On Dihedral Angles of a Simplex

H. Maehara¹

¹ Ryukyu University, Nishihara, Okinawa, Japan

Correspondence: H. Maehara, Ryukyu University, Nishihara, Okinawa 903-0129, Japan. E-mail: hmaehara@edu.u-ryukyu.ac.jp

Received: March 11, 2013Accepted: April 24, 2013Online Published: May 3, 2013doi:10.5539/jmr.v5n2p79URL: http://dx.doi.org/10.5539/jmr.v5n2p79

Abstract

For an *n*-simplex, let α , β denote the maximum, and the minimum dihedral angles of the simplex, respectively. It is proved that the inequality $\alpha \leq \arccos(1/n) \leq \beta$ always holds, and either side equality implies that the *n*-simplex is a regular simplex. Similar inequalities are also given for a star-simplex, which is defined as a simplex that has a vertex (apex) such that the angles between distinct edges incident to the apex are all equal. Further, an explicit formula for the dihedral angle of a star-simplex between two distinct facets sharing the apex in common is presented in terms of the angle between two edges incident to the apex.

Keywords: dihedral angle, star-simplex, lateral angle

1. Introduction

Let σ be an *n*-dimensional simplex (*n*-simplex) in \mathbb{R}^n , $n \ge 2$, and let f_i , f_j be two distinct facets of σ . The dihedral angle $\angle(f_i, f_j)$ between the facets f_i , f_j is defined as the supplement of the angle between the unit outer normal vectors of the facets f_i , f_j . For $n \ge 3$, the sum of $\binom{n+1}{2}$ dihedral angles of an *n*-simplex is not constant. Indeed, the following holds (see Gaddum, 1952, 1956).

▷ The sum of the $\binom{n+1}{2}$ dihedral angles of an *n*-simplex lies between $\lceil \frac{n^2-1}{4} \rceil \pi$ and $\binom{n}{2} \pi$, and the sum can take any value in this range.

A dihedral angle is called acute (resp. nonobtuse) if the angle is less than (resp. not greater than) $\pi/2$. The next result seems first appeared in Fielder (1954), and rediscovered again in Leng (2003).

 \triangleright Every *n*-simplex has at least *n* acute dihedral angles.

For an *n*-simplex σ , let $\alpha = \alpha(\sigma)$, $\beta = \beta(\sigma)$ denote the minimum value and the maximum value of the dihedral angles in σ , respectively. If σ is a regular *n*-simplex, then $\alpha = \beta = \arccos \frac{1}{n}$. In the 2-dimensional case n = 2, since the sum of the interior angles of a triangle is π , we have $\alpha \le \pi/3 \le \beta$ and $\alpha = \pi/3 \Leftrightarrow \beta = \pi/3$. A similar assertion also holds in $n \ge 3$, though the sum of dihedral angles are not constant. The next is the main result of this paper.

Theorem 1 For every *n*-simplex, $\alpha \leq \arccos \frac{1}{n} \leq \beta$ holds. Moreover, if either side equality holds, then the other side equality also holds and the simplex becomes a regular simplex.

We present a similar result for a family of star-simplexes. A *star-simplex* with *vertex angle* θ is defined to be a simplex that has a vertex *v* such that the plane angle between any two distinct edges incident to *v* is equal to θ . The vertex *v* is called the *apex* of the star-simplex. If those edges incident to the apex are of the same length, then the star-simplex is called a *regular star-simplex*. In a star-simplex, the dihedral angles between two distinct facets sharing the apex in common are all equal, and their common value is called the *lateral angle* of the star-simplex.

