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Abstract

The purpose of this paper was considering the impulsive fractional differential system with time delay. We inves-

tigated the existence of solution corresponding to the regulator in the admissible regulator set describing by the

compact semigroup on Banach space. The result was applied to nonlinear fractional heat equation.
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1. Introduction

There are many paper concerned with fractional differential equation and impulsive fractional differential equa-

tions. Such as, in 2008, Gastao, S. F., Frederico has solved the optimization regulation problem in the meaning of

Caputo and the fractional Neether’s theorem. In 2010, Zhongli Wei with the party have studied on the initial value

problems for fractional differential equations in the sense of Riemann-Liouville fractional derivative. These papers

are motivation of this research.

For this article, we discuss the nonlinear-retarded functional impulsive fractional differential equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dαt x(t) = Ax(t) + f (t, x(t), x(t − l), . . . , x(t − ml)) + B(t)u(t), t ∈ I\D
Δx(ti) = Ji(x(ti)), ti ∈ D
x(0) = x0, x(t) = ϕ(t), t ∈ [−ml, 0)

(1)

for some positive integer m and positive real l where I = [0,T ] ,D = {t1, t2, . . . , tn}, A is a generator of a semigroup

{S (t)}t≥0 on Banach space (B-space) X with some conditions, Δx(ti) = x(t+i ) − x(ti) denote the incitement of state

x at time ti with the magnitude of incitement Ji, i = 1, 2, ..., n. Then, we study a minimizing regulation problem

of the system with the objective functional P, that is, to search u0 an element of a family of admissible regulators

Aad which

P(u0) ≤ P(u), for all u ∈ Aad. (2)

In this case, define the objective functional by P(u) =
∫ T

0
r(t, x(t), xt, u(t))dt + g(x(T )) for all u ∈ Aad with a given

running function r and a given terminal function g and x is a solution of the system consistent with a regulator

u ∈ Aad.

The extent of this work starts with background, some important descriptions and theorems for substantiating the

main resultant of the paper, for example, definition of fractional derivative, some fractional integral inequalities

and the generalized of the Ascoli-Arzela Theorem (AAT) are recommended. The investigation of existence of

solution for the system is then presented in Subsection 3.1. Furthermore, the optimization regulation problem is

solved and written in Subsection 3.2. In the last section (Section 4), we solve the minimization regulation problem

of nonlinear fractional heat by using our main result.

2. Background

Let X and Y be any B-spaces. Throughout this article, the symbol, L(X,Y) represent the space of bounded linear

operators from X to Y . Especially, L(X) = L(X,X) which norm || · ||L(X). The symbol, PC([a, b],X) represent the
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B-spaces of piecewise continuous functions from [a, b] to X with the supremum norm || · ||PC([a,b],X). The interval

[0,T ] is denoted by I.

2.1 Description of Fractional Calculus

Definition 1 Let f ∈ C(�,�) and α > 0. Define the fractional derivative of function f by

D−α f (t) ≡ 1

Γ(α)

∫ t

0

f (s)(t − s)α−1ds (3)

for positive,

Dα f (t) = Dn(Dα−n f (t)) (4)

which 0 < n − α < 1, Dn denote the ordinary derivative of order integer n and Γ(·) denote the Gamma function.

Lemma 2 (Jumarie, G.) Given 0 < α ≤ 1. Let f , g and u be the α − th differentiable functions. Then theses
equalities hold;

Dα[ f (t)g(t)] = f (t)Dαg(t) + f (t)Dαg(t), (5)

Dα f (u(t)) = Dαu f (u)(
du
dt

)α. (6)

Theorem 3 Let ϕ ∈ C([−r, 0],X). Suppose that G ⊆ {x ∈ PC([−r,T ],X) | x(t) = ϕ(t) for t ∈ [−r, 0]}. If these
conditions hold:

1) G is a uniformly bounded subset of PC(I,X)

2) G is equicontinuous in (0, t1), (t1, t2) , . . . , (tn,T )

3) Its t−section, G(t) ≡ {x(t)|x ∈ G, t ∈ [−r,T ]\{0, t1, . . . , tn,T }}, G(t+) ≡ {x(t+)|x ∈ G} and G(t−) ≡ {x(t−)|x ∈ G}
are relatively compact (RCP) subsets of X.

Then G is a RCP subset of PC([−r,T ],X).

Proof. Let {xm} be any sequence of G. We have {xm|[0,t1]} ⊂ C([0, t1],X). Applying the AAT on interval [0, t1],

there is a subsequence of {xm}, labeled by {xm} again, s.t.

xm|[0,t1] → x1 in C([0, t1],X) as m→ ∞.
See {xm|[t1,t2]} ⊂ C([t1, t2],X) and let xm(t1) = xm(t+1 ). By using the AAT on interval [t1, t2], {xm|[t1,t2]} is a RCP

subset of C([t1, t2],X). So, there is a subsequence s.t.

xm|[t1,t2] → x2 in C([t1, t2],X) as m→ ∞.
Continue this process until time interval [tm,T ]. Then there exists a subsequence {xm}, s.t.

xm|[tn,T ] → xn+1 in C([tn,T ],X) as m→ ∞.
Define x(t) = xi(t), t ∈ [ti−1, ti] for each i ∈ {1, . . . , n + 1}. We obtain x ∈ PC([−r,T ],X) and

xm|[tn,T ] → x in PC([−r,T ],X) as m→ ∞.
Therefore G is RCP. �
2.2 Impulsive Integral Inequalities

Throughout this section, the family of all functions map from�+ to� such that their derivatives of order α exist

on�+ − {tk} and left continuous at tk, k ∈ {1, 2, . . . , n} for 0 < tk < tk+1 is represented by PCα(�+,�).

