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Abstract

Connection between the adjoint family of functions has been defined for the first and the adjoint characteristic

equation of the (n-1)-th order of the Riccati type has been studied. The nonhomogeneous multipoint problem for

the adjoint differential equation of the n-th order has been solved and the Green’s function has been constructed

and its new properties have been determined.
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1. Introduction

A generalized multipoint problem was not studied in a theory of boundary value problem, i.e. researching of the

non-trivial solution of the homogeneous multipoint boundary problem and construction of the generalized Green’s

function (Bryns, 1971; Levin, 1985; Pokornyi, 1968; Das & Vatsala, 1973; Eloe & Grimm, 1980; Peterson, 1976).

An adjoint multipoint problem is not so simple. What multipoint boundary value problem will correspond to

the adjoint operator L+z? Would be there only one adjoint problem and would the linear differential and adjoint

operators be Noetherian or Fredholm? These are important questions as well. The multipoint problem with a

small parameter in the boundary conditions (Tky)(xi) have not been considered, degeneration of the equation order,

boundary conditions and correctness of the problem itself have not been studied (Klokov, 1967; Maksimov &

Rakhmatullina, 1977).

Among the boundary value problem which are topical due to their different applications, the multipoint problem

and problems for the differential equations have been studied least of all when a separate differential equation is

set on each segment and solutions of different equations are connected through the boundary conditions. Such

statement generalizes usual multipoint problems. The adjoint multipoint problem, uniqueness of solution and

Noetherian or Fredholm property of the linear differential and adjoint operators have not been studied yet. The

problems where impulse jumps of the function or its derivatives are set non-linearly in the boundary conditions

and the problems with a small parameter have not been considered (Samoilenko & Perestyuk, 1987; Azbelev,

Maksimov, & Rakhmatullina, 1982; Krall, 1969).

2. Adjoint Family of Functions

Let us consider a linear differentiation operator

Ly =
n∑
ν=0

bν(x)y(ν), bn(x) ≡ 1, (1)

with coefficients bν(x) ∈ Cν [x1, xm] , ν = 0, 1, 2, . . . , n − 1. Let us put operator L+ adjoint under Lagrange in

compliance with operator L, i.e.

L+z =
n∑
ν=0

(−1)ν[bν(x)z(x)](ν), bn(x) ≡ 1. (2)

Let {xi}m1 be a partition of segment [x1, xm]. In (Trenogin & Khasseinov, 1991), the adjoint boundary conditions
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with corresponding operators of boundary conditions were produced in a more general case for (Tky)(xi)

(T+χ z)(xi) =

χ∑
ν=0

(−1)χ−ν[bn−ν(x)z(x)](χ−ν) − ρk,n−χ(s)
∣∣∣x=xi = 0 ,

χ = 0, 1, 2, . . . , n − 1; k = 1, 2, . . . , ri; i = 1, 2, . . . ,m, and
∑m

i=1 ri = n. Then we tried to solve m-point problem for

the linear differential Equation (1) with a nonhomogenous part f (x), create a Green’s function using adjoint family

of functions {ϕ jl(x)}, j = 1, 2, . . . ,m; l = 1, 2, . . . , r j and {zik(x)}, i = 1, 2, . . . ,m; k = 1, 2, . . . , ri.

Let us introduce a linear differentiation operator of the boundary conditions

(
T+k z
)

(x) =

n∑
ν=1

rkν(x)z(ν−1)(x),

where rkν(x) ∈ C[x1, xm], k = 1, 2, . . . , ri; i = 1, 2, . . . ,m.

Assuming, that domain of operator L+ consists of functions z(x) ∈ Cn−1[x1, xm] complying with boundary condi-

tions (
T+k z
)

(xi) =

n∑
ν=1

rkν(xi)z(ν−1)(xi) = 0, (3)

and coefficients rkν(x) comply with the condition of absence of degeneracy in points xi

n∑
ν=1

r2
kν

(xi) � 0, i = 1, 2, . . . ,m.

Let us identify connection between the solutions of linear Ly = 0 and adjoint equation L+z = 0 and find boundary

conditions for solutions y which are “adjoint” to the conditions (3). Let us create a Green’s function of m-point

problem for the adjoint equation and solve the corresponding nonhomogenous boundary value problem.

Lemma 1 Let the following be executed for points {xi}m1 and fundamental system of solutions {zν(x)}n1 adjoint
equation, L+z = 0

Δ = det
∥∥∥∥(T+k zν

)
(xi)
∥∥∥∥ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(T+
1

z1)(x1) (T+
1

z2)(x1) . . . (T+
1

zn)(x1)

(T+
2

z1)(x1) (T+
2

z2)(x1) . . . (T+
2

zn)(x1)

...
...

...

(T+
r1

z1)(x1) (T+
r1

z2)(x1) . . . (T+
r1

zn)(x1)

...
...

...

(T+
1

z1)(xm) (T+
1

z2)(xm) . . . (T+
1

zn)(xm)

(T+
2

z1)(xm) (T+
2

z2)(xm) . . . (T+
2

zn)(xm)

...
...

...

(T+
rm

z1)(xm) (T+
rm

z2)(xm) . . . (T+
rm

zn)(xm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 0.

