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Abstract

A Hilbert space operator T is called n-paranormal and ∗-n-paranormal if ‖T x‖n ≤ ‖T nx‖ · ‖x‖n−1 and ‖T ∗x‖n ≤
‖T nx‖ · ‖x‖n−1, respectively. Let P(n) and S(n) be the sets of all n-paranormal operators and ∗-n-paranormal

operators, respectively. In this paper we study and discuss the relationship between these two sets of operators and

especially show

∞⋂
n=3

P(n) = P(3)
⋂

P(4). Finally we introduce ∗-n-paranormality for an operator on a Banach

space and give some spectral properties.
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1. Introduction

LetH be a complex Hilbert space and B(H) be the set of all bounded linear operators onH . An operator T ∈ B(H)

is called n-paranormal if ‖T x‖n ≤ ‖T nx‖ · ‖x‖n−1 for all x ∈ H . If an operator T satisfies the inequality for n = 2,

then T is called paranormal. Paranormal operators are normaloid, i.e., ‖T‖ = r(T ) (the spectral radius of T ) and

if T is an invertible paranormal operator, then T−1 is also paranormal (cf. § 2.6 of Furuta, 2001). Ando in 1972

gave the useful characterization of a paranormal operator by some norm condition. Arun in (1976) introduced

n-paranormal operators.

An operator T ∈ B(H) is called ∗-paranormal if ‖T ∗x‖2 ≤ ‖T 2x‖ · ‖x‖ for all x ∈ H . Arora and Thukral in 1986

showed that ∗-paranormal operators are 3-paranormal and normaloid.

Uchiyama and Tanahashi in (preprint) studied spectral properties of ∗-paranormal operators and n-paranormal

operators and presented an example of an invertible ∗-paranormal operator T such that T−1 is not normaloid. A

∗-paranormal operator is 3-paranormal by Arora and Thukral in 1986, which means that there exists an invertible

3-paranormal operator T such that T−1 is not 3-paranormal. Also Uchiyama and Tanahashi showed that Weyl’s

theorem holds for n-paranormal operators for every n ≥ 3. Chō, Ôta, Tanahashi, and Uchiyama in 2012 showed

‖T−1‖ ≤ ‖T‖ · r(T−1)2 for an invertible ∗-paranormal operator T .

In this paper we study the relationship between two classes of n-paranormal operators and ∗-n-paranormal operators

on a Hilbert space and discuss some spectral properties of ∗-n-paranormal operators. Finally we introduce a notion

of ∗-n-paranormality for an operator on a Banach space and present some spectral properties.

2. Examples of n-Paranormal Operators

Definition 1 Let n ≥ 2. An operator T ∈ B(H) is said to be n-paranormal if

‖T x‖n ≤ ‖T nx‖ · ‖x‖n−1 (∀x ∈ H).

We denote the set of all n-paranormal operators by P(n).

Lemma. LetH = �2 with the usual orthogonal base {ek}k∈Z and let T ∈ B(H) be the bilateral weighted shift with
bounded weights {wk}k∈Z. Then T ∈ P(n) if and only if wn−1

k ≤ wk+1 · · ·wk+(n−1) for all k ∈ Z.
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Proof. Let x ∈ �2 be x =
∑

xkek such that ‖x‖ = 1. Suppose wn−1
k ≤ wk+1 · · ·wk+(n−1) for all k ∈ Z. Since wk > 0,

wk ≤
(
wk · wk+1 · · ·wk+(n−1)

) 1
n

for all k ∈ Z.

Since T x =
∑

xk · wkek+1,

‖T x‖2n =

(∑
|xk |2 · w2

k

)n
.

Since T nx =
∑

xk · wk · wk+1 · · ·wk+(n−1)ek+n,

‖T nx‖2 =
∑
|xk |2 · w2

k · w2
k+1 · · ·w2

k+(n−1).

Hence, by w2
k ≤
(
w2

k · w2
k+1
· · ·w2

k+(n−1)

) 1
n

‖T x‖2n =

(∑
|xk |2w2

k

)n
≤
(∑

|xk |2(w2
k · w2

k+1 · · ·w2
k+(n−1)

) 1
n

)n

≤
∑
|xk |2w2

k · w2
k+1 · · ·w2

k+(n−1) = ‖T nx‖2
by Jensen’s inequality for f (x) = xn on x > 0.

The converse is clear. �
Let T be the unilateral weighted shift with positive weights {wk}∞k=1

. Then it is clear that, by the similar way to

Lemma,

(1) T ∈ P(3) ⇐⇒ w2
k ≤ wk+1 · wk+2 (∀k ∈ N),

(2) T ∈ P(4) ⇐⇒ w3
k ≤ wk+1 · wk+2 · wk+3 (∀k ∈ N).