Theorem 4 Given 0 < α ≤ 1. Let y ∈ PCα(�+,�) which respect to,

yα(t) ≤ y(t)p(t) + q(t), t � tk (7)

y(t+k ) ≤ aky(tk), y(0) = a0 (8)

where ak, k = 1, 2, ... are non-negative constants and p, q ∈ C(�+,�). Then

y(t) ≤
∑

0≤tk≤t

(
∏

tk≤t j≤t

a je
∫ t j+1

t j
φα−1(tk+1−s)p(s)ds

) · (
∫ tk+1

tk
φα−1(tk+1 − s)q(s)e−

∫ s
tk
φα−1(s−r)p(r)drds) (9)
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where φα(t) = tα
Γ(α+1)

.

Proof. Let t ∈ [0, t1]. Then, we get from inequality (7),

Dαt [y(t)e−
∫ t

0
φα−1(t−s)p(s)ds] ≤ q(t)e−

∫ t
0
φα−1(t−s)p(s)ds.

By integrating of order α from 0 to t,

y(t) ≤ e
∫ t

0
φα−1(t−s)p(s)ds[a0 +

∫ t
0
φα−1(t − s)q(s)e−

∫ s
0
φα−1(s−r)p(r)drds]

= a0e
∫ t

0
φα−1(t−s)p(s)ds + e

∫ t
0
φα−1(t−s)p(s)ds

∫ t
0
φα−1(t − s)q(s)e−

∫ s
0
φα−1(s−r)p(r)drds.

For [t1, t2], by inequality (7), we get

Dα[y(t)e−
∫ t

t1
φα−1(t−s)p(s)ds

] ≤ q(t)e−
∫ t

t1
φα−1(t−s)p(s)ds

by integrating of order α from t1 to t,

y(t) ≤ y(t+1 )e
∫ t

t1
φα−1(t−s)p(s)ds

+ e
∫ t

t1
φα−1(t−s)p(s)ds

∫ t

t1
φα−1(t − s)q(s)e−

∫ s
t1
φα−1(s−r)p(r)drds

and from inequality (8), we get

y(t+1 ) ≤ a1y(t1) ≤ a0a1e
∫ t1

0
φα−1(t1−s)p(s)ds + a1e

∫ t1
0
φα−1(t1−s)p(s)ds

∫ t1

0

φα−1(t1 − s)q(s)e−
∫ s

0
φα−1(s−r)p(r)drds.

Hence, we obtain for t ∈ [t1, t2],

y(t) ≤ a0a1e
∫ t1

0
φα−1(t1−s)p(s)dse

∫ t
t1
φα−1(t−s)p(s)ds

+ a1e
∫ t1

0
φα−1(t1−s)p(s)dse

∫ t
t1
φα−1(t−s)p(s)ds ∫ t1

0
φα−1(t1 − s)q(s)e−

∫ s
0
φα−1(s−r)p(r)drds

+ e
∫ t

t1
φα−1(t−s)p(s)ds ∫ t

t1
φα−1(t − s)q(s)e−

∫ s
t1
φα−1(s−r)p(r)drds.

Assume that inequality (9) holds for t ∈ [0, tk] some integer k > 1. Then for t ∈ [tk, tk+1], the result of inequality

(7) that

Dα[y(t)e−
∫ t

tk
φα−1(t−s)p(s)ds

] ≤ q(t)e−
∫ t

tk
φα−1(t−s)p(s)ds

.

Therefore,

y(t) ≤ y(t+k )e
∫ t

tk
φα−1(t−s)p(s)ds

+ e
∫ t

tk
φα−1(t−s)p(s)ds

∫ t

tk
φα−1(t − s)q(s)e−

∫ s
tk
φα−1(s−r)p(r)drds.

Using inequality (8), we obtain, for t ∈ [tk, tk+1],

y(t) ≤ aky(tk)e
∫ t

tk
φα−1(t−s)p(s)ds

+ e
∫ t

tk
φα−1(t−s)p(s)ds

∫ t

tk
φα−1(t − s)q(s)e−

∫ s
tk
φα−1(s−r)p(r)drds.

By the induction hypothesis, this can reduced to

y(t) ≤
∑

0≤tk≤t

(
∏

tk≤t j≤t

a je
∫ t j+1

t j
φα−1(tk+1−s)p(s)ds

)(

∫ tk+1

tk
φα−1(tk+1 − s)q(s)e−

∫ s
tk
φα−1(s−r)p(r)drds)

which on simplification give the estimate (7), for t ∈ [0, tk+1]. �
Theorem 5 Let y ∈ PCα(�+,�), 0 < α < 1 which satisfies,

y(t) ≤ a +
∑

0≤tk≤t

∫ tk+1

tk
φα−1(tk+1 − s)p(s)y(s)ds +

∑
0<tk<t

cky(tk) (10)
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where a and ck ≥ 0 are constants and φα(t) = tα
Γ(α+1)

. Then,

y(t) ≤
∏

0≤tk≤t

(1 + ck)e
∫ tk+1

tk
φα−1(tk+1−s)p(s)m(s)ds

, (11)

where c0 = a − 1.