Then there is a fundamental system of solutions {ψ jl(x)}, j = 1, 2, . . . ,m; l = 1, 2, . . . , r j of the homogenous adjoint
equation L+z = 0 which results in

(
T+k ψ jl

)
(xi) = δi j · δkl, i = 1, 2, . . . ,m; k = 1, 2, . . . , ri;

m∑
i=1

ri = n. (4)

Proof. Since coefficients bν−1(x) ∈ Cν−1 [x1, xm], there is a fundamental system of solutions {zi(x)}n1 for the linear

adjoint homogenous equation L+z = 0. Let us find solutions ψ jl(x) for the adjoint equation that comply with the

conditions (4), in a form of

ψ jl(x) = C1 jlz1(x) +C2 jlz2(x) + · · · +Cn jlzn(x). (5)
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To make it clear, let us prove the lemma for j = 1, l = 1. Let us apply an operator of the boundary conditions

T+k where k = 1, 2, . . . , ri in the corresponding points xi to function (5). Having considered these expressions

together with the boundary conditions (4) and jointly with (5), we produce a system (n+1) of the homogenous

linear algebraic equations with respect to C1,C2, . . . ,Cn−1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1z1(x) +C2z2(x) + ... +Cnzn(x) − ψ11(x) = 0,

C1

(
T+1 z1

)
(x1) +C2

(
T+1 z2

)
(x1) + ... +Cn

(
T+1 zn

)
(x1) − 1 = 0,

C1

(
T+2 z1

)
(x1) +C2

(
T+2 z2

)
(x1) + ... +Cn

(
T+2 zn

)
(x1) = 0,

.........................................................................................

C1

(
T+r1

z1

)
(x1) +C2

(
T+r1

z2

)
(x1) + ... +Cn

(
T+r1

zn

)
(x1) = 0,

...
...

...

C1

(
T+1 z1

)
(xm) +C2

(
T+1 z2

)
(xm) + ... +Cn

(
T+1 zn

)
(xm) = 0,

C1

(
T+2 z1

)
(xm) +C2

(
T+2 z2

)
(xm) + ... +Cn

(
T+2 zn

)
(xm) = 0,

............................................................................................

C1

(
T+rm

z1

)
(xm) +C2

(
T+rm

z2

)
(xm) + ... +Cn

(
T+rm

zn

)
(xm) = 0.

Let us decompose the determinant by the elements of the last column, since a determinant in the left part is different

from zero under conditions of Lemma 1, there is a solution specified

ψ11(x) =
Δ11(x)

Δ
, Δ = det

∥∥∥∥(T+k zν
)

(xi)
∥∥∥∥ � 0.

Similarly, we will find the other solutions of the homogenous adjoint equation L+z = 0 complying with boundary

conditions (4)

ψ jl(x) =
Δ jl(x)

Δ
,Δ � 0, j = 1, 2, . . . ,m; l = 1, 2, ..., r j. (6)

DeterminantsΔ jl(x) are produced from Δ by substitution of the elements of the line
(
l +
∑ j−1

μ=1
rμ
)

of the fundamental

system of solutions z1(x), z2(x), . . . , zn(x).

Let us prove a linear independence of the function (6).

Having written a homogenous system without proportions (5) for j = 1, 2, ...,m; l = 1, 2, ..., r j, we produce a

system consisting of n2 equations, which can be represented in a matrix form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(T+
1

z1)(x1) . . . (T+
1

zn)(x1)
...

...
(T+

r1
z1)(x1) . . . (T+

r1
zn)(x1)

...
...

(T+
1

z1)(xm) . . . (T+
1

zn)(xm)
...

...
(T+

rm
z1)(xm) . . . (T+

rm
zn)(xm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C111
. . . C1r1

. . . C1m1
. . . C1mrm

...
...

...
...

Cn11
. . . Cn1r1

. . . Cnm1
. . . Cnmrm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = E,

where E is an identity matrix n×n.

Due to condition Δ�0, it follows that det
∥∥∥Csjl

∥∥∥ � 0, s = 1, 2, . . . , n.

Let us differentiate (n−1) times the functions (5) and proportions produced at j = 1, 2, . . . ,m; l = 1, 2, . . . , r j and
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write it in the following way

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11(x) ψ12(x) . . . ψ1r1
(x) · · · ψm1(x) ψm2(x) . . . ψmrm (x)

ψ′11(x) ψ′12(x) . . . ψ′1r1
(x) · · · ψ′m1(x) ψ′m2(x) . . . ψ′mrm

(x)

...
...

...
...

...
...

ψ(n−1)
11

(x) ψ(n−1)
12

(x) . . . ψ(n−1)
1r1

(x) · · · ψ(n−1)
m1

(x) ψ(n−1)
m2

(x) ψ(n−1)
mrm

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1(x) z2(x) . . . zn(x)

z′1(x) z′2(x) . . . z′n(x)
...

...
...

z(n−1)
1

(x) z(n−1)
2

(x) . . . z(n−1)
n

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C111
. . . C11r1

. . . C1m1
. . . C1mrm

C211
. . . C21r1

. . . C2m1
. . . C2mrm

...
...

...
...

Cn11
. . . Cn1r1

. . . Cnm1
. . . Cnmrm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then Wronskian for the function {ψ jl(x)} is different from zero, since W
(
ψ11, ..., ψ1r1

, ..., ψm1, ..., ψmrm

)
= W (z1, z2, ..., zn) det

∥∥∥Csjl

∥∥∥ � 0, and it proves linear independence of the function {ψ jl(x)}.
Now, let us identify functions {yik(x)}, i = 1, 2, . . . ,m; k = 1, 2, . . . , ri as a solution to the algebraic system of

equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ11(x)y11(x) + ... + ψ1r1
(x)y1r1

(x) + ... + ψm1(x)ym1(x) + ... + ψmrm (x)ymrm (x) = 0,

(b2ψ11)′y11(x) + ... + (b2ψ1r1
)′y1r1

(x) + ... + (b2ψm1)′ym1(x) + ... + (b2ψmrm )′ymrm (x) = 0,

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (∗)
(bn−1ψ11)(n−2)y11(x) + ... + (bn−1ψ1r1

)(n−2)y1r1
(x) + ... + (bn−1ψm1)(n−2)ym1(x) + ... + (bn−1ψmrm )(n−2)ymrm (x) = 0,

ψ(n−1)
11

y11(x) + ... + ψ(n−1)
1r1

y1r1
(x) + ... + ψ(n−1)

m1
ym1(x) + ... + ψ(n−1)

mrm ymrm (x) = (−1)n.