Theorem 2 In an n-dimensional star-simplex with vertex angle θ , the lateral angle $\delta = \delta(\theta)$ is given by

$$\cos \delta = \frac{\cos \theta}{1 + (n-2)\cos \theta}.$$
(1)

It follows from (1) that $\delta(\theta)$ is a monotone increasing function of θ in $0 \le \theta \le \arccos \frac{-1}{n-1}$, and

$$\delta(0) = \arccos \frac{1}{n-1}$$

 $\delta(\frac{\pi}{3}) = \arccos \frac{1}{n}$ $\delta(\frac{\pi}{2}) = \pi/2$ $\delta(\arccos \frac{-1}{n}) = \pi.$

Theorem 3 An *n*-dimensional star-simplex with vertex angle θ (resp. lateral angle δ) exists if and only if

$$0 < \theta < \arccos \frac{-1}{n-1} \left(\operatorname{resp.} \arccos \frac{1}{n-1} < \delta < \pi \right).$$

Let $\varphi(\delta) = \arccos\left(\frac{1}{n}\sqrt{n-n(n-1)\cos\delta}\right)$. This is the other value of dihedral angles in a regular star-simplex with lateral angle δ . Note that $\varphi(\delta)$ is strictly monotone decreasing in $\arccos\frac{1}{n-1} < \delta < \pi$, and $\varphi(\arccos\frac{1}{n}) = \arccos\frac{1}{n}$.

Theorem 4 For an n-dimensional star-simplex σ with vertex angle θ , the following holds:

(1) If $0 < \theta < \pi/3$ (i.e. $\arccos \frac{1}{n-1} < \delta < \arccos \frac{1}{n}$), then $0 < \alpha \le \delta < \varphi(\delta) \le \beta < \pi - \delta$, and $\beta = \varphi(\delta)$ implies that σ is a regular star-simplex.

(2) If $\pi/3 \le \theta < \pi/2$ (i.e. $\arccos \frac{1}{n} \le \delta < \pi/2$), then $0 < \alpha \le \varphi(\delta) \le \delta \le \beta < \pi - \delta$, and $\alpha = \varphi(\delta)$ implies that σ is a regular star-simplex.

(3) If $\pi/2 \le \theta < \arccos \frac{-1}{n-1}$ (i.e. $\pi/2 \le \delta < \pi$), then $0 < \alpha \le \varphi(\delta) < \delta = \beta$, and $\alpha = \varphi(\delta)$ implies that σ is a regular star-simplex.

2. Proof of Theorem 1

Let $S(O, x) \subset \mathbb{R}^n$ denote a sphere with center *O* and radius *x*.

Lemma 1 For an n-simplex σ , let $\overrightarrow{OP_0}, \overrightarrow{OP_1}, \ldots, \overrightarrow{OP_n}$ be the unit outer normal vectors of the facets of σ . Then, P_0, \ldots, P_n span a simplex that contains O in its interior.

Proof. We may suppose that S(O, 1) is the inscribed sphere of σ , and the n + 1 points P_0, \ldots, P_n are the contact points of S(O, 1) with the n + 1 facets of σ . Then, no closed hemisphere of S(O, 1) can contain these n + 1 points, for otherwise, the inscribed sphere S(O, 1) of σ can slip out of the simplex σ . Hence, O is an interior point of the simplex spanned by P_0, \ldots, P_n .

Let us recall here some values concerning a regular simplex. If a regular *n*-simplex has unit circumradius, then

- \circ the radius of its inscribed sphere is equal to 1/n,
- its edge-length is equal to $l(n) := \sqrt{2(n+1)/n}$, and
- its dihedral angle is equal to $\arccos \frac{1}{n}$.

Note that l(n) is strictly monotone decreasing in *n*, and the edge-length of a regular *n*-simplex with circumradius *R* is given by $R \cdot l(n)$.

For a set V of n + 1 points on a unit sphere $S(O, 1) \subset \mathbb{R}^n$, let a(V), b(V) denote the minimum value and the maximum value of the Euclidean distance |PQ| for $P, Q \in V$, $P \neq Q$. If V spans a regular simplex, then we have a(V) = b(V) = l(n).

Lemma 2 Suppose that a set V of n + 1 points on $S(O, 1) \subset \mathbb{R}^n$ spans an n-simplex $\langle V \rangle$ that contains O in its interior. Then

- (1) $a(V) \le l(n)$, and if the equality holds, then $\langle V \rangle$ is a regular n-simplex.
- (2) $b(V) \ge l(n)$, and if the equality holds, then $\langle V \rangle$ is a regular n-simplex.