Proof. Setting the right hand side equal to μ(t). Then we have,⎧⎪⎪⎪⎨⎪⎪⎪⎩
μα(t) = p(t)y(t); t � tk

μ(t+k ) = μ(tk) + cky(tk), μ(0) = a.
(12)

Since y(t) ≤ μ(t), ⎧⎪⎪⎪⎨⎪⎪⎪⎩
μα(t) = p(t)μ(t); t � tk

μ(t+k ) = (1 + ck)μ(tk), μ(0) = a = c0 + 1.
(13)

Applying Theorem 4, we obtain

y(t) ≤
∏

0≤tk≤t

(1 + ck)e
∫ tk+1

tk
φα−1(tk+1−s)p(s)ds

.

�
3. Main Results

Let us consider system (1) with assumptions A1-A5;

A1) f : I ×Xm+1 → X is uniformly continuous in t and locally Lipchitz in x1, ..., xm+1, that is, for any δ > 0, there

is some positive a(δ) s.t.

|| f (t, x1, . . . , xm+1) − f (s, y1, . . . , ym+1)|| ≤ a(δ)[||x1 − y1|| + . . . + ||xm+1 − ym+1|| + |t − s|]
provided ||x1 − y1||, . . . , ||xm+1 − ym+1|| ≤ δ and for all s, t ∈ I.

A2) there is some constant c s.t.

f (t, x1, . . . , xm+1) ≤ c(1 + ||x1|| + . . . + ||xm+1||) (14)

for all (x1, . . . , xm+1) ∈ Xm+1.

A3) Y is another separable reflexive B-space that regulator u take the value, that is, B(s) ∈ L(Lq(I,Y),Lp(I,X))

for all s ∈ I.

A4) Ji: X → X is an operator s.t. Ji(X) is a bounded subset of X which there are ei > 0, i = 1, 2, . . . , n s.t.

||Ji(x1(t)) − Ji(x2)(t)|| ≤ ei||x1(t) − x2(t)||, (15)

for all x1, x2 ∈ X and t ∈ I.

A5) A is the infinitesimal generator of a compact semigroup {S (t)}t≥0 such there exist M ≥ 1, ω > 0 that

||S (t)|| ≤ Meωt for all t ≥ 0.

3.1 Existence of Solution of Impulsive Fractional Differential System

Definition 6 For any u ∈ Aad, a function x ∈ PC([−ml,T ],X) is called a PC−mild solution corresponding to a

regulator u if it satisfies,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x(t) = S (φ(t))ϕ(0) + 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(t) − φ(s))[ f (s, x(s), x(s − l), . . . , x(s − ml))

+ B(s)u(s)]ds +
∑

0<tk<t
S (φ(t) − φ(tk))Jk x(tk), t ∈ I

x(t) = ϕ(t), t ∈ [−ml, 0]

(16)
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With assumptions A1-A5, the existence of solution of system (1) is proved by using the LSFPT and the compact-

ness of semigroup {S (t)}t≥0. From the Definition 6, define the operator F by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Fx(t) = S (φ(t))ϕ(0) + 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(t) − φ(s))[ f (s, x(s), x(s − l), . . . , x(s − ml))

+ B(s)u(s)]ds +
∑

0<tk<t
S (φ(t) − φ(tk))Jk x(tk), t ∈ I;

Fx(t) = ϕ(t), t ∈ [−ml, 0].

for all x ∈ PC([−ml,T ],X). Then F is well-defined.

Let x ∈ PC([−ml,T ],X). By using the continuity of ||x(t)|| and ||x(t − ml)|| and assumption A2, there is some

positive constant N s.t.

|| f (s, x(s), x(s − l), . . . , x(s − kl))|| ≤ N for every s ∈ I.

Therefore,

||Fx(t)|| ≤ Meωφ(t)||ϕ||C + Meωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1[|| f (s, x(s), x(s − l), . . . , x(s − ml))|| + ||B(s)u(s)||]ds

+ Meωφ(t)
∑

0<tk<t

||Jk x(tk)||

≤ Meωφ(t)||ϕ||C + MNeωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1ds

+
Meωφ(t)

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||B(s)u(s)||ds + Meωφ(t)

∑
0<tk<t

ek ||x(tk)||

≤ Meωφ(t)||ϕ||C + MN(n + 1)eωφ(t)Tα

αΓ(α)
+

Meωφ(t)K
Γ(α)

n∑
k=0

[

∫ tk+1

tk
(tk+1 − s)

p(α−1)
p−1 ds]

p−1
p

[

∫ tk+1

tk
‖B(s)u(s)‖pds]

1
p

+ MNeωφ(t)
∑

0<tk<t

ek

≤ Meωφ(t)||ϕ||C + MNeωφ(t)Tα

αΓ(α)
+

Meωφ(t)(p − 1)(n + 1)T
pα−1
p−1 ||B(·)u||Lp(I,X)

(pα − 1)Γ(α)
+ MNeωφ(t)

n∑
k=1

ek < ∞.

Therefore, the operator F is bounded.

Lemma 7 Assume that assumption A1-A5 hold. Then the bounded operator F is continuous.