Example 1 (i) Let T be the unilateral weighted shift with weights {wk}∞n=1 such that

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (k = 1)

2 (k = 2)

1 (k = 3)

4 (k = 4)

1 (k = 5)

16 (k ≥ 6).

Then T ∈ P(3) and T � P(4).

(ii) Let T be the unilateral weighted shift with weights {wk}∞k=1
such that

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (k = 1)

2 (k = 2)

3 (k = 3, 4)

2 (k = 5)

5 (k ≥ 6).

Then T ∈ P(4) and T � P(3).

Example 2 Let T be the unilateral weighted shift with weights {wk}∞k=1
such that

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (k = 1)√
2 (k = 2)

4 (k = 3)√
2 (k = 4)

16 (k ≥ 5).

Then T ∈ P(3)
⋂

P(4) and T � P(2).
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Let T be the bilateral weighted shift with positive bounded weights {wk}k∈Z such that inf wk > 0. Then T is

invertible by Proposition II 6.8 of Conway (1985) and the following equivalent relations hold:

(3) T,T−1 ∈ P(3) ⇐⇒ w2
k ≤ wk+1 · wk+2 ≤ w2

k+3
(∀k ∈ Z),

(4) T,T−1 ∈ P(4) ⇐⇒ w3
k ≤ wk+1 · wk+2 · wk+3 ≤ w3

k+4
(∀k ∈ Z).

Moreover, implication (3) =⇒ (4) holds. In fact, statement (3) implies wk ≤ wk+3 for every k ∈ Z. Hence

w3
k ≤ wk · wk+1 · wk+2 ≤ wk+3 · wk+1 · wk+2 = wk+1 · wk+2 · wk+3 ≤ wk+4 · w2

k+4 = w3
k+4.

Example 3 Let T be the bilateral weighted shift with weights {wk}k∈Z such that

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (k ≤ 1)√
2 (k = 2)

2 (k = 3)√
3 (k = 4)

4 (k ≥ 5).

Then T ∈ P(3) and by Proposition II 6.8 of Conway (1985) T is invertible. Since weights {wk} are not monotone

increasing, T � P(2).

3. n-Paranormal Operators

First we give the following.

Theorem 1 Let T be in B(H). If T belongs to P(2), then T belongs to P(n) for all n ≥ 3.

Proof. Suppose T ∈ P(2). Since ‖T x‖4 ≤ ‖T 2x‖2 · ‖x‖2 ≤ ‖T 3x‖ · ‖T x‖ · ‖x‖2, it holds T ∈ P(3).

We next assume T ∈ P(n). Then since ‖T x‖n ≤ ‖T nx‖ · ‖x‖n−1, it holds ‖T 2x‖n ≤ ‖T n+1x‖ · ‖T x‖n−1. Therefore

‖T x‖2n ≤ ‖T 2x‖n · ‖x‖n ≤ ‖T n+1x‖ · ‖T x‖n−1 · ‖x‖n.
So we have T ∈ P(n + 1). Thus by induction, the proof is complete. �
Theorem 2 Let T be in B(H). If T belongs to P(3)

⋂
P(4), then T belongs to P(5).

Proof. Let T ∈ P(3) ∩P(4). Since T ∈ P(3), it holds ‖T 3x‖3 ≤ ‖T 5x‖ · ‖T 2x‖2. Hence ‖T 3x‖6 ≤ ‖T 5x‖2 · ‖T 2x‖4.

Next since T ∈ P(4), we have ‖T 2x‖4 ≤ ‖T 5x‖ · ‖T x‖3. Therefore

‖T 3x‖6 ≤ ‖T 5x‖3 · ‖T x‖3 that is ‖T 3x‖2 ≤ ‖T 5x‖ · ‖T x‖.
Since T ∈ P(3), it holds

‖T x‖6 ≤ ‖T 3x‖2 · ‖x‖4 ≤ ‖T 5x‖ · ‖T x‖ · ‖x‖4,
that is, T ∈ P(5). �
Theorem 3 Let T be in B(H). If T belongs to P(3)

⋂
P(4), then T belongs to P(n) for all n ≥ 5.

Proof. Let T ∈ P(3)
⋂

P(4). We show the theorem by induction T ∈ P(k) (k = 3, 4, ..., n).

Since T ∈ P(n − 1), it holds ‖T 3x‖n−1 ≤ ‖T n+1x‖ · ‖T 2x‖n−2.

By T ∈ P(n), we have ‖T 2x‖n ≤ ‖T n+1x‖ · ‖T x‖n−1.