Proof. (1) We use the following result in Deza and Maehara (1994):

(*) For any *m* points P_1, P_2, \ldots, P_m on S(O, R), we have

$$m^2 R^2 \ge \sum_{i < j} |P_i P_j|^2,$$

and the equality holds if and only if $\frac{1}{m} \sum P_i = O$.

Applying (*) to the point set *V* on *S*(*O*, 1), we have $(n + 1)^2 \ge {\binom{n+1}{2}}a(V)^2$. This implies that $a(V) \le l(n)$, and the equality holds only when |PQ| = l(n) for all $P, Q \in V, P \ne Q$, which implies that $\langle V \rangle$ is a regular *n*-simplex.

(2) Proof is by induction on the dimension *n*. For n = 2, (2) can be easily seen. Suppose that (2) is true for every (n - 1)-simplex, and let us consider the *n*-dimensional case. We use the circumradius-inradius inequality for an *n*-simplex (see, e.g., Klamkin & Tsintsifas, 1979):

(**) The radius r of the inscribed sphere and the radius R of the circumscribed sphere of an n-simplex always satisfy $r \le R/n$.

Let $\tau = \langle V \rangle$. Since *O* is an interior point of τ , there is an $x_0 > 0$ such that $S(O, x_0)$ is tangent to a facet f of τ and $S(O, x_0) \subset \tau$. This x_0 must be smaller than or equal to the radius r_0 of the inscribed sphere of τ . Since $r_0 \leq 1/n$ by (**), we have $\sqrt{1 - x_0^2} \geq \sqrt{1 - r_0^2} \geq \sqrt{1 - (1/n)^2}$. The edge length of a regular (n - 1)-simplex with circumradius $\sqrt{1 - (1/n)^2}$ is given by $\sqrt{1 - (1/n)^2} \cdot l(n - 1)$, which is equal to l(n) as easily verified. Note that the contact point of $S(O, x_0)$ and the facet f is the circum-center of the facet f, and it is an interior point of f. Hence, we can apply the inductive hypothesis to the set V_f of n vertices of the facet f on a sphere of radius $\sqrt{1 - x_0^2}$ in \mathbb{R}^{n-1} . Therefore,

$$b(V_f) \ge \sqrt{1 - x_0^2} \cdot l(n-1) \ge \sqrt{1 - (1/n)^2} \cdot l(n-1) = l(n)$$

Thus, $b(V) \ge b(V_f) \ge l(n)$.

Now, suppose that b(V) = l(n). Then, for 0 < x < 1/n, no facet of τ can touch S(O, x), for otherwise, we have $b(V_f) > l(n)$ for some facet f of τ , as easily seen. Hence we can deduce, from $r \le 1/n$, that the sphere S(O, 1/n) must be tangent to all facets of τ . In this case, b(V) = l(n) implies that all edge-lengths of τ are equal to l(n), and τ is a regular *n*-simplex.

Proof [Proof of Theorem 1]. Let σ be an *n*-simplex and f_0, f_1, \ldots, f_n be the facets of σ . Let $\overrightarrow{OP_i}$ be the unit outer normal vectors of the facets f_i . Then $P_i \in S(O, 1)$. Let $V = \{P_0, \ldots, P_n\}$, and τ be the simplex spanned by V. By Lemma 1, O is an interior point of τ . The dihedral angle $\angle(f_i, f_j)$ of the facets f_i, f_j ($i \neq j$) and the angle $\angle P_i OP_j$ are related as

$$\angle(f_i, f_j) = \pi - \angle P_i O P_j.$$

By the cosine law, $\angle P_i OP_j = \arccos(1 - \frac{1}{2}|P_iP_j|^2)$, and $|P_iP_j| = l(n)$ if and only if $\angle P_i OP_j = \arccos(\frac{-1}{n})$. Since arccos *x* is monotone decreasing for $0 < x < \pi$, it follows from the inequality $a(V) \le l(n) \le b(V)$ in Lemma 2 that the minimum value of $\angle P_i OP_j$ is less than or equal to $\arccos(\frac{-1}{n})$ and the maximum value of $\angle P_i OP_j$ is greater than or equal to $\arccos(\frac{-1}{n})$. Now, since

$$\arccos \frac{1}{n} = \pi - \arccos \frac{-1}{n},$$

the theorem follows.