Proof. Suppose that xn is a sequence in PC([−ml,T ],X) converging to x in PC([−ml,T ],X). Then there is N0 > 0

and for every n > N0, ||xn − x||PC ≤ 1. Then ||xn|| ≤ 1 + ||x|| ≡ ρ. By using A1, for s ∈ (0,T ) there is b(ρ) > 0 s.t.

|| f (s, xn(s), xn(s − l), . . . , xn(s − ml)) − f (s, x(s), x(s − l), . . . , x(s − ml))|| ≤ b(ρ)||xn − x||PC

Therefore, we have

|Fxn(t) − Fx(t)| ≤ 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||S (φ(t) − φ(s))||

· || f (s, xn(s), xn(s − l), . . . , xn(s − ml)) − f (s, x(s), x(s − l), . . . , x(s − ml))||ds

+
∑

0<tk<t

||S (φ(t) − φ(tk))||||Jk xn(tk) − Jk x(tk)||

≤ MeωT

Γ(α)
b(ρ)||xn − x||PC

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1ds + MeωT

∑
0<tk<t

ek ||xn(tk) − x(tk)||

≤ MeωT

αΓ(α)
b(ρ)||xn − x||PC(n + 1)Tα +

k=n∑
k=0

ek ||xn − x||PC .
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Since ||xn − x||PC → 0 as n → +∞, so ||Fxn − Fx|| → 0 as n → +∞. This implies that F is continuous on

PC([−ml,T ],X). �
Corollary 8 Assume that assumption A1-A5 hold. The operator F maps bounded set into itself.

Proof. The proof is followed from the proof of Lemma 7. For each r > 0, there is some δ > 0 s.t. for every

x ∈ Bδ ≡ {x ∈ PC([−r,T ],X) | ||x||PC ≤ δ}, we have ||Fx||PC ≤ δ. �
Lemma 9 Suppose assumptions A1-A5 hold. Then the F is operator compact.

Proof. Given a bounded subset B of PC([−ml,T ],X). By Corollary 8, F(B) is bounded. Define

Q = F(B) and Q(t) = {Fx(t) | x ∈ B}.
Clearly, for t ∈ [−ml, 0], Q(t) = {ϕ(t)} is compact. We only necessary consider for t > 0. Given ε > 0. For

0 < ε ≤ t ≤ T , for short we denote f (s, x(s), x(s−l), . . . , x(s−ml))+B(s)u(s)) by f̃u(s, x(s)) where x = (x1, . . . , xm+1)

which x1(s) = x(s − l), . . . , xm(s) = x(s − ml) and xm+1(s) = x(s). Define

Qε(t) ≡ Fε(B)(t)

= S (φ(ε))S (φ(t) − φ(ε))ϕ0 +
S (φ(ε))

Γ(α)

∑
0≤tk<t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(tk+1) − φ(ε) − φ(s)) f̃u(s, x

−
(s))ds

+
S (φ(ε))

Γ(α)

∫ t−ε

tk
(t − s)α−1S (φ(t) − φ(ε) − φ(s)) f̃u(s, x

−
(s))ds + S (φ(ε))

∑
0<tk<t

S (φ(tk) − φ(ε) − φ(s))Jk(x(tk)).

(17)

By continuity of φ(t) and compactness of S (t), set {Qε(t)|x ∈ B} is RCP inX for every ε sufficiently small, t ∈ [ε, T ].

For t ∈ (0, t1] the Equation (17) reduce to

Qε(t) = Fε(B)(t) = S (φ(ε))S (φ(t) − φ(ε))ϕ0 +
S (φ(ε))

Γ(α)

∫ t−ε

0

(t − s)α−1S (φ(t) − φ(ε) − φ(s)) f̃u(s, x
−
(s))ds.

Furthermore, the continuity of ||x(t)|| and ||x(t − ml)|| on (0, t1) for all m = 1, . . . , k imply that there is a positive N
s.t. ||x(t)||, ||x(t − ml)|| ≤ N. By assumption A2 and assumption A4, there exist a positive constant c such that

|| f̃u(s, x
−
(s))|| ≤ c(1 + (m + 1)||x||PC) + ||B(·)u||Lp(I,X) ≡ Lu. (18)

Then for t ∈ [ε, t1],

sup
x∈B
||Fx(t) − Fεx(t)|| = 1

Γ(α)
sup
x∈B
||
∫ t

0

(t − s)α−1S (φ(t) − φ(s)) f̃u(s, x
−
(s))ds

− S (φ(ε))

∫ t−ε

0

(t − s)α−1S (φ(t) − φ(ε) − φ(s)) f̃u(s, x
−
(s))ds||

=
1

Γ(α)
sup
x∈B
||
∫ t

t−ε
(t − s)α−1S (φ(t) − φ(s)) f̃u(s, x

−
(s))ds||

≤ MLu

Γ(α)

∫ t

t−ε
(t − s)α−1ds =

MLuε
α

Γ(α + 1)
.

Hence, there exist RCP sets arbitrary close to the set Q(t) for t ∈ [0, t1]. Therefore, Q(t) itself is RCP in X on the

interval [0, t1]. On the interval (t1, t2], we define

Q(t+1 ) ≡ Q(t−1 ) + J1(Q(t−1 )) = Q(t1) + J1(Q(t1)).

By the condition A3, we get J1(Q(t1)) is RCP and this implies Q(t+1 ) is also RCP. Let x(t+1 ) = x1. Then for t ∈ (t1,

t2], the Equation (17) reduce to

Qε(t) = Fε(B)(t)

= S (φ(ε))S (φ(t) − φ(t1) − φ(ε))x1 +
S (φ(ε))

Γ(α)

∫ tk+1

0

(t1 − s)α−1S (φ(t1) − φ(ε) − φ(s)) f̃u(s, x
−
(s))ds

+
S (φ(ε))

Γ(α)

∫ t−ε

t1
(t − s)α−1S (φ(t) − φ(ε) − φ(s)) f̃u(s, x

−
(s))ds + S (φ(ε))S (φ(t1) − φ(ε) − φ(s))J1(x(t1)).
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Furthermore, for t ∈ [t1 + ε, t2],

sup
x∈B
{||Fx(t) − Fx(t)||} ≤ MLuε

α

Γ(α + 1)
.