To make it simple, let us use a proportion

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ11 . . . ψ1r1
. . . ψm1 . . . ψmrm

(b2ψ11)′ . . . (b2ψ1r1
)′ . . . (b2ψm1)′ . . . (b2ψmrm )′

...
...

...
...

(b(n−1)ψ11)(n−2) . . . (b(n−1)ψ1r1
)(n−2) . . . (b(n−1)ψm1)(n−2) . . . (b(n−1)ψmrm )(n−2)

ψ(n−1)
11

. . . ψ(n−1)
1r1

. . . ψ(n−1)
m1

. . . ψ(n−1)
mrm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= b2 · b3 · ... · bn−1W
(
ψ11, ..., ψmrm

)
,

which is easy proved based on the consequent use of the determinant properties. Then it follows that determinant of

the system is different from zero. Moreover, it is not difficult to show that system (*) is equivalent to the following

system in brief ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=1

∑ri
k=1

yik(x)
dsψik(x)

dxs = 0, s = 0, 1, 2, . . . , n − 2,

∑m
i=1

∑ri
k=1

yik(x)
dn−1ψik(x)

dxn−1
= (−1)n.

(8)

Solving the system by the Cramer method and writing determinant by the elements of the column with number(
k +
∑i−1
μ=1 rμ

)
= p, we obtain

yik(x) =
(−1)2n+p

W(xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ11(x) . . . ψik−1(x) ψik+1(x) . . . ψmrm (x)

ψ′11(x) . . . ψ′ik−1
(x) ψ′ik+1

(x) . . . ψ′mrm
(x)

...
...

...
...

ψ(n−3)
11

(x) . . . ψ(n−3)
ik−1

(x) ψ(n−3)
ik+1

(x) . . . ψ(n−3)
mrm

(x)

ψ(n−2)
11

(x) . . . ψ(n−2)
ik−1

(x) ψ(n−2)
ik+1

(x) . . . ψ(n−2)
mrm

(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e−
∫ x

xi
bn−1(t)dt

. (9)

18



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 2; 2013

Bilinear Lagrange form

Φ(y, z) =

n∑
ν=1

ν−1∑
q=0

(−1)ν−1−qy(q)[bν(x)z](ν−1−q), bn(x) ≡ 1

in work (Trenogin & Khasseinov, 1987), through the complicated and crockish manipulation, is brought to the

linear forms with respect to y(x) and z(x) and their derivatives

Φ(y, z) =

n−1∑
χ=0

y(n−1−χ)(x) ·
(
T+χ z
)

(x), (10)

where (
T+χ z
)

(x) =

χ∑
ν=0

(−1)χ−ν[bn−ν(x)z(x)](χ−ν), (10∗)

χ = 0, 1, . . . , n − 1; bn(x) ≡ 1, and

Φ(z, y) =

n−1∑
χ=0

z(n−1−χ)(x) ·
(
Tχy
)

(x), (11)

where (
Tχy
)

(x) =

n∑
ν=n−χ

∑
p+q=ν−1

p≥n−1−χ,q≥0

(−1)pCn−1−χ
p b(p−n+1+χ)

ν (x)y(q)(x). (11∗)

Connections (10) and (11) are interesting, first of all, because they can help to produce adjoint conditions for the

boundary conditions (Ty) (xi) = 0 (
T+χ z
)

(x) = ρn−χ(xi)

and vice versa.

Lemma 2 Let us assume that {ψ jl(x)}, j = 1, 2, . . . ,m; i = 1, 2, . . . , r j is a fundamental system of solutions of the
equation L+z = 0, like in Lemma 1, and {yik(x)}, i = 1, 2, . . . ,m; k = 1, 2, . . . , ri is a system of functions specified
by the formula (9). Then:

A. {yik(x)} is a fundamental system of solutions for the linear differential equation

Ly = 0, ∀(xμ, xμ+1), μ = 1, 2, . . . ,m − 1,

B. Functions yik(x) comply with the boundary conditions

(Tky) (xi) =

n∑
ν=n−χ

∑
p+q=ν−1

p≥n−1−χ,q≥0

(−1)pCn−1−χ
p b(p−n+1+χ)

ν (x)y(q)(x)
∣∣∣x=xi = rk,n−χ(xi), (12)

χ = 0, 1, . . . , n − 1; bn(x) ≡ 1.

C. The following proportions are true

Φ[ψ jl(x), yik(x)] = δi j · δkl ∀x ∈ [x1, xm], (13)

i, j = 1, 2, . . . ,m; k = 1, 2, . . . , ri; l = 1, 2, . . . , r j,
∑m

i=1 ri = n.

Proof. For brevity we prove only the third part C of the lemma. The bilinear form with respect to ψ jl(x), ψ′jl(x), ...,

ψ(n−1)
jl

(x) and yik(xi), y′ik(xi), . . . , y
(n−1)
ik (xi) is equal to the constant

Φ[ψ jl(x), yik(x)] = const, ∀x ∈ [x1, xm].

Actually, as we can see from the Lagrange identity, its derivative is equal to zero

d
dx
Φ[ψ jl(x), yik(x)] = ψ jl(x)Lyik − yikL+ψ jl = 0,
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because Lyik(x) = 0 and L+ψ jl(x) = 0.

Therefore, to prove the proportions (13), it is enough to show that the following is true for the points xi ∈ [x1, xm]

Φ[ψ jl(xi), yik(xi)] = δi j · δkl, (13∗)

i, j = 1, 2, . . . ,m; k = 1, 2, . . . , ri; l = 1, 2, . . . , r j.

Let us take the bilinear form Φ(z, y) (11) for the functions z = ψ jl(x), y = yik(x) and write it at x = xi:

Φ[ψ jl(xi), yik(xi)] =

n−1∑
χ=0

ψ
(n−1−χ)
jl (xi) ·

(
Tχyik

)
(xi).