By T ∈ P(3), it holds ‖T x‖3(n−1) ≤ ‖T 3x‖n−1 · ‖x‖2(n−1).

Therefore
‖T x‖3(n−1) ≤ ‖T 3x‖n−1 · ‖x‖2(n−1) ≤ ‖T n+1x‖ · ‖T 2x‖n−2 · ‖x‖2(n−1)

≤ ‖T n+1x‖ · (‖T n+1x‖ 1
n · ‖T x‖ n−1

n )n−2 · ‖x‖2(n−1)

= ‖T n+1x‖ 2(n−1)
n · ‖T x‖ (n−1)(n−2)

n · ‖x‖2(n−1).

Hence we have

‖T x‖n+1 ≤ ‖T n+1x‖ · ‖x‖n.
Thus T ∈ P(n + 1). Hence, by induction with Theorem 2 the proof is complete. �
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The following corollary is the direct consequence.

Corollary 1 In B(H), it holds P(2) ⊂
∞⋂

n=3

P(n) = P(3)
⋂

P(4).

It should be remarked that the above inclusion is proper by Example 2. Moreover, we have following

Theorem 4 In B(H), it holds P(3)
⋂

P(4) ⊂ {T : T 2 ∈ P(2)}.
Proof. Let T ∈ P(3) ∩P(4). Since ‖T x‖3 ≤ ‖T 3x‖ · ‖x‖2, ‖T x‖4 ≤ ‖T 4x‖ · ‖x‖3, we have

‖T 2x‖3 ≤ ‖T 4x‖ · ‖T x‖2,
hence

‖T 2x‖6 ≤ ‖T 4x‖2 · ‖T x‖4 ≤ ‖T 4x‖3 · ‖x‖3.
That is, ‖T 2x‖2 ≤ ‖T 4x‖ · ‖x‖ and T 2 ∈ P(2). �
We proved following result for the weighted shift operator by Example 2.

Theorem 5 Let T be in B(H). If T and T−1 belong to P(3), then T belongs to P(4).

Proof. Since ‖T−1x‖3 ≤ ‖T−3x‖ · ‖x‖2 for every x ∈ H , it holds

‖T 3x‖3 ≤ ‖T x‖ · ‖T 4x‖2.
Since T ∈ P(3), it holds

‖T x‖9 ≤ ‖T 3x‖3 · ‖x‖6.
Hence it holds

‖T x‖9 ≤ ‖T x‖ · ‖T 4x‖2 · ‖x‖6.
Therefore, we have

‖T x‖4 ≤ ‖T 4x‖ · ‖x‖3.
�

Remark These results hold for Banach space operators.

4. ∗-n-Paranormal Operators

Next we study ∗-n-paranormal operators.

Definition 2 Let n ≥ 2. An operator T ∈ B(H) is said to be ∗-n-paranormal if

‖T ∗x‖n ≤ ‖T nx‖ · ‖x‖n−1 (∀x ∈ H).

In particular, in case that n = 2, T is called ∗-paranormal. We denote the set of all ∗-n-paranormal operators by

S(n).

It is well known the following result.

Theorem A (Arora and Thukral, 1986) In B(H), it holds S(2) ⊂ P(3).

Related to the above, we have

Theorem 6 In B(H), it holds S(n) ⊂ P(n + 1) for all n ≥ 2.

Proof. By the definition it holds ‖T ∗x‖n ≤ ‖T nx‖ · ‖x‖n−1. Therefore

‖T ∗T x‖n ≤ ‖T n+1x‖ · ‖T x‖n−1

and

‖T x‖2n ≤ ‖T ∗T x‖n · ‖x‖n ≤ ‖T n+1x‖ · ‖T x‖n−1 · ‖x‖n.
Hence T ∈ P(n + 1). �
Hence we have
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Theorem 7 In B(H), it holds
∞⋂

n=2

S(n) ⊂ P(3)
⋂

P(4).

5. Spectral Properties of ∗-n-Paranormal Operators

Theorem 8 Let T be in B(H). If T belongs to S(n) andM is an invariant subspace for T , then T∣∣∣M belongs to

S(n).

Proof. Let P be the orthogonal projection ontoM. Then T P = PT P, so that

(T∣∣∣M)∗ = PT ∗P.

Hence, for x ∈ M we have

‖(T∣∣∣M)∗x‖n = ‖PT ∗x‖n ≤ ‖T ∗x‖n ≤ ‖T nx‖ · ‖x‖n−1 = ‖(T∣∣∣M)nx‖ · ‖x‖n−1.