Therefore Q(t) is RCP on [t1, t2].

Generally, given any tk ∈ D = {t0 = 0, t1, t2, . . . , tn, tn+1 = T }, define x(t+k ) = xk and

Q(t+k ) ≡ Q(t+k ) + Jk(Q(t−k )) = Q(tk) + Jk(Q(tk)) for tk ∈ D.
Similarly, for t ∈ (tk, tk+1], the Equation (17) reduce to

Qε(t) = Fε(B)(t)

= S (φ(ε))S (φ(t) − φ(tk) − φ(ε))xk +
S (φ(ε))

Γ(α)

∑
0≤tk<t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(tk+1) − φ(ε) − φ(s)) f̃u(s, x

−
(s))ds

+
S (φ(ε))

Γ(α)

∫ t−ε

tk
(t − s)α−1S (φ(t) − φ(ε) − φ(s)) f̃u(s, x

−
(s))ds + S (φ(ε))

∑
0<tk<t

S (φ(tk) − φ(ε) − φ(s))Jk(x(tk)).

Furthermore, for [tk + ε, tk+1],

sup
x∈B
{||Fx(t) − Fx(t)||} ≤ MLuε

α

Γ(α + 1)
.

By repeating these process till the time interval which expanded, Q(t) is RCP for t ∈ [−ml,T ]\D and Q(t+k ) is RCP

for tk ∈ D. Next, we will show that Q is equicontinuous on (tk, tk+1), k = 0, 1, . . . , n. Since B is bounded and follow

from the inequality (18), there is an Lu > 0 such that

|| f̃u(s, x
−
(s))|| ≤ Lu.

Let h > 0 and for 0 < t < t + h < t1 and for x ∈ B. Then

||Fx(t + h) − Fx(t)||
≤ ||S (φ(t + h))ϕ(0) − S (φ(t))ϕ(0)|| + || 1

Γ(α)

∫ t+h
0

(t + h − s)α−1S (φ(t + h) − φ(s)) f̃u(s, x
−
(s))ds

− 1
Γ(α)

∫ t
0

(t − s)α−1S (φ(t) − φ(s)) f̃u(s, x
−
(s))ds||

≤ ||S (φ(t))||||S (φ(h)) − I||||ϕ||C + 1
Γ(α)

∫ t+h
t (t + h − s)α−1||S (φ(t + h) − φ(s))|||| f̃u(s, x

−
(s))||ds

+ 1
Γ(α)

∫ t
0
||S (φ(t) − φ(s))||||(t − s + h)α−1S (φ(h)) − (t − s)α−1I|||| f̃u(s, x

−
(s))||ds

≤ Meωφ(T )||ϕ||C ||S (φ(h)) − I|| + Meωφ(T )

αΓ(α)
Luhα + Meωφ(T )

Γ(α)
Lu
∫ t

0
||(t − s + h)α−1S (h) − (t − s)α−1I||ds.

Since lim
h→0
||(t − s + h)α−1S (φ(h))− (t − s)α−1I|| = 0 and lim

h→0
||S (φ(h))− I|| = 0, so ||Fx(t+ h)− Fx(t)|| → 0 as h→ 0.

Hence F is equicontinuous on (0, t1). In general, for (tk, tk+1), k = 0, 1, 2, . . . , n, for tk < t < t + h < tk+1

||Fx(t + h) − Fx(t)|| ≤ ||S (φ(t))||||S (φ(h)) − I||||xk ||

+
1

Γ(α)

∫ t+h

t
(t + h − s)α−1||S (φ(t + h) − φ(s))|||| f̃u(s, x

−
(s))||ds

+
1

Γ(α)

∫ t

0

||S (φ(t) − φ(s))||||(t − s + h)α−1S (φ(h)) − (t − s)α−1I|||| f̃u(s, x
−
(s))||ds

≤ Meωφ(T )||xk ||||S (φ(h)) − I|| + Meωφ(T )

αΓ(α)
Luhα

+
Meωφ(T )

Γ(α)
Lu

∫ t

0

||(t − s + h)α−1S (h) − (t − s)α−1I||ds.
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Using the same idea, we can show that Q is equicontinuous on (tk, tk+1) where k = 0, 1, 2, . . . , n. Therefore,

Theorem 3 implies that F(B) is a RCP subset of PC([−ml,T ],X). Further, F is a compact operator. �
Lemma 10 The set Ω ≡ {x ∈ PC([−ml,T ],X)|x = σFx, σ ∈ [0, 1]} is bounded on PC([−ml,T ],X).

Proof. Let x ∈ Ω. Since ϕ is continuous, there exist M1 > 0

||x(t)|| = ||σFx(t)|| ≤ ||Fx(t)|| = ||ϕ(t)|| ≤ M1 for all t ∈ [−r, 0].

