−−→n→∞ 0.

(29)

The third line holds due to the Darcy-type relations (10a), (11a), (10f), (11f), (10j) and (11j). Theorem 4.2 gives

the convergence to zero for the first summand on the last line and the Lebesgue dominated convergence theorem

yields the convergence to zero of the last term. �
For the convergence of the pressures in the L2-norm some intermediate results are necessary. For the sake of

completeness we start recalling a well known result.

Lemma 4.4 Let U1,U2 ⊆ �N be open bounded connected with smooth boundary and Υ def
= ∂U1 ∩ ∂U2 be non-

negligible i.e. λN−1(Υ) > 0. Define the domain U as the interior of U1 ∪ Υ ∪U2. Let q1 ∈ H1(U1), q2 ∈ H1(U2), if
q1|Υ = q2|Υ then the “paste” function

q def
= q1 �U1

+ q1 �Υ + q2 �U2
= q1 �U1

+ q2 �Υ + q2 �U2
(30)

is in H1(U). Moreover the gradient of q is given by ∇q1 �U1
+ ∇q2 �U2

.

Proof. Let ϕ ∈ [C∞0 (U)]N then

〈∇q,ϕ〉D′(U),D(U)

=
∫

U q∇ · ϕ
=
∫

U1
q1 ∇ · ϕ +

∫
U2

q2 ∇ · ϕ
=
∫

U1
∇q1 · ϕ +

∫
∂U1

q1 ϕ · n̂1 dS +
∫

U2
∇q2 · ϕ +

∫
∂U2

q2 ϕ · n̂2 dS

=
∫

U1
∇q1 · ϕ +

∫
U2
∇q2 · ϕ +

∫
Υ

q1 ϕ · n̂1 dS +
∫
Υ

q2 ϕ · n̂2 dS

=
∫

U1
∇q1 · ϕ +

∫
U2
∇q2 · ϕ.

The boundary terms cancel out since n̂1 = −n̂2 and q1 ϕ = q2 ϕ on Υ. The above holds for all ϕ ∈ [C∞0 (U)]N , then

we conclude that the weak gradient of q is given by ∇q1�U1
+ ∇q2�U2

and the proof is complete. �
Theorem 4.5 Let {ζ n} ⊆ T (Γ,Ω) verify the hypothesis of Theorem 4.2 and (v(n), q(n)) be the solution of (2.14) for
the perturbation ζ n then ‖p − q(n)‖L2(Ω) → 0.

Proof. Consider the “paste” function

r (n) def
=
(
p − q(n)

)
�O n

1
+
(
p − q(n) + h

)
�O n

2
+
(
p − q(n)

)
�O n

3
(31)

In the definition above the presence of the forcing term h together with the normal stress balance conditions (10d),

(10h), (11d), (11h) give

p1 − q(n)
1
= p2 − q(n)

2
+ h on Γ , p2 − q(n)

2
+ h = p3 − q(n)

3
on Γn. (32)
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Since ζn ∈ W1,∞(Γ) the domains O n
i for i = 1, 2, 3 are smooth and Lemma 4.4 applies. Therefore, the “paste”

function r (n) defined in (31) is in H1(Ω) and due to the drained boundary conditions (10c), (11c), r = 0 on

∂O1 − Γ = Ω1 − Γ Poincaré’s constant applies. Then, there exists κ ≤ 1
2

diam(Ω) such that

1
κ
‖ r (n) ‖2L2(Ω)

≤ ‖∇r (n) ‖2L2(Ω)

= ‖∇p − ∇q(n)‖2L2(O n
1

)
+ ‖∇p − ∇q(n) + h ‖2L2(O n

2
)
+ ‖∇p − ∇q(n)|L2(O n

3
)

≤ ‖∇p − ∇q(n)‖2L2(O n
1

)
+ 2 ‖∇p − ∇q(n)‖2L2(O n

2
)
+ 2 ‖h ‖2L2(O n

2
)
+ ‖∇p − ∇q(n)|L2(O n

3
)

(33)

In the expression above the first, second and fourth summand converge to zero due to Theorem 4.3. The third

summand converges to zero since λN(O n
2

) → 0 as n → ∞. Therefore the right hand side of inequality (33)

converges to zero. By definition of r (n) it is direct that ‖p − q (n)‖L2(O n
1

), ‖p − q (n) + h ‖L2(O n
2

) and ‖p − q (n)‖L2(O n
3

)

converge to zero. Finally

‖p − q(n)‖L2(O n
2

) ≤ ‖p − q(n) + h ‖L2(O n
2

) + ‖h ‖L2(O n
2

). (34)