3. Proof of Theorems 2 and 3

Proof [Proof of Theorem 2]. Let $\langle v_0, v_1, \ldots, v_n \rangle$ be an *n*-dimensional star-simplex with vertex angle θ , and suppose v_0 is the apex. Let $\mathbf{a}_i = \overrightarrow{v_0 v_i}$, $i = 1, 2, \ldots, n$. To compute the lateral angle δ , we may suppose that $|v_0 v_i| = 1$ for $i = 1, 2, \ldots, n$. Let \mathbf{n}_i denote the unit outer normal vector of the facet opposite to the vertex v_i . Then $\cos \delta = -\mathbf{n}_1 \cdot \mathbf{n}_2$. We can write \mathbf{n}_1 as

$$\boldsymbol{n}_1 = \boldsymbol{x}_2 \boldsymbol{a}_2 + \boldsymbol{x}_3 \boldsymbol{a}_3 + \dots + \boldsymbol{x}_n \boldsymbol{a}_n + \boldsymbol{y} \boldsymbol{a}_1$$

with some $x_2, \ldots, x_n, y \in \mathbb{R}$. Since $a_i \cdot n_1 = 0$ for $i \neq 1$ and $a_i \cdot a_j = \cos \delta$ for $i \neq j$, we have

$$0 = x_i + (x_2 + x_3 \dots + x_n - x_i) \cos \delta + y \cos \delta$$
$$= x_i (1 - \cos \delta) + T \cos \delta + y \cos \delta,$$

where $T = x_2 + x_3 + \cdots + x_n$. Therefore, $x_2 = x_3 = \cdots = x_n$. Thus, we may put n_1 , and (by symmetry) n_2 as

$$n_1 = x(a_2 + a_3 + \dots + a_n) + ya_1,$$

 $n_2 = x(a_1 + a_3 + \dots + a_n) + ya_2.$

Since $\boldsymbol{a}_2 \cdot \boldsymbol{n}_1 = 0$ and $\boldsymbol{n}_1 \cdot \boldsymbol{n}_1 = 1$, we have

$$0 = x(1 + (n-2)\cos\theta) + y\cos\theta,$$
(2)

$$1 = x^{2}(n-1+(n-1)(n-2)\cos\theta) + y^{2} + 2xy(n-1)\cos\theta.$$
(3)

Subtracting $(2) \times (n-1)x$ from (3), we have

$$1 = y^2 + xy(n-1)\cos\theta \tag{4}$$

On the other hand,

$$\mathbf{n}_1 \cdot \mathbf{n}_2 = y^2 \cos \theta + 2xy(1 + (n-2)\cos \theta) + x^2(n-2 + (n^2 - 3n + 3)\cos \theta).$$

Using (3),

$$n_1 \cdot n_2 - 1 = y^2(\cos \theta - 1) + x^2(-1 + \cos \theta) + 2xy(1 - \cos \theta)$$

= $-(x - y)^2(1 - \cos \theta).$

Hence

$$\boldsymbol{n}_1 \cdot \boldsymbol{n}_2 = -(x - y)^2 (1 - \cos \theta) + 1 \tag{5}$$

Let $t = (-\cos\theta)/(1 + (n-2)\cos\theta)$. Then, x = ty by (2), and substituting this in (4), we have

$$y^2 = (1 + t(n - 1)\cos\theta)^{-1}$$

Now, from (5) we have

$$\boldsymbol{n}_1 \cdot \boldsymbol{n}_2 = -y^2(t-1)^2(1-\cos\theta) + 1 = \frac{-(t-1)^2(1-\cos\theta)}{1+t(n-1)\cos\theta} + 1.$$

Simplifying this, we get

$$\boldsymbol{n}_1 \cdot \boldsymbol{n}_2 = \frac{-\cos\theta}{1 + (n-2)\cos\theta}.$$

Since $\cos \delta = -\mathbf{n}_1 \cdot \mathbf{n}_2$, we have the theorem.