By using assumptions A2, there are N1,N2 > 0 such that for t ∈ I

|| f (t, x(t), x(t − l), . . . , x(t − ml))|| ≤ N1 + N2||x(t)||
Using assumption A3 and assumption A4, we get,

||x(t)|| = ||σFx(t)|| ≤ ||Fx(t)||
≤ ||S (φ(t))||||ϕ||C + 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||S (φ(t) − φ(s))||[|| f (s, x(s), x1(s − l), . . . , x(s − ml))||

+ ||B(s)u(s)||]ds +
∑

0<tk<t

||S (φ(t) − φ(tk))||||Jk(x(tk))||

≤ Meωφ(T )||ϕ||C + MN1eωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1ds +

MN2eωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||x(s)||ds

+
Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||B(s)u(s)||ds + Meωφ(T )

∑
0<tk<t

ek ||x(tk)||

≤ Meωφ(T )||ϕ||C + MN1eωφ(T )

αΓ(α)
Tα(n + 1) +

MN2eωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||x(s)||ds

+
Meωφ(T )

Γ(α)

n∑
k=0

[

∫ tk+1

tk
(tk+1 − s)

p(α−1)
p−1 ds]

p−1
p [

∫ tk+1

tk
||B(s)u(s)||pds]

1
p + Meωφ(T )

∑
0<tk<t

ek ||x(tk)||

≤ Meωφ(T )

⎡⎢⎢⎢⎢⎢⎢⎢⎣||ϕ||C + N1Tα(n + 1)

αΓ(α)
+

T
pα−1
p−1 (p − 1)(n + 1||B(·)u||Lp(I,X)

(pα − 1)Γ(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

MN2eωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||x(s)||ds + Meωφ(T )

∑
0<tk<t

ek ||x(tk)||.

Using Theorem 5, there is M2 > 0 s.t. ||x(t)|| ≤ M2, for all x ∈ Ω. Hence, Ω is a bounded subset of PC([−ml,T ],

X). �
Theorem 11 Assume that assumptions A1-A5 hold, then the system (1) has at least one PC−mild solution corre-
sponding to a regulator u ∈ Aad on [−ml,T ].

Proof. Define the operator F as (16). Then by Lemma 7 and Lemma 9, we have F is continuous on PC([−ml,T ],X)

and compact. Set Ω ≡ {x ∈ PC([−ml,T ],X)|x = σFx, σ ∈ [0, 1]}. The Lemma 10 implies Ω is a bounded subset

of PC([−ml,T ],X). Then, the LSFPT to implies that F has a fixed point in PC([−ml,T ],X). Therefore, system (1)

has at least PC−mild solution corresponding to the regulator u ∈ Aad on PC([−ml, T ],X). �
3.2 Existence of Optimal Regulation

LetAad be the admissible regulator set. Note that the result in Section 3.1 implies that for each regulator u ∈ Aad,

there exits a PC-mild solution x corresponding to the regulator u.

Let us consider the minimization problem (P) corresponding to system (1). Find a regulator u0 ∈ Aad s.t.

P(u0, x0) ≤ P(u, x) for all u ∈ Aad

which P(u, x) =
∫ T

0
r(t, x(t), x(t − l), . . . , x(t − ml), u(t))dt + g(x(T )) and x is a mild solution of system (1) corre-

sponding to a regulator u ∈ Aad, the order pair (u, x) is called the admissible pair. For convenience, P(u, x) is short

written by P(u).

We solve the optimizing regulation problem in this paper under the following assumptions, label by A6-A10;
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A6) r : I × Xm+1 × Y → (−∞,∞] is Borel measurable.

A7) r(t, ·, ·, ·) is sequentially lower semicontinuous on Xm+1 × Y for a.e. on I.

A8) r(t, ξ, ·) is convex on Y for all ξ ∈ Xm+1 and for a.e. t ∈ I.

A9) There exist constants ai, b > 0 for all i = 1, . . . ,m + 1 and η ∈ L1(I,�) s.t.

r(t, ξ, u) ≥ η(t) +
m+1∑
i=1

ai||ξ1|| + b||u||qY

where ξ = (ξ1, . . . , ξm+1) ∈ Xm+1.

A10) g: X → � is nonnegative continuous function.

Theorem 12 Suppose that assumption A1-A10 hold. Then the problem (P) corresponding to system (1) has at
least one solution, that is, there is an admissible pair (u0, x0) such that

P(u0, x0) ≤ P(u, x) for all u ∈ Aad.

Proof. If inf{P(u)|u ∈ Aad} = +∞, it is well done. Suppose that inf{P(u)|u ∈ Aad} = w < +∞. By assumption A9,

there are constants ai, b > 0 for all i = 0, . . . ,m and η ∈ L1(I,�) such that

r(t, x(t), x(t − l), . . . , x(t − ml), u) ≥ η(t) +
m∑

i=0

ai||x(t − il)|| + b||u||qY .

Since η is non-negative, we get

P(u) ≥
∫ T

0

η(t)dt +
m∑

i=0

ai

∫ T

0

||x(t − il)||dt + b
∫ T

0

||u(t)||qYdt ≥ −σ > −∞.

for some σ > 0, for all u ∈ Aad. Hence w ≥ −σ > −∞. By definition of minimum, there exists a minimizing

sequence {un} of P, that is lim
n→∞P(un) = w and

P(un) ≥
∫ T

0

η(t)dt +
m∑

i=0

ai

∫ T

0

||xn(t − il)||dt + b
∫ T

0

||un(t)||qYdt.

