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Abstract

In this paper we give a new proof to Theorem 1 in Gu and Zheng (1997). We then provide that T f Tg = 0 if and only

if f (z,w) or g(z,w) is identically zero where T f and Tg are two level Toeplitz operators with generating functions

f (z,w) and g(z,w) being two variables bounded measurable functions on the unit circle . We also conjectured zero

product of three two level Toeplitz operators.
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1. Introduction

Let T denote the boundary of the unit circle, with the standard Lebesgue measure, L2(T) be the Hilbert space

of square-integrable functions. A bounded measurable function f on T defines a multiplication operator Mf on

L2(T). Let P be the projection from L2(T) onto the Hardy space H2(T). The Toeplitz operator with symbol f is

defined by T f = PMf |H2
, where “|” means restriction. A bounded operator on H2 is Toeplitz if and only if its

matrix representation, in the basis {zn, n ≥ 0}, has constant diagonals. These operators also have many natural

relationships with other relevant mathematical objects such as sequence spaces, reproducing kernels, maximal

ideals in Banach algebras, Wiener-Hopf processes, the commutant of the shift operator, etc. The algebra generated

by Toeplitz operators is of particular importance and has generated a lot of interest in the recent years. It is easy to

check that a Toeplitz operator is the zero operator if and only if its symbol is zero. Likewise, the product of two

such operators is zero if and only if the symbol of one of them is zero (Brown, & Halmos, 1963/1964).This result

was generalized naturally for finitely many products of Toeplitz operators in (Aleman & Vukotić, 2009). In this

paper we provide a new proof to the existence result in (Gu & Zheng, 1997). In (Gu & Zheng, 1997), necessary

and sufficient condition were given for when the product of two level Toeplitz operators is again Toeplitz. Our

paper is organized as follows: In section 2, we discuss existence results provided in (Aleman & Vukotić, 2009) for

the product of two one level Toeplitz operators and zero product theorem. In section 3, we provide a new proof to

product of several two-level Toeplitz operators and conditions for the zero product of two level Toeplitz operators.

Finally, we state a conjecture concerning zero product of several two level Toeplitz operators.

2. Product of One Level Toeplitz Matrices

The set of all Toeplitz operators is certainly not commutative and certainly not closed under multiplication. A

counterexample for both assertion is given by unilateral shift and its adjoint. Both U and U∗ are Toeplitz operators,

but the product U∗U is not a Topelitz operators.

When is the product of two Toeplitz operator a Toeplitz operator? The answer is rarely. The proof depends on a

simple but very useful equation involving matrix entries.

Lemma 1 Suppose T f and Tg are Toeplitz operators where f (z) and g(z) are both bounded measureable functions
on the unit circle. Write C = T f Tg and let (ci j) be the matrix of C. If the Fourier expansions of f (z) and g(z) are
f (z) =

∑∞
k=−∞ f̂k(z)zk and g(z) =

∑∞
k=−∞ ĝk(z)zk where f̂ (z) and f̂ (z) are the Fourier coefficients of f (z) and g(z).

Then
ci+1, j+1 = ci j + f̂i+1ĝ− j−1, (1)

whenever i, j ≥ 0.
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Proof. Since

ci j =

∞∑

k=0

f̂i−kĝk− j, (2)

it follows that

ci+1, j+1 =

∞∑

k=0

f̂i+1−kĝk− j−1

= f̂i+1ĝ− j−1 +

∞∑

k=1

f̂i+1−kĝk− j−1

= f̂i+1ĝ− j−1 +

∞∑

k=0

f̂i−kĝk− j

= f̂i+1ĝ− j−1 + ci j.

�
Theorem 2 A necessary and sufficient condition that the product that the product T f Tg of two Toeplitz operators
be a Toeplitz operators is that either f (z) be co-analytic or g(z) be analytic; if the condition is satisfied, then
T f Tg = T f g.

Proof. If g(z) is analytic, then

T f Tgh = T f (gh) = P( f gh) = T f gh

for all h(z) ∈ H2, so that T f Tg = T f g. If f (z) is co-analytic, then f̄ (z) is analytic, and therefore

T f Tg = (TḡT f̄ )
∗ = T ∗f̄ ḡ = T f g.

�
Theorem 3 (Riesz, F. & Riesz, M., 1916) Let F be analytic on D and L1-bounded, i.e, F ∈ H1(D). Assume that
F � 0 and set f = limr→1− Fr. Then log | f | ∈ L1(T). In particular, f does not vanish on a set of positive measure.