Then due to (12), we have

Φ[ψ jl(xi), yik(xi)] =

n−1∑
χ=0

rk,n−χ(xi)ψ
(n−1−χ)
jl (xi) =

(
T+

k
ψ jl

)
(xi) = δi j · δkl,

which demonstrates that (13*) is true, thereby, the proportions (13) are true as well. Lemma is completely proved.

It results from the equality

Φ[ψ jl(x), yik(x)] = 0, ∀x ∈ [x1, xm] at i � j or k � l

that family of functions {ψ jl(x)} and {yik(x)} at i � j or k � l are adjoint.

2. Adjoint Characteristic Equation of the (n − 1)-th Order of the Riccati Type

Let us consider the characteristic equation of the (n − 1)-th order of the Riccati type

Rn−1(x) =

n∑
ν=1

bν(x)[p + r(x)]ν−1 · r(x) + b0(x) = 0, (14)

where bν(x) ∈ C[x1, xm], ν = 0, 1, ..., n − 1; bn(x) ≡ 1.

Here [p + r(x)]k · r(x) means consequent application of the operator [p+r(x)], p = d
dx to the function r(x) used

k-times. If ri(x) is smooth or impaired solutions of the Equation (14), the partial solutions of the linear differential

equation

Ln(y) =

n∑
ν=0

bν(x)y(ν) = 0 (15)

are represented in a following form

yi(x) = e
∫ x

x0
ri(t)dt
, x0 ∈ Ω = [x1, xn]\Σ.

And if the following condition is met for ri(x)

D(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

r1(x) . . . rn(x)

[p + r1(x)] · r1(x) . . . [p + rn(x)] · rn(x)
...

...
[p + r1(x)]n−2 · r1(x) . . . [p + rn(x)]n−2 · rn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� 0, ∀x ∈ Ω,

where Σ = {ck ∈ [x1, xn]: yi(ck) = 0, i = 1, 2, . . . , n}, then {yi(x)}n
1

are a fundamental system of solutions of the

equation Lny = 0.

Studying the characteristic equation of the Riccati type (14), we have managed to produce some new results. In

particular, we have defined the multiple solutions of the Equation (14) and described the fundamental system of

solutions. We have also developed an algebraic way of solving one class of linear differential equation of then-th

order with floating factors and found conditions for exponential solution existence. We have introduced a concept
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of the reciprocal linear differential equation of random order and studied its properties. It is proved in (Khasseinov,

1984) that the shift formula keeps its form for the exponent exp
∫ x

x0
r(t)dt , i.e.

Ln(p, x) = e
∫ x

x0
r(t)dt · f (x) = e

∫ x
x0

r(t)dt · Ln[p + r(x), x] · f (x),

where Ln(p, x) =
∑n
ν=0 bν(x)pν; f (x) ∈ Cn[x1, xn].

Let us put the differentiation operator L+ adjoint by Lagrange in compliance with operator Ly, i.e.

L+
n
z =

n∑
ν=0

(−1)ν[bν(x)z](ν); bn(x) ≡ 1 (16)

with coefficients bν(x) ∈ Cν[x1, xn], ν = 0, 1, . . . , n − 1.

To solve the adjoint multipoint boundary problem and other problems, it is necessary to find the fundamental

system of solutions {zi(x)}n
1

of the homogenous adjoint differential equation L+n z = 0. To produce a corresponding

linear differential equation of the Riccati type for the adjoint Equation (16), similarly to the linear differential

Equation (15), we try to find a solution in the following form

z(x) = e
∫ x

x0
u(t)dt
.

Let us use the n-derivative formula

pne
∫ x

x0
r(t)dt · f (x) = e

∫ x
x0

r(t)dt · [p + r(x)]n · f (x),

then we have

L+
n
z =

n∑
ν=0

(−1)νpν[z(x)bν(x)] =

n∑
ν=0

(−1)νpνe
∫ x

x0
u(t)dt · bν(x) = e

∫ x
x0

u(t)dt ·
n∑
ν=0

(−1)ν[p + u(x)]ν · bν(x) = 0.

Therefore, we will have the adjoint characteristic equation of the (n−1)-th order of the Riccati type

R+n−1(u) =

n∑
ν=0

(−1)ν[p + u(x)]ν · bν(x) = 0, (17)

here

[p + u]bν(x) = bν(x)u + b′ν(x),

[p + u]bn(x) = (p + u)1 = u(x).

Theorem Let ui(x), i = 1, 2, . . . , n be the impaired solutions around points Σ = {ck ∈ [x1, xn]: ui(ck) = 0} of the
adjoint characteristic equation of the Riccati type (17) D[u(x)] � 0 ∀x ∈ Ω = [x1, xn]\Σ.

Then functions

zi(x) = e
∫ x

x0
ui(t)dt
, x0 ∈ Ω, i = 1, 2, ..., n,

are a fundamental system of solutions of the adjoint differential equation L+
n
z = 0 (16), and the inverse is also true.

Thus, to find fundamental system of solutions of the equation L+
n
z = 0 , it is sufficient to find the impaired solutions

of the adjoint characteristic equation of the Riccati type R+n−1(u) = 0.

3. Solution of the Multipoint Problem for the Adjoint Equation, Green’s Function and Its New Properties

Let us assume that we need to solve a nonhomogenous m-point problem for the adjoint differential equation

L+z = F(s), (18)

where F(s) ∈ C[x1, xm], bν−1(s) ∈ Cν−1[x1, xm], ν = 1, 2, ..., n, with boundary conditions

(
T+k z
)

(xi) =

n∑
ν=1

rkν(xi)z(ν−1)(xi) = Aik, (19)
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here i = 1, 2, ...,m; k = 1, 2, ..., ri,
∑m

i=1 ri = n. Regarding the task it is true.