So, there exists N0 > 0 such that

w + w1 ≥ P(un) ≥ c
∫ T

0

||un(t)||qYdt, for all n ≥ N0,

for some w1 > 0 and hence ||un||qLq(I,Y)
≤ w1+w

c . Thus un is a bounded sequence containing in the reflexive B-

space Lq(I,Y). Therefore, un has a convergence subsequence, relabelled as un and un → u0 for some u0 ∈
Aad = Lq(I,Y). Let xn ∈ PC([−ml, T ],X) be a sequence of PC-mild solutions of system (1) corresponding to the

regulators sequence un;⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xn(t) = S (φ(t))ϕ(0) + 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(t) − φ(s))[ f (s, xn(s), xn(s − l), . . . , xn(s − ml))

+ B(s)un(s)]ds +
∑

0<tk<t
S (φ(t) − φ(tk))Jk xn(tk), t ∈ I;

xn(t) = ϕ(t), t ∈ [−ml, 0].

The a priori estimate implies there is some positive constant ρ s.t.

||xn||PC([−r,T ],X) ≤ ρ for all n = 0, 1, 2, . . .

Let x0 be a PC-mild solution of system (1) corresponding to regulator u0, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x0(t) = S (φ(t))ϕ(0) + 1

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1S (φ(t) − φ(s))[ f (s, x0(s), x0(s − l), . . . , x0(s − ml))

+ B(s)u0(s)]ds +
∑

0<tk<t
S (φ(t) − φ(tk))Jk x0(tk), t ∈ I;

x0(t) = ϕ(t), t ∈ [−ml, 0].
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Given ρ > 0. By using assumption A1, there exist b(ρ) > 0 such that for s ∈ (0,T ),

|| f (s, xn(s), xn(s − l), . . . , xn(s − ml)) − f (s, x0(s), x0(s − l), . . . , x0(s − ml))|| ≤ b(ρ)||xn − x0||PC .

We use the fact that xn(s) − x0(s) = 0 for s ∈ [−r, 0], so we have

||xn(s) − x0(s)|| ≤ b(ρ)Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||xn(s) − x0(s)||ds

+
Meωφ(T )

Γ(α)

k=n∑
k=1

[

∫ tk+1

tk
(tk+1 − s)

pα−1
p−1 ds]

p−1
p [

∫ tk+1

tk
||B(s)un(s) − B(s)u0(s)||pds]

1
p

+ Meωφ(T )
∑

0<tk<t

ek ||xn(tk) − x0(tk)||

≤ Meωφ(T )(p − 1)(n + 1)T
pα−1
p−1 ||B(·)un − B(·)u0||p

(pα − 1)Γ(α)

+
b(ρ)Meωφ(T )

Γ(α)

∑
0≤tk≤t

∫ tk+1

tk
(tk+1 − s)α−1||xn(s) − x0(s)||ds + Meωφ(T )

∑
0<tk<t

ek ||xn(tk) − x0(tk)||.

Applying Theorem 5, there exist M1 > 0 independent on u, n and t such that

||xn(t) − x0(t)|| ≤ M1||B(·)un − B(·)u0||Lq(I,Y).

The strongly continuous ofB(·) implies ||B(·)un−B(·)u0||Lq(I,Y)
s→ 0. Consequently, ||xn−x0|| s→ 0 in PC([−ml,T ],X).

Let us set rn(t) = r(t, xn(t), xn(t − l), . . . , x(t − ml), un(t)) for all t ∈ I. Then by assumption A6 and assumption A9,

{rn(t)} is a sequence of non-negative measurable functions. So, by applying Fatou’s Lemma,

lim
n→∞

∫ T

0

rn(t)dt ≥
∫ T

0

lim
n→∞

rn(t)dt.

By assumption A7 ,

m = lim
n→∞P(un) ≥ lim

n→∞
[

∫ T

0

rn(t)dt + Φ(xn(T ))] ≥
∫ T

0

lim
n→∞

r(t, xn(t), (xn)t, un(t))dt + g(x0(T ))

≥ r(t, x0(t), x0
t , u

0(t))dt + g(x0(T )) = P(u0).

Therefore, P(u0) = m. �
4. Optimal Regulation of Nonlinear Fractional Heat Equation

Let us consider the boundary value problem with delay and regulation;

∂αy(x, t)
∂tα

= Δy(x, t) + f (x, t, y(x, t), y(x, t − l), . . . , y(x, t − ml)) +
∫
Ω

B(x, ξ)u(ξ, t)dξ, (x, t) ∈ Ω × I\D (C1)

Δy(x, tk) = Jk(y(x, tk)), tk ∈ D (C2)

y(x, t) = ϕ(x, t), (x, t) ∈ Ω̄ × [−ml, 0] (C3)

y(x, t) = 0, (x, t) ∈ ∂Ω × I (C4)

whereD = {t1, t2, . . . , tn}, Ω is boundary domain of�N , ϕ ∈ C(Ω̄ × [−ml, 0]), u ∈ Lq(Ω × I), h ∈ C([−ml,T ]2,�)

and B: Ω̄ × Ω̄→� is continuous. Suppose that these conditions hold;

HHf) f : Ω̄ × I ×� ×�N →� and there are L1, L2 ≥ 0 s.t.

| f (x, t, ξ, η)| ≤ L1(1 + |ξ| + |η|), and

| f (x, t, ξ, η) − f (x, s, ξ1, η1)| ≤ L2(|t − s| + |ξ − ξ1| + |η − η1|).