Proof [Proof of Theorem 3]. It is enough to show that an *n*-dimensional star-simplex of lateral angle δ exists if and only if

$$\arccos \frac{1}{n-1} < \delta < \pi.$$

The necessity of $\delta < \pi$ is obvious. Let σ be an *n*-dimensional star-simplex with lateral angle δ , and let f_0, f_1, \ldots, f_n be the facets of σ , f_0 be the facet opposite to the apex. Let $\overrightarrow{OP_i}$ be the unit outer normal vectors of the facets f_i . Then $P_i \in S(O, 1)$, and the simplex $\langle P_1, \ldots, P_n \rangle$ is a regular (n - 1)-simplex. By Lemma 1, the simplex $\langle P_0, P_1, \ldots, P_n \rangle$ contains *O* in its interior. Hence its facet $\langle P_1, \ldots, P_n \rangle$ does not contain *O*. Therefore, the circumradius of the facet $\langle P_1, \ldots, P_n \rangle$ is less than 1. Let *Q* be the circumcenter of $\langle P_1, \ldots, P_n \rangle$. Since this facet is a regular (n - 1)-simplex, we have $\angle P_1 Q P_2 = \arccos \frac{-1}{n-1}$. Since $\angle P_1 O P_2 < \angle P_1 Q P_2$, we have $\angle P_1 O P_2 < \arccos \frac{-1}{n-1}$. Hence

$$\delta = \pi - \angle P_1 O P_2 > \pi - \arccos \frac{-1}{n-1} = \arccos \frac{1}{n-1}.$$

Thus, $\delta > \arccos \frac{1}{n-1}$.

Proof of the converse is easy now, and it is omitted.

4. Proof of Theorem 4

Lemma 3 Let τ denote a (variable) n-dimensional star-simplex with lateral angle δ , and let $\omega_1, \ldots, \omega_n$ be the dihedral angles between the facet opposite to the apex and other facets. Then (i) $\inf_{\tau} \min_{i} \omega_i = 0$, $\sup_{i} \max_{i} \omega_i = \pi - \delta$,

and (ii)
$$\max_{\tau} \min_{i} \omega_{i} = \min_{\tau} \max_{i} \omega_{i} = \varphi(\delta).$$

Proof. Let f_0, f_1, \ldots, f_n be the facets of τ , f_0 be the facet opposite to the apex, and let $\overrightarrow{OP_i}$ be the unit outer normal vector of f_i . Then $P_i \in S(O, 1)$. Let $P_i^* \in S(O, 1)$ denote the antipodal point of P_i . Since $\angle(f_i, f_j) = \pi - \angle P_i OP_j$, we have

$$\angle(f_i, f_j) = \angle P_i OP_i^*.$$

Since $\angle (f_i, f_j) = \delta$ for $1 \le i < j \le n$, we may put

$$\omega_i = \angle (f_i, f_0) = \angle P_i O P_0^*$$
 for $i = 1, 2, \dots, n$.

Since the simplex $\langle P_0, P_1, \ldots, P_n \rangle$ contains *O* in its interior by Lemma 1, OP_0^* passes through an interior point of the facet $\langle P_1, \ldots, P_n \rangle$. Hence, $\omega_i < \angle P_1 OP_2 = \pi - \delta$ for $i = 1, 2, \ldots, n$. If P_0^* approaches P_1 , then $\omega_1 \to 0$, and $\omega_2 \to \angle P_1 OP_2 = \pi - \delta$. Hence we have (i). Since the facet $\langle P_1, \ldots, P_n \rangle$ is a regular (n-1) simplex, the maximum value of $\min_i \omega_i = \min_i \angle P_i OP_0^*$ is attained when OP_0^* passes through the center $Q := \frac{1}{n}(P_1 + P_2 + \cdots + P_n)$ of the facet $\langle P_1, \ldots, P_n \rangle$. Therefore, $\cos(\max_{\tau} \min_i \omega_i) = |OQ|$. Similarly, we have $\cos(\min_{\tau} \max_i \omega_i) = |OQ|$. Let us compute $|PQ|^2$.