Theorem 1 Let {ψ jl(x)} and {yik(x)} be a system of functions specified in Lemmas 1, 2. Then there is the unique
solution to the problem (18)-(19)

z(s) =

m∑
i=1

ri∑
k=1

Aikψik(s) +

m∑
i=1

ri∑
k=1

ψik(s) ·
∫ s

xi

F(x)yik(x)dx. (20)

Proof. Let us multiply the terms (20) by the coefficient b1(s) and find a derivative (b1z)′

(b1(s)z)
′
=
∑m

i=1

∑ri
k=1

Aik (b1ψik(s))
′
+
∑m

i=1

∑ri
k=1

(b1ψik(s))
′ · ∫ s

xi
F(x)yik(x)dx + F(s)b1(s) ·∑m

i=1

∑ri
k=1
ψik(s)yik(s).

Since functions {yik(x)} are defined as solutions of the algebraic Equations (7) or (8), the last double sum is equal

to zero due to the first equation of this system, then

(b1z)
′
=

m∑
i=1

ri∑
k=1

Aik (b1ψik(s))
′
+

m∑
i=1

ri∑
k=1

(b1ψik(s))
′ ·
∫ s

xi

F(x)yik(x)dx.

Let us find the second derivative (b2z)′′. To do that, we will take (b2z)′ instead of the previous expression (b1z)′
and differentiate it once

(b2z)
′′
=

m∑
i=1

ri∑
k=1

Aik (b2ψik(s))
′′
+

m∑
i=1

ri∑
k=1

(b2ψik(s))
′′ ·
∫ s

xi

F(x)yik(x)dx + F(s) ·
m∑

i=1

ri∑
k=1

(b2ψik(s))
′
yik(s).

The last double sum is equal to zero due to the second equation of the system (*). Ergo

(b2z)
′′
=

m∑
i=1

ri∑
k=1

Aik (b2ψik(s))
′′
+

m∑
i=1

ri∑
k=1

(b2ψik(s))
′′ ·
∫ s

xi

F(x)yik(x)dx.

Similarly, at (n−2)-differentiation time, taking into account the last but one equation of the system (*), we have

(bn−1z)(n−1) =

m∑
i=1

ri∑
k=1

Aik (bn−1ψik(s))(n−1) +

m∑
i=1

ri∑
k=1

(bn−1ψik(s))(n−1) ·
∫ s

xi

F(x)yik(x)dx.

Setting bn−1(x) ≡ 1, we have

z(n−1) =

m∑
i=1

ri∑
k=1

Aikψ
(n−1)
ik

(s) +

m∑
i=1

ri∑
k=1

ψ(n−1)
ik

(s) ·
∫ s

xi

F(x)yik(x)dx.

Let us differentiate this expression

z(n) =

m∑
i=1

ri∑
k=1

Aikψ
(n)
ik

(s) +

m∑
i=1

ri∑
k=1

ψ(n)
ik

(s) ·
∫ s

xi

F(x)yik(x)dx + F(s) ·
m∑

i=1

ri∑
k=1

ψ(n−1)
ik

(s)yik(s).

Here the third double sum is the last equation of the system (*) and is equal to (−1)n, therefore,

z(n) =

m∑
i=1

ri∑
k=1

Aikψ
(n)
ik

(s) +

m∑
i=1

ri∑
k=1

ψ(n)
ik (s) ·

∫ s

xi

F(x)yik(x)dx + (−1)n · F(s).

By placing the derivatives found (multiplied by (−1) in corresponding degrees) on the left part of the adjoint

nonhomogenous Equation (18), we have

(L+z) (s) = (−1)nz(n) + (−1)n−1(bn−1z)(n−1) + ... + (−1)2(b2z)′′ − (b1z)′ + b0z

=
∑m

i=1

∑ri
k=1

Aik[(−1)nψ(n)
ik
+ (−1)n−1(bn−1ψik)(n−1) + ... + (−1)2(b2ψik)′′ − (b1ψik)′ + b0ψik]

+
∑m

i=1

∑ri
k=1

[(−1)nψ(n)
ik
+ (−1)n−1(bn−1ψik)(n−1) + ... + (−1)(b1ψik)′ + b0ψik] · ∫ s

xi
F(x)yik(x)dx

+(−1)2nF(s)

=
∑m

i=1

∑ri
k=1

Aik (L+ψik) (s) +
∑m

i=1

∑ri
k=1

(L+ψik) (s) · ∫ s
xi

F(x)yik(x)dx + F(s) ≡ F(s),
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because {ψik(s)} are the solutions of the homogenous adjoint equation L+ψik(s) = 0. Therefore, function z(s)

designated by the formula (20) is a solution of the nonhomogenous adjoint differential Equation (18).

Let us show that solution (20) complies with boundary conditions (19). Let us apply the operator of the boundary

conditions T+l to the function (20)

(
T+l z
)

(s) =
∑n
ν=1 rlν(s)z(ν−1)

=
∑n
ν=1 rlν(s) ·

[∑m
i=1

∑ri
k=1

Aikψ
(ν−1)
ik

(s) +
∑m

i=1

∑ri
k=1
ψ(ν−1)

ik
(s) · ∫ s

xi
F(x)yik(x)dx

]

=
∑m

i=1

∑ri
k=1

Aik
∑n
ν=1 rlν(s)ψ(ν−1)

ik
(s) +

∑m
i=1

∑ri
k=1

∑n
ν=1 rlν(s)ψ(ν−1)

ik
(s) · ∫ s

xi
F(x)yik(x)dx

=
∑m

i=1

∑ri
k=1

Aik

(
T+l ψik

)
(s) +

∑m
i=1

∑ri
k=1

(
T+l ψik

)
(s) · ∫ s

xi
F(x)yik(x)dx.

Let us consider this expression at points x j, j = 1, 2, . . . ,m

(
T+l z
)

(x j) =

m∑
i=1

ri∑
k=1

Aik

(
T+l ψik

)
(x j) +

m∑
i=1

ri∑
k=1

(
T+l ψik

)
(x j) ·

∫ x j

xi

F(x)yik(x)dx.