Where the convergence of the second summand hols since λN(O n
2

) → 0 as n → ∞. Since ‖p − q (n)‖O n
i
→ 0 as

n→ ∞ for i = 1, 2, 3, the proof is complete. �
Remark 4.1 Notice that combining the inequalities (34) and (33) we conclude there exists a positive constant C
such that

‖p − q(n)‖L2(Ω) ≤ C
(
‖∇p − ∇q(n)‖L2(Ω) + ‖h‖L2(O n

2
)

)
∀ n ∈�. (35)

4.2 A-Posteriori Analysis

Notice that the functions A(ζ n) and B(ζ n) depend on u, i.e. they can not be computed or estimated based only on

the forcing terms and the geometric perturbation. They also depend on the solution to the original problem. This

is impractical not usable for practical purposes since we are trying to approximate the solution u corresponding

to a smooth manifold Γ by introducing a geometric perturbation Γ ζ (namely piecewise linear affine) which can be

numerically computed. Then, we need to use a-posteriori estimates since the available information in practice will

be v(n). Consider (26) and apply Cauchy-Schwartz to the last two summands of the right hand side in the second

line as 2-D vectors and (26) becomes

ε ‖u − v‖ 2
L2(Ω)

≤ ‖ u − v‖ 2
L2(O1)

+ ε ‖ u − v‖ 2
L2(O2)

+ ε ‖ u − v‖ 2
L2(O3)

≤ ‖h‖1,O2
‖Φ‖H div(O2) + (1 − ε) (2 + d) ‖Φ‖H divO2

‖v‖L2(O2)

+

[
(2 + d)2 ‖Φ‖2H div(O2)

+
{
‖∇h‖L2(O2) + ε (2 + d) ‖Φ‖H div(O2) + (1 − ε) ‖v‖L2(O2)

}2]1/2 ·
·
{
‖u − v‖2L2(O1)

+ ‖u − v‖2L2(O2)
+ ‖u − v‖2L2(O3)

}1/2
Define the functions a, b, x : C 1(G)→� by

a (ζ)
def
=

1

ε

[
(2 + d)2 ‖Φ‖2H div(O2) +

{
‖∇h‖L2(O2) + ε (2 + d) ‖Φ‖H div(O2) + (1 − ε) ‖v‖L2(O2)

}2]1/2
, (36a)

b (ζ)
def
=

1

ε

{
‖h‖H1(O2) ‖Φ‖H div(O2) + (1 − ε) (2 + d) ‖Φ‖H divO2

‖v‖L2(O2)

}
, (36b)

x (ζ)
def
= ‖u − v‖L2(Ω). (36c)

Since [x(ζ)] 2 ≤ b (ζ) + a (ζ) x(ζ) by Proposition 4.1 (i) it follows

‖u − v‖L2(Ω) ≤ 1

2

{
a (ζ) +

√
4 b (ζ) +

[
a (ζ)
] 2} . (37)

The functions a(·), b(·) depend not only on the forcing terms and the geometric perturbation but also on the ap-

proximate solution v hence the inequality (37) is an a-posteriori estimate.
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Finally, in order to get a-posteriori estimates for the pressure we repeat the technique of Theorem 4.3 and get

‖∇p − ∇q‖L2(Ω) ≤ ‖u − v‖L2(O1) + ‖ε u − v‖L2(O2) + ε ‖u − v‖L2(O3)

≤ ‖u − v‖L2(O1) + ε ‖u − v‖L2(O2) + ε ‖u − v‖L2(O3) + (1 − ε) ‖v‖L2(O2)

≤ 3 ‖u − v‖L2(Ω) + (1 − ε) ‖v‖L2(O2).