103



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 2; 2013

HHJ) Jk: �→ �, k = 1, 2, . . . , n and there exist ek > 0, k = 1, 2, . . . , n s.t.

|Jk(ξ) − Jk(ξ1)| ≤ ek |ξ − ξ1|.

In this system, y(x, t) represents the temperature at the point x ∈ Ω at time t, the condition C3 represents the

temperature at the histories time t ∈ [−ml, 0]. The condition C4 represents the temperature on the boundary ∂Ω
that is equal to zero. The input function f means an external heat sources. In this case, the function f depend on the

histories data y(x, t−l), . . . , y(x, t−ml), which is impacted from the initial delay function ϕ(x, t) for t ∈ [−ml, 0] in the

condition C3. Furthermore, the system is regulated by the regulator u with the sensor mapping
∫
Ω
B(x, ξ)u(ξ, t)dξ.

Given an admissible regulator set Aad = Lq(Ω × I). We solve the optimization regulation problem (P0) with the

objective functional;

P(u) =

∫ T

0

∫
Ω

|y(ξ, t)|2 + ||y(ξ, t − l)||2 + . . . + ||y(ξ, t − ml)||2dξdt +
∫ T

0

∫
Ω

|u(ξ, t)|2dξdt + g(y(x,T )),

where g ∈ C(�,�+). That is, find u0 ∈ Aad that minimize the objective functional. Let X = Lp(Ω). For

t ∈ [−ml,T ], define y(t): Ω→ X by

y(t)(x) = y(x, t) for all x ∈ Ω, and Dαt y(t)x =
∂αy(x, t)
∂tα

, for all y ∈ X, x ∈ Ω.

We define

f (t, y(t), y(t − l), . . . , y(t − ml))(x) = f (x, t, y(x, t), y(x, t − l), . . . , y(x, t − ml)),

B(t)u(t)(x) =

∫
Ω

B(x, ξ)u(ξ, t)dξ and Jk(y(t))(x) = Jk(y(x, t)).

Define an operator A: X → X as

Ay = Δy for all y ∈ D(A)

which D(A) contains all C2(Ω̄) function vanishing on ∂Ω.

Now we introduce the eigenvalue problem for the negative Laplacian;

Ay = λy for all y ∈ D(A).

Using the standard definition of the inner product, we define that for any y1, y2 ∈ D(A);

〈Ay1, y2〉 =
∫
Ω

y2Δy1dy =
∫
Ω

y1Δy2dy = 〈y1, Ay2〉.

Therefore, A is symmetric and its eigenvalues must be real. Furthermore, for any y ∈ D(A), we have

〈Ay, y〉 = 〈Δy, y〉 =
∫
Ω

ȳΔydy =
∫
Ω

|grady|2dy ≥ 0.

The right hand side vanishes only if y is constant but the only constant in D(A) is the zero constant. Thus, we

obtain

λ||y||2 = 〈λy, y〉 = 〈Ay, y〉 > 0, for all y � 0 in D(A). (C5)

This is precisely the definition of a positive operator, A is actually strongly positive. Because of Equation C5, the

eigenvalues of A must be positive and we obtain a following lemma.

Lemma 13 The operator A is a infinitesimal generator of a compact C0-semigroup on X.

Applying Lemma 13 , so the system C1 − C4 can transform to the abstract form;⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dαt y(t) = Ay(t) + f (t, y(t), y(t − l), . . . , y(t − ml)) + B(t)u(t), t ∈ I\D
Δy(tk) = Jk(y(tk)), tk ∈ D
y(t) = ϕ(t), t ∈ [−ml, 0].

(C6)
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Theorem 14 Suppose that the assumptions (HHf) and (HHJ) are sattisfied. Then the problem (P0) for the nonlinear
fractional heat equation with delay in�N, C1 − C4 has at least one solution.

Proof. We solve the regulation problem (P0) for system C1 − C4 pass the abstract form, C6. The definitions of

f , Jk (k = 1, 2, . . . , n) and the objective functional P and the assumptions (HHf), (HHJ) imply the assumptions of

Theorem 11 and Theorem 12. Therefore, the problem (P0) with system C1 − C4 has at least one solution. �
5. Conclusions

In this work, we considered the fractional nonlinear differential system (1) with time lag, when A is the infinitesimal

generator of a compact semigroup {S (t)}t≥0 satisfying the exponential stability. We proved the existence solution

and solved the optimal regulation problem. We proposed a method for proving existence whose main component

is the use of the Leray-Schauder Fixed Point Theorem(LSFPT). More precisely, we assume that the input function,

f and operator Jk, k ∈ {1, 2, . . . , n} satisfy the condition A1-A5. We successfully applied this method and use these

assumptions to prove the existence of PC-mild solution. For studying the optimization regulation problem, we win

to prove that system (1) has atleast one optimal regulator with conditions A1-A10. Beside the study of the solution

and the optimization regulation problem, we give some examples (model of problem in the real world), we give

example of f and Jk, k ∈ {1, 2, . . . , n} such that satisfying the conditions (HHf) and (HHJ). Then we transform them

to the abstract form and use our main results to conclude that these systems have atleast one optimal regulator.

Last but not least we should be interested in developing this method and use weakly assumptions to prove the

existence and uniqueness of PC-mild solution a little further. Moreover, we should be interested in studying the

others the solution behaviours for example;the stable property. Even though it seems likely that efforts in this

direction can be successful, there no guarantee for that. Therefore, we can only hope for the best, but have to

expect the worst.
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