When j � i and l � k, it results in the following, based on the boundary conditions (4)
(
T+l ψik

)
(x j) = 0,

and therefore, terms of the sum will remain on the right only at j=i and l=k, i.e.

(
T+k z
)

(xi) = Aik

(
T+k ψik

)
(xi) +

(
T+k ψik

)
(xi) ·

∫ xi

xi

F(x)yik(x)dx.

Since
(
T+k ψik

)
(xi) = 1 based on (4), and an integral with identical lower and upper limits are equal to zero, the

second addend is also transformed to zero.

Then finally we get (
T+k z
)

(xi) = Aik, i = 1, 2, ...,m; k = 1, 2, ..., ri,

and it is congruent with the boundary conditions (21). Theorem is proved.

In conclusion, we have a formula of solution to the nonhomogenous adjoint m-point problem through the preset

fundamental system of solutions z1(s), z2(s), z3(s), ..., zn(s) of the homogenous adjoint equation L+z = 0. This form

can be helpful for practical use.

Similarly to the Householder method (Householder, 1956), it is not difficult to find out that

yik(x) =
Wn

[(
T+k zr

)
(xi), x

]
W(x)

, i = 1, 2, ...,m; k = 1, 2, ..., ri, (21)

and in the last line of the determinant within the numerator, we take values of points
(
T+k zr

)
(xi) for fundamental

system of solutions z1(s), z2(s), ..., zn(s) instead of {zk(x)}n
1
.

It should be noted that the functions yik(x) have the properties proved in Lemma 2.

Similarly to Khasseinov (1984), we can produce a formula of solution to the nonhomogenous multipoint problem

(18), (19) through the fundamental system of solutions z1(s), z2(s), . . . , zn(s)

z(s) =

m∑
i=1

ri∑
k=1

Aikψik(s) +

m∑
i=1

ri∑
k=1

ψik(s) ·
∫ s

xi

F(x)
Wn

[(
T+k zr

)
(xi), x

]
W(x)

dx.

4. Green’s Function of the Multipoint Problem for the Adjoint Equation and Its New Properties

By analogy with definition (Yerugin, 1974; Kiguradze, 1987; Lando, 1969; Levin, 1961; Jackson, 1977) of the

Green function for the adjoint differential operator L+z and boundary conditions

(
T+k z
)

(xi) = Aik, i = 1, 2, . . . ,m; k = 1, 2, . . . , ri,

m∑
i=1

ri = n,
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Let us name a function of two variables G+(x,s) complying with the following conditions:

1) Derivatives
∂rG+(x, s)

∂sr , r = 0, 1, 2, . . . , n − 2 are uninterrupted by variables s, x in the entire area x1 ≤ s, x ≤ xm

except the lines x = xμ, μ = 2, 3, . . . ,m − 1.

2) Derivative
∂n−1G+(x, s)

∂sn−1
is uninterrupted by variables s, x at x � xμ. Besides, function G+(x, s) and its derivatives

under s to (n−2) at s = x uninterrupted, (n−1)-derivative has a saltus equal to (−1)n, i.e.

G+(x, x + 0) − G+(x, x − 0) = 0

∂G+(x, x + 0)

∂s
− ∂G+(x, x − 0)

∂s
= 0

· · · · · · · · ·
∂n−2G+(x, x + 0)

∂sn−2
− ∂n−2G+(x, x − 0)

∂sn−2
= 0

∂n−1G+(x, x + 0)

∂sn−1
− ∂n−1G+(x, x − 0)

∂sn−1
= (−1)n.

(22)

3) G+(x, s) under the variable s complies with the homogenous adjoint equation L+G+(x, s) = 0 at x � xμ, x � s.

4) At x � xμ, G+(x, s) complies with homogenous boundary conditions

(
T+k G+

)
(x, xi) = 0, i = 1, 2, ...,m.

Let us show that the Green’s function of the m-point boundary value problem for the adjoint differential equation

actually exists and it can be useful to solve the nonhomogenous boundary value problem (18), (19). Creating the

Green’s function of the m-point problem for the adjoint equation, let us use an attribute of the adjoint operators

(Trenogin, 1980), i.e. the variables shall be changed in the course of the function creating.

Let us consider the function at xμ ≤ s ≤ xμ+1

G+(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r1

l=1
ψ1l(s)y1l(x) x1 ≤ x < x2∑r1

l=1
ψ1l(s)y1l(x) +

∑r2

l=1
ψ2l(s)y2l(x), x2 ≤ x < x3

.................................................. .................∑r1

l=1
ψ1l(s)y1l(x) + ... +

∑rμ
l=1
ψμl(s)yμl(x), xμ ≤ x ≤ s

−∑rμ+1

l=1
ψμ+1l(s)yμ+1l(x) − ... −∑rm

l=1
ψml(s)yml(x), s ≤ x ≤ xμ+1

.................................................................... ...................

−∑rm−1

l=1
ψm−1l(s)ym−1l(x) −∑rm

l=1
ψml(s)yml(x), xm−2 < x ≤ xm−1

−∑rm
l=1
ψml(s)yml(x), xm−1 < x ≤ xm

(23)

where μ = 1, 2, . . . ,m − 1.

Here the linearly independent functions ψ jl(s) comply with a homogenous adjoint equation L+z(s) = 0 and bound-

ary conditions
(
T+k ψ jl

)
(xi) = δi j ·δkl, and yik(x) complies with the homogenous linear equation Ly = 0 and “adjoint”

boundary conditions (10). On the issue of the problem, it is true

Theorem 1 Let coefficients of the equation (18) be bν−1(s) ∈ Cν−1[x1, xm], υ = 1, 2, . . . , n, the right part F(s) is
uninterrupted at [x1,xm] and {ψ jl(s)}, {yik(x)–a system of functions specified in Lemmas 1, 2. Then G+(x,s) (25) is
the Green’s function of the m- point problem for the adjoint Equations (18), (19).