Recalling inequality (35) and combining it with (37) we have

‖p−q‖L2(Ω)+‖∇p−∇q‖L2(Ω) ≤ C ‖h‖L2(O n
2

)+(1+C)(1−ε) ‖v‖L2(O2)+
3

2
(1+C)

{
a (ζ) +

√
4 b (ζ) +

[
a (ζ)
] 2 } . (38)

5. Discussion and Concluding Remarks

The present work yields several conclusions. We start listing those related to the variational formulation of the

problem

(i) The geometric perturbation of the interface introduces regions of disagreement in the coefficients of resis-

tance. In order to get the estimates it is necessary to test the variational statements with convenient functions

which are not continuous across the interface as in section 3. Even if the interface forcing terms f , h were

null this necessity remains.

(ii) A direct variational formulation of the problem does not allow testing with functions which are discontinuous

across the interface since the functional setting for test functions is H1.

(iii) The mixed variational formulations L2−H 1 and H div−L2 both demand coupling conditions of the spaces on

the interfaces Γ,Γ ζ . In the first case the space of pressures must be continuous and in the second the normal

traces of the flux must be continuous across the interface. Therefore, in both cases the possibility of testing

with discontinuous functions across the interfaces is not allowed. Finally, the first formulation requires h = 0

and the second requires f = 0 i.e. in both cases some generality with respect to the formulation used in this

work is lost.

(iv) The mixed-mixed variational formulation of section (2.3) introduced in Morales and Showalter (2012) is the

unique variational setting introducing the necessary degrees of freedom in the function spaces i.e. permitting

jump-discontinuities across the interfaces on the test functions.

(v) Stability and continuity statements demand extra hypothesis of regularity on the forcing terms discussed in

sections (3.1.1) and (3.1.2) which are reasonable for sources in fluid flow problems.

(vi) For the general type of perturbation, when ζ can take positive and negative values the strategy is identical

to the one presented here. There will be need to consider both subdomains Oζ ,U ζ given in Definition 2.2.

The variational statements corresponding to (13) and (14) would involve more terms and in particular, the

non-symmetric interface terms on ∂Oζ and ∂U ζ would have opposite sign. The function spaces V, Q given

in Equation (12) are still adequate to address the question. Aside from the aforementioned observations and

larger expressions the strategy and reasoning follows exactly the one presented here.

Finally we list the conclusions with regard to the non-linearity of the problem as well as the estimates order

(i) It is important to observe in both theorems of continuity above (4.2), (4.3) the role played by the term

‖u‖L2(O n
2

). Well-posedness of the problem (13) furnishes global estimates with respect to the forcing terms i.e.

it can be claimed ‖u‖L2(O n
2

) ≤ C(‖F‖L2(Ω)+‖g‖L2(Ω)+‖h‖L2(Γ)+‖ f ‖L2(Γ)) and certain constant C > 0, nevertheless

we can not assure a local estimate such as ‖u‖L2(O n
2

) ≤ C(‖F‖L2(O n
2

) + ‖g‖L2(O n
2

) + ‖h‖L2(Γ) + ‖ f ‖L2(Γ)). Therefore

the term ‖u‖L2(O n
2

) can not be excluded in the continuity statements.

(ii) The problem of continuous dependence with respect to the geometric interface perturbation is nonlinear as it

is evident by the nature of the continuity and a-posteriori estimates in Equations (25), (26) respectively.

(iii) The introduction of the mixed variational formulation in Equations (13), (14) solves the issue of a func-

tional context consistent with the necessity of jump-discontinuities across the interface. However it does not

linearize the problem itself as the implicit nature of the attained estimates show.
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(iv) The nature of the continuity estimates suggests numerical experimentation as the most feasible approach to

investigate the convergence rate problem.

(v) Observe that the flux continuity Theorem 4.3 involves building functions A(·), B(·), both of them are multi-

plied by 1/ε. Though this amplification factor is fixed, it reveals that a geometric perturbation of the interface

introduces an error of orderO(1/ε) which is rather significant. The same observations hold for the a-posteriori

estimates. (38) since the functions a(·), b(·) are both affected by the same amplification factor.

(vi) For geometric perturbations independent from time, the evolution problem can be analyzed by the same

technique presented in Morales and Showalter (2012) using analytic semigroups. Since the perturbation

occurs in space and not in time the essentials are captured by the stationary problem we have presented here.

(vii) Finally, the work presented here is a first step towards the understanding of flow in deformable porous media
i.e. when the geometry changes with time. This is future work, however it is the author’s opinion that

conditions on the time deformation ratio of the perturbations will play a fundamental role in the analysis; as

crucial as the introduction of an artificial interface has been here.
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