Thus T∣∣∣M ∈ S(n). �

Theorem 9 For T ∈ B(H), let T belong to S(n) and z be an eigen-value of T . If (T − z)x = 0, then (T − z)∗x = 0.

Proof. We may assume x � 0 and ‖x‖ = 1. Then

‖T ∗x‖n ≤ ‖T nx‖ · ‖x‖n−1 = |z|n.
Hence ‖T ∗x‖ ≤ |z| and

0 ≤ ‖(T − z)∗x‖2 = ‖T ∗x‖2 − 2Re (T ∗x, z̄x) + |z|2 ≤ 2|z|2 − 2|z|2 = 0.

Hence (T − z)∗x = 0. �
Therefore we have the following corollary.

Corollary 2 For T ∈ B(H), let T belong to S(n) and z,w be distinct eigen-values of T . If x and y are corresponding
eigen-vectors of z and w, respectively, then (x, y) = 0.

We denote the approximate point spectrum of T by σa(T ).

Corollary 3 For T ∈ B(H), let T belong to S(n).

(1) If z ∈ σa(T ) and ‖(T − z)xn‖ → 0 for unit vectors xn, then ‖(T − z)∗xn‖ → 0.

(2) Let z and w (z � w) be in σa(T ). If ‖(T − z)xn‖ → 0 and ‖(T − w)yn‖ → 0 for unit vectors xn, yn, then
(xn, yn)→ 0.

Proof is direct from above results.

If T ∈ P(n), then T is normaloid and Weyl’s Theorem holds for T . Hence if T ∈ S(n) then T is normaloid and

Weyl’s Theorem holds for T , i.e., it holds w(T ) = σ(T ) \ π00(T ), where σ(T ), w(T ) and π00(T ) are the spectrum,

Weyl spectrum and the set of all isolated eigen-values with finite multiplicity of T , respectively (see Conway, 1985,

p. 49). If T ∈ S(n), then T ∈ P(n + 1) by Theorem 6. Hence, results of operators of P(n + 1) hold for operators

of S(n). For example, let T ∈ S(n), and if λ is an isolated point of σ(T ) and D is a domain of C such that λ ∈ D◦

(the interior of D) and D ∩ σ(T ) = {λ}, then E =
1

2πi

∫
∂D

(T − z)−1dz is an orthogonal projection and satisfies

EH = ker(T − λ) (cf. Uchiyama & Tanahashi, preprint).

Theorem 10 For T, S ∈ B(H), if T and S belong to P(n), then T ⊗ S belongs to P(n).

Proof.
‖(T ⊗ S )(x ⊗ y)‖n = ‖T x ⊗ S y‖n = ‖T x‖n · ‖S y‖n

≤ ‖T nx‖ · ‖x‖n−1 · ‖S ny‖ · ‖y‖n−1

= ‖(T n ⊗ S n)(x ⊗ y)‖ · ‖x ⊗ y‖n−1

= ‖(T ⊗ S )n(x ⊗ y)‖ · ‖x ⊗ y‖n−1.

�
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By Theorems 1 and 3 we have following corollaries.

Corollary 4 For T, S ∈ B(H), if T belongs to P(2) and S belongs to P(n), then T ⊗ S belongs to P(n).

Corollary 5 For T, S ∈ B(H), if T belongs to P(3)
⋂

P(4) and S belongs to P(n), then T ⊗ S belongs to P(n)

for n ≥ 5.

Similarly, it holds

Theorem 11 For T, S ∈ B(H), if T and S belong to S(n), then T ⊗ S belong to S(n).

6. Banach Space Operators

Finally, we introduce ∗-paranormal operators on Banach space. Let X be a complex Banach space and T be a

bounded linear operator on X. We define the subset Π(X) of X × X∗ by

Π(X) = {(x, f ) ∈ X × X∗ : ‖ f ‖ = f (x) = ‖x‖ = 1},
where X∗ is the dual space of X.

Definition 3 An operator T ∈ B(X) is said to be ∗-n-paranormal if

‖T ∗ f ‖n ≤ ‖T nx‖ (∀(x, f ) ∈ Π(X)),

where T ∗ is the dual operator of T .

We denote the same symbol S(n) for the set of all ∗-n-paranormal operators on X. Then we have following result.

Theorem 12 Let T be a ∗-n-paranormal operator on X. Then ‖T x‖n+1 ≤ ‖T n+1x‖ for every unit vector x.