Proof. We will try to find the Green’s function of the m-point boundary value problem for xμ ≤ s ≤ xμ+1,
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μ = 1, 2, . . . ,m − 1 in the following form

G+(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r1

l=1
ψ1l(s)χ1l(x) x1 ≤ x < x2∑r1

l=1
ψ1l(s)χ1l(x) +

∑r2

l=1
ψ2l(s)χ2l(x), x2 ≤ x < x3

.................................................. .................∑r1

l=1
ψ1l(s)χ1l(x) + ... +

∑rμ
l=1
ψμl(s)χμl(x), xμ ≤ x ≤ s

−∑rμ+1

l=1
ψμ+1l(s)χμ+1l(x) − ... −∑rm

l=1
ψml(s)χml(x), s ≤ x ≤ xμ+1

.................................................................... ...................

−∑rm−1

l=1
ψm−1l(s)χm−1l(x) −∑rm

l=1
ψml(s)χml(x), xm−2 < x ≤ xm−1

−∑rm
l=1
ψml(s)χml(x), xm−1 < x ≤ xm

(24)

where ψ jl(s) are the linearly independent functions complying with the theorem conditions.

Let us select the unknown functions χik(x) to fulfill the second condition of the Green’s function definition G+(x,s).

It is easy to notice that the first proportion for xμ ≤ s ≤ xμ+1 are as follows

G+(x, x + 0) −G+(x, x − 0)

=
∑r1

l=1
ψ1l(s)χ1l(x) + ... +

∑rμ
l=1
ψμl(s)χμl(x) +

∑rμ+1

l=1
ψμ+1l(s)χμ+1l(x) + ... +

∑rm
l=1
ψml(s)χml(x)

= 0.

Or, by writing the sum, we have

ψ11(x)χ11(x) + ... + ψ1r1
(x)χ1r1

(x) + ... + ψm1(x)χm1(x) + ... + ψmrm (x)χmrm (x) = 0.

We will have the similar expressions at the other vertical strips xν ≤ s ≤ xν+1. Thus, writing the second condition

of the Green’s function definition of the m-point boundary problem for the adjoint equation G+(x,s) (22) for all

strips xμ ≤ s ≤ xμ+1, we have the same system of linear equations regarding the unknown functions χik(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ11(x)χ11(x) + ... + ψ1r1
(x)χ1r1

(x) + ... + ψm1(x)χm1(x) + ... + ψmrm (x)χmrm (x) = 0

ψ′11(x)χ11(x) + ... + ψ′1r1
(x)χ1r1

(x) + ... + ψ′m1(x)χm1(x) + ... + ψ′mrm
(x)χmrm (x) = 0

................................................................................................................................

ψ(n−2)
11

(x)χ11(x) + ... + ψ(n−2)
1r1

(x)χ1r1
(x) + ... + ψ(n−2)

m1
(x)χm1(x) + ... + ψ(n−2)

mrm
(x)χmrm (x) = 0

ψ(n−1)
11

(x)χ11(x) + ... + ψ(n−1)
1r1

(x)χ1r1
(x) + ... + ψ(n−1)

m1
(x)χm1(x) + ... + ψ(n−1)

mrm
(x)χmrm (x) = (−1)n

Solving a system of the algebraic equations by the Cramer method, we find that

χik(x) =
(−1)n · (−1)n+()

W(xi)
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ11(x) . . . ψik−1(x) ψik+1(x) . . . ψmrm (x)

ψ′11(x) . . . ψ′ik−1
(x) ψ′ik+1

(x) . . . ψ′mrm
(x)

...
...

...
...

ψ(n−3)
11

(x) . . . ψ(n−3)
ik−1

(x) ψ(n−3)
ik+1

(x) . . . ψ(n−3)
mrm

(x)

ψ(n−2)
11

(x) . . . ψ(n−2)
ik−1

(x) ψ(n−2)
ik+1

(x) . . . ψ(n−2)
mrm

(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−
∫ x

xi
bn−1(t)dt

.

By comparing the functions with (7), we can see that χik(x) = yik(x).

Execution of the third condition of the definition is obvious from the formula (24). Let us show that the function

(24) complies with the fourth condition as well. Let us apply the operator of the boundary conditions T+k to the

function G+(x, s) and set s = xi to set μ = i in (24). So, in representation of the function (24), the sum disappears

at xi < x ≤ s, since an interval comes to the point xi < x ≤ xi. Considering this and linearity of the operator T+k ,
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we have

(
T+k G
)

(x, xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r1

l=1
y1l(x)

(
T+k ψ1l

)
(xi), x1 ≤ x < x2

............................... .................

∑r1

l=1
y1l(x)

(
T+k ψ1l

)
(xi) + ... +

∑ri−1

l=1
yi−1l(x)

(
T+k ψi−1l

)
(xi), xi−1 ≤ x ≤ xi

−∑ri+1

l=1
yi+1l(x)

(
T+k ψi+1l

)
(xi) − ... −∑rm

l=1
yml(x)

(
T+k ψml

)
(xi), xi ≤ x ≤ xi+1

............................... .................

−∑rm
l=1

yml(x)
(
T+k ψml

)
(xi). xm−1 < x ≤ xm

Since the first index of value of the function ψ jl(xi) is not congruent with the index of operator T+k (xi), i.e. j � i,
all sums of the right part transform to zero based on (5).

Thus, (
T+k G+

)
(x, xi) = 0,∀x � xμ, μ = 2, 3, . . . ,m − 1.

Therefore, the function created in a form (23) is a Green’s function of the m-point boundary value problem for the

adjoint Equations (18), (19). Theorem is proved.

As far as we know, the adjoint forms (which existence was proved by Y. Tamarkin long ago) when ranges of

functions {z} and {y} would be adjoint, have not been found in works (Levin, 1985; Maksimov & Rakhmatullina,

1977; Lando, 1969; Jackson, 1977; Kiguradze, 1975; Grimm & Eloe, 1984). In Khasseinov (1988), there were

found adjoint boundary conditions
(
T+k z
)

(xi) for a line of the multipoint task for the linear differential equation,

and in Khasseinov (1984)-(Tky) (xi) for the n-point task for the adjoint differential equation.