$$\begin{split} |OQ|^2 &= \overrightarrow{OQ} \cdot \overrightarrow{OQ} = \frac{1}{n^2} (\overrightarrow{OP_1} + \dots + \overrightarrow{OP_n}) \cdot (\overrightarrow{OP_1} + \dots + \overrightarrow{OP_n}) \\ &= \frac{1}{n^2} \left(n + 2 \sum_{1 \le i < j \le n} \overrightarrow{OP_i} \cdot \overrightarrow{OP_j} \right) \\ &= \frac{1}{n^2} \left(n + n(n-1) \cos(\pi - \delta) \right) \\ &= \frac{1}{n^2} \left(n - n(n-1) \cos \delta \right). \end{split}$$

Thus $|OQ| = \frac{1}{n} \sqrt{n - n(n-1)\cos \delta}$, and (ii) follows.

Proof [Proof of Theorem 4]. Let τ be a (variable) *n*-dimensional star-simplex with lateral angle δ , and let f_0, f_1, \ldots, f_n be the facets of τ , f_0 opposite to the apex. Let $\omega_i = \angle (f_i, f_0)$.

(1) Suppose $0 < \theta < \pi/3$ (i.e. $\arccos \frac{1}{n-1} < \delta < \arccos \frac{1}{n}$). In this case, $\varphi(\delta) > \delta$. By Lemma 3, we have $\inf \min \omega_i = 0$, and

$$\max\min\{\delta, \omega_1, \dots, \omega_n\} = \min\{\delta, \max\min\omega_i\} = \min\{\delta, \varphi(\delta)\} = \delta$$

Hence $0 < \alpha \le \delta$. Similarly, we have $\sup_{i} \max_{i} \omega_{i} = \pi - \delta$ and

 $\min_{\tau} \max\{\delta, \omega_1, \dots, \omega_n\} = \max_{\tau}\{\delta, \varphi(\delta)\} = \varphi(\delta).$

Therefore, $\varphi(\delta) \leq \beta < \pi - \delta$. If $\beta = \varphi(\delta)$, then by the proof of Lemma 3, we see that σ is a regular star-simplex.

(2) Suppose $\pi/3 \le \theta < \pi/2$ (i.e. $\arccos \frac{1}{n} \le \delta < \pi/2$). In this case, $\varphi(\delta) \le \delta$, and similarly to Case 1, we have $0 < \alpha \le \varphi(\delta)$; $\delta \le \beta < \pi - \delta$, and $\alpha = \varphi(\delta)$ implies that σ is a regular star-simplex.

(3) Suppose $\pi/2 \le \theta < \arccos \frac{-1}{n-1}$ (i.e. $\pi/2 \le \delta < \pi$). Since $\binom{n}{2}$ dihedral angles of τ are equal to $\delta \ge \pi/2$ and since every *n*-simplex has at least *n* acute dihedral angles, the remaining $\binom{n+1}{2} - \binom{n}{2} = n$ dihedral angles must be all acute. Hence $\beta = \delta$. Clearly $0 < \alpha \le \varphi(\delta)$, and $\alpha = \varphi(\delta)$ implies that σ is a regular star-simplex.

References

Deza, M., & Maehara, H. (1994). A few applications of negative-type inequalities. Graphs Combin., 10, 255-262.

Fiedler, M. (1954). Geometry of the simplex in E_n . I. Casopis Pěst. Mat., 79, 297-320.

- Gaddum, J. W. (1952). The sums of the dihedral and trihedral angles in a tetrahedron. *Amer. Math. Monthly*, 59, 370-371.
- Gaddum, J. W. (1956). Distance sums on a sphere and angle sums in a simplex. Amer. Math. Monthly, 63, 91-96.
- Klamkin, M. S., & Tsintsifas, G. A. (1979). The circumradius-inradius inequality for a simplex. *Math. Mag.*, 52, 20-22.
- Leng, G. (2003). The minimum number of acute dihedral angles of a simplex. *Proc. Amer. Math. Soc.*, 131, 3039-3042. http://doi.org/10.1090/S0002-9939-03-06880-1