Proof. For a unit vector x, let (x, f ) ∈ Π(X) and T x � 0. Choose g ∈ X∗ such that ‖g‖ = g(
T x
‖T x‖ ) = 1. Hence since

(
T x
‖T x‖ , g) ∈ Π(X), it holds

‖T x‖n = (g(T x))n =
(
(T ∗g)(x)

)n ≤ ‖T ∗g‖n · ‖x‖n ≤ ‖T n( T x
‖T x‖

)‖ · ‖x‖n.
Therefore we have ‖T x‖n+1 ≤ ‖T n+1x‖ for every unit vector x. �
By Theorem 12, for Banach space operators it holds S(n) ⊂ P(n + 1).

Definition 4 Let A and B be subspaces of X. A is orthogonal to B (denoted A⊥ B) if

‖a‖ ≤ ‖a + b‖ (a ∈ A, b ∈ B).

Let ker(T ) and R(T ) be the kernel and the range of T ∈ B(X), respectively. We need following propositions:

Proposition 1 (Bonsall & Duncan, 1973, Lemma 20.2) For an operator T ∈ B(X), the implications (iii) =⇒
(ii) ⇐⇒ (i) hold between the statements:

(i) ker(T 2) = ker(T ),

(ii) ker(T )
⋂

R(T ) = {0},
(iii) ker(T )⊥R(T ).

Proposition 2 (Bonsall & Duncan, 1973, Lemma 20.3) For an operator T ∈ B(X), the following statements are
equivalent:

(iii) ker(T )⊥R(T ).

(iv) If T x = 0 for a unit vector x, then there exists f ∈ X∗ such that (x, f ) ∈ Π(X) and T ∗ f = 0.

If T is ∗-n-paranormal, then property (iv) holds for T . So we have following result.

Theorem 13 Let T be a ∗-n-paranormal operator on X. Then ker(T )⊥R(T ).

By Proposition 1 and Theorem 13 next theorem holds and shows that if T is ∗-n-paranormal, then asc(T ) ≤ 1.

Theorem 14 Let T be a ∗-n-paranormal operator on X. If T 2x = 0, then T x = 0.
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Definition 5 (i) A normed space is said to be strictly convex if and only if x and y are linear dependent whenever

‖x + y‖ = ‖x‖ + ‖y‖.
(ii) A Banach space is said to be uniformly convex if and only if for each ε > 0 there exists δ > 0 such that if

||x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε, then

‖ x + y
2
‖ ≤ 1 − δ.

It is well known that if X is uniformly convex, then X is strictly convex.

Theorem 15 Let the dual space X∗ of X be strictly convex and T be a ∗-n-paranormal operator on X. If T x = zx
for z ∈ C and (x, f ) ∈ Π(X), then T ∗ f = z f .

Proof. Since T is ∗-n-paranormal, it holds

‖T ∗ f ‖n ≤ ‖T nx‖ = |z|n · ‖x‖ = |z|n.
Hence we have ‖T ∗ f ‖ ≤ |z|. Therefore

2|z| ≥ ‖T ∗ f ‖ + ‖z f ‖ ≥ ‖T ∗ f + z f ‖ ≥ |(T ∗ f + z f )(x)| = 2|z|.
This shows that ‖T ∗ f + z f ‖ = ‖T ∗ f ‖ + ‖z f ‖, i.e., T ∗ f and z f are linearly dependent. Since X∗ is strictly convex,

we have T ∗ f = z f . �
Theorem 16 Let the dual space X∗ of X be strictly convex and T be a ∗-n-paranormal operator on X. If z is an
eigen-value of T , then ker(T − z)⊥R(T − z).

Proof. Let x ∈ ker(T − z). We may assume ‖x‖ = 1. Choose f ∈ X∗ such that (x, f ) ∈ Π(X). Then by Theorem 15

it holds (T − z)∗ f = 0. Hence by Proposition we have ker(T − z)⊥R(T − z). �
Theorem 17 Let the dual space X∗ of X be strictly convex and T be a ∗-n-paranormal operator on X. If z and w
are distinct eigen-values of T , then ker(T − z)⊥ ker(T − w).

Proof. Let (T − z)x = 0 with ‖x‖ = 1 and (T − w)y = 0. Then by Theorem 16 it holds

1 ≤ ‖x + (w − z)−1(T − z)y‖ = ‖x + y + (w − z)−1(T − w)y‖ = ‖x + y‖.
Therefore we have ker(T − z)⊥ ker(T − w). �
Theorem 18 Let X be uniformly convex and T ∗ be a ∗-n-paranormal operator on X. If T ∗ f = z f for z ∈ C and
(x, f ) ∈ Π(X), then T x = zx.

Proof. Since X is uniformly convex, it holds X∗∗ = X. Hence since X∗∗ is strictly convex, T ∗ f = z f and

( f , x) ∈ Π(X∗), we have T ∗∗x(= T x) = zx by Theorem 15. �
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