Theorem 4 Let f (z) and g(z) be bounded measurable functions on the unit disk. Then T f Tg = 0 if and only if
Either f (z) = 0 or g(z) = 0.

Proof. Sufficiency if trivial. If, conversely, T f Tg = 0, then, since 0 is a Toeplitz operator, it follows from Theorem

2 that either f (z) is co-analytic or g(z) is analytic and that f (z)g(z) = 0. By Theorem 3, since a non-zero analytic

function, cannot vanish on a set of positive measure, it follows that if f (z) is co-analytic, then g(z) = 0, and if g(z)

is analytic, then f (z) = 0. �
Remark 1 The following Theorem provides a new proof to Theorem 1 in (Gu & Zheng, 1997). Our proof is not

based on operator theoretical techniques. We use one variable approach which was used in (Brown & Halmos,

1963/1964). Therefore, we believe our proof is simple to understand.

3. Product of Two Level Toeplitz Operators

Theorem 5 Let f (z,w) =
∑

(k,l)∈Z2 f̂k,lzkwl ∈ L∞(T2) and g(z,w) =
∑

(k,l)∈Z2 ĝk,lzkwl ∈ L∞(T2) where f̂k,l and ĝk,l are
the Fourier coefficients of f (z,w) and g(z,w), respectively.

T f Tg = T f g (3)

if and only if one of the followings holds.

(i) f (z,w) is co-analytic in z and f (z,w) is co-analytic in w;

(ii) f (z,w) is co-analytic in z and g(z,w) is analytic in w;

(iii) g(z,w) is analytic in z and f (z,w) is co-analytic in w;

(iv) g(z,w) is analytic in z and g(z,w) is analytic in w.

Proof. Suppose that T f Tg = T f g. Our first strategy is to show that f (z,w) is co-analytic in z or g(z,w) is analytic in

z. Next, we will show f (z,w) is co-analytic in w or g(z,w) is analytic in w. Ordering N
2
0 lexicographically, i.e,

{(0, 0), (0, 1), (0, 2) . . . , (1, 0), (1, 1), (1, 2), . . . , (i, 0), (i, 1), (i, 2), . . .}.
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Then write T f = (Fi− j)
∞
i, j=0 and Tg = (Gi− j)

∞
i, j=0 where

Fi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂i,0 f̂i,−1 f̂i,−2 · · ·
f̂i,1 f̂i,0 f̂i,−1 · · ·
f̂i,2 f̂i,1

. . .
. . .

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F−i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂−i,0 f̂−i,−1 f̂−i,−2 · · ·
f̂−i,1 f̂−i,0 f̂−i,−1 · · ·
f̂−i,2 f̂−i,1

. . .
. . .

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝi,0 ĝi,−1 ĝi,−2 · · ·
ĝi,1 ĝi,0 ĝi,−1 · · ·
ĝi,2 ĝi,1

. . .
. . .

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,G−i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝ−i,0 ĝ−i,−1 ĝ−i,−2 · · ·
ĝ−i,1 ĝ−i,0 ĝ−i,−1 · · ·
ĝ−i,2 ĝ−i,1

. . .
. . .

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(1) yields that, Fi+1G− j−1 = 0 for all i, j ∈ N0. Thus Fi+1 = 0 for all i ∈ N0 or G− j−1 = 0 for all j ∈ N0 by Theorem

4. If Fi+1 = 0 then f̂i+1,k = 0 for all (i, k) ∈ N0 × Z, i.e, f (z,w) is co-analytic in z. If G− j−1 = 0 then ĝ− j−1,k = 0 for

all ( j, k) ∈ N0 × Z, i.e, g(z,w) is analytic in z. Thus we can conclude that (1) gives us f (z,w) is co-analytic in z or

g(z,w) is analytic in z. In order to see f (z,w) is co-analytic in w or g(z,w) is analytic in w, it suffices to use reverse

lexicographical ordering on N
2
0. Finally we repeat the same argument to get the desired claim. We now have that

f (z,w) is co-analytic in w or g(z,w) is analytic in w. Combining f (z,w) is co-analytic in z or g(z,w) is analytic in z
and f (z,w) is co-analytic in w or g(z,w) is analytic in w , we get four different cases given in Theorem 5.

Conversely, if (i) holds, i.e, f (z,w) is co-analytic in z and f (z,w) is co-analytic in w then we will prove that T f Tg

is Toeplitz. Let s, t, r ∈ N2
0.Write

(T f Tg)(s,t) =
∑

k∈N2
0

f̂s−kĝk−t (4)

Since k1 − s1 ≥ 0 and k2 − s2 ≥ 0, then (2) becomes

(T f Tg)(s,t) =
∑

k∈((s1,0)+N2
0
∩(s2,0)+N2

0
)

f̂s−kĝk−t (5)

Now write

(T f Tg)(s+r,t+r) =
∑

k∈((s1+s1,0)+N2
0
∩(s2+r2,0)+N2

0
)

f̂s−k+rĝk−t−r (6)

Letting k̃ = k − r, we get s1 ≤ k̃1 and s2 ≤ k̃2. Thus (4) becomes

(T f Tg)(s+r,t+r) =
∑

k̃∈(s1,s2)+N2
0

f̂s−k̃ ĝk̃−t (7)

Thus this proves that (3) and (5) are equal.

Now suppose that (ii) holds, i.e, f (z,w) is co-analytic in z and g(z,w) is analytic in w.Write

(T f Tg)(s,t) =
∑

k∈N2
0

f̂s−kĝk−t (8)

Since k1 − s1 ≥ 0 and k2 − t2 ≤ 0, (6) becomes

(T f Tg)(s,t) =
∑

k∈Θ=((s1,0)+N2
0
∩(0,t2)+N2

0
)

f̂s−kĝk−t (9)

Now write

(T f Tg)(s+r,t+r) =
∑

k∈((s1+s1,0)+N2
0
∩(0,t2+r2)+N2

0
)

f̂s−k+rĝk−t−r (10)

Letting k̃ = k − r, we get s1 ≤ k̃1, k̃2 ≤ t2, k̃2 ≤ −r2 and −r1 ≤ k̃1. This implies that k̃ ∈ Λ = ((s1,−r2) + N
2
0 ∩

(−r2, t2) + N2
0) ∩ ((s1, 0) + N2

0 ∩ (0, t2) + N2
0). Thus (8) becomes

(T f Tg)(s+r,t+r) =
∑

k̃∈Λ
f̂s−k̃ ĝk̃−t. (11)
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Note that since Θ = Λ, then (7) and (9) are equal. �
Theorem 5 Let f (z,w) and g(z,w) be in L∞(T2). Then T f Tg = 0 if and only if either f (z,w) = 0 or g(z,w) = 0.

Proof. Sufficiency is trivial. Conversely, if T f Tg = 0, then, since 0 is a Toeplitz operator, it follows from Theorem

5 that one of the four cases hold and that f (z,w)g(z,w) = 0. In the case where f (z,w) is co-analytic in z and w or

g(z,w) is analytic in z and w, then Theorem 3 applies that Since a non-zero analytic function, cannot vanish on a

set of positive measure, it follows that if f (z,w) is co-analytic in z and w, then g(z,w) = 0, and if g(z,w) is analytic

in z and w, then f (z,w) = 0. In the case where f (z,w) is co-analytic in z and g(z,w) is analytic in w, we have that

f (z,w)g(z,w) = 0 a.e on T
2. Let E×F ⊆ T×T be the zero set of f and E have positive measure in T. Since f (z,w)

is co-analytic in z and f (z,w) ∈ L∞(T2), then for each fixed w ∈ T, we have that f (z,w) ∈ H2(T). Thus f (z,w) = 0

a.e for z ∈ T and w ∈ F, i.e, E = F and hence f (z,w) = 0 on T × F. If the set F has full measure in T, then

f (z,w) = 0 on T
2. However, assume that F is not of full measure in T, then g(z,w) = 0 on T

2−T×F = T× (T−F)

and T − F has positive measure. But g(z,w) is analytic in w and for fixed z ∈ T, we have g(z,w) ∈ H2(T). Notice

that this implies g(z,w) = 0 a.e for w ∈ T. Thus T − F = T, i.e, g(z,w) = 0 on T
2. �

We now state the following conjecture.

Conjecture Let f1(z1, z2), f2(z1, z2) and f3(z1, z2) be in L∞(T2). Then T f1 T f2 T f3 = 0 if and only if at least one of

fi = 0 for 1 ≤ i ≤ 3.
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