But here we have a new result that it was done for the adjoint differential equation L+z = F(s) with common

boundary conditions in the m-points
(
T+k z
)

(xi). We have found corresponding “adjoint” boundary conditions

(Tky) (xi) for such a problem and solved a nonhomogenous multipoint problem for the adjoint equation. Herewith,

especially these adjoint family of functions {ψ jl(s)} and {yik(x)} are used in the course of creating of the Green’s

function G+(x,s). Thereby, we give particular new properties of the Green’s function of the m-point problem for

the adjoint equation.

1) Green’s function G+(x,s) of the m-point problem for the adjoint equation under the variable x in the rectangle

x1 ≤ x, s ≤ xm, except lines x = xμ, x = s, complies with the homogenous differential equation, i.e. LG+(x, s) = 0.

Proof. Function G+(x,s) represents the sum of products ∀ s ∈ [xμ, xμ+1], μ = 1, 2, . . . ,m − 1

G+(x, s) = ±
μ(m)∑

k=1(μ+1)

rk∑
l=1

ψkl(s)ykl(x) = 0; for xμ < x < s (s < x < xμ+1).

By applying the linear differentiation operator L under the variable x and considering its linearity, we get

LG+(x, s) = ±
μ(m)∑

k=1(μ+1)

rk∑
l=1

ψkl(s)Lykl(x) = 0, xμ < x < s (s < x < xμ+1),

because the functions {ykl(x)}, due to Lemma 2, are solutions of the homogenous equation Ly = 0.

2) Green’s function G+(x,s) of the m-point problem for the adjoint equation at lines x = xμ, μ = 2, 3, . . . ,m − 1 has

a gap of the first kind, and the following proportion is executed for ∀ s ∈ [x1, xm]

G+(xμ + 0, s) −G+(xμ − 0, s) =
∑rμ

l=1
ψμl(s)yμl(x)

∣∣∣x=xμ = (−1)n∑rμ
l=1

rln(xμ) · ψμl(s), (25)

i.e. the Green’s function saltus is equal to the sum of products of the coefficients at the higher derivatives in the

boundary conditions by the corresponding functions.

Proof. It is obvious from the Green’s function structure (23) that to define the necessary difference, it is sufficient

to subtract expression of the previous line at x < xμ from the expression G+(x, s) at x ≥ xμ, i.e.

G+(xμ + 0, s) −G+(xμ − 0, s) =
(∑μ

k=1

∑rk
l=1
ψkl(s)ykl(x) −∑μ−1

k=1

∑rk
l=1
ψkl(s)ykl(x)

) ∣∣∣x=xμ

=
∑rμ

l=1
ψμl(s)yμl(x)

∣∣∣x=xμ = (−1)n∑rμ
l=1

rln(xμ) · ψμl(s),
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based on value yil(xi) from (7)

yil(xi) =
(−1)n·(−1)

2
[
n+(l+

∑i−1
μ=1

rμ )
]

W(xi)
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ11(xi) ... ψil(xi) ... ψmrm (xi)

ψ′11(xi) ... ψ′il(xi) ... ψ′mrm
(xi)

...
...

...

ψ(n−2)
11

(xi) ... ψ(n−2)
il

(xi) ... ψ(n−2)
mrm

(xi)(
T+ilψ11

)
(xi) ...

(
T+ilψil

)
(xi) ...

(
T+ilψmrm

)
(xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−
∫ xi

xi
bn−1(t)dt

= (−1)nrln(xi),

because (
T+ilψ jk

)
(xi) = rln(xi)ψ

(n−1)
jk (xi) + ... + rl1(xi)ψ jk(xi) = δi jδkl.

The similar is set at x ≥ s as well.

Green’s function G+(x,s) of the m-point problem for the adjoint equation and correspondingly its derivatives on s to

(n−2)-th order are uninterrupted at the lines x = xμ, μ = 2, 3, . . . ,m − 1, if only coefficients rln(xμ), l = 1, 2, . . . , rμ
at senior derivatives in all boundary conditions (21) in points xμ transform to zero. In other cases, there is no

continuity.

Actually, if the sum
rμ∑

l=1

rln(xμ) · ψμl(s)

is equal to zero ∀ s ∈ [x1, xm], the functions
{
ψμl(s)

}rμ
l=1

would be linearly dependent. These function are a subsystem

of the linearly independent functions ψ jl(s), j = 1, 2, . . . ,m; l = 1, 2, . . . , r j, which in our assumption should be

linearly dependent but it contradicts the conditions of Lemma 2.

Thus, the Green’s function G+(x,s) and its derivatives are uninterrupted at the lines x = xμ in the only case when

there are no (n−1)-th order derivatives in all the boundary conditions (19) in the point s = xμ. Such an attribute

simply results from the proportion (25).

A. Levin produced the similar attribute for the Green’s function of the direct multipoint problem under the other

considerations (Levin, 1961).

Let us specify the Green’s function saltus of the adjoint boundary task G+(x,s) at the lines x = xμ, μ = 2, 3, . . . ,m−1,

δG+(xμ, s) = G+(xμ + 0, s) −G+(xμ − 0, s) = ψμ(s)yμ(x)
∣∣∣x=xμ .

To make it comfortable, supposing G+(x1 − 0, s) = 0, we can find

δG+(x1, s) = G+(x1 + 0, s) = G+(x, s)
∣∣∣x=x1

= ψ1(s)y1(x)
∣∣∣x=x1
.

Similarly, if we take G+(xn + 0, s) = 0, so

δG+(xn, s) = −G+(xn − 0, s) = −G+(x, s)
∣∣∣x=xn = ψn(s)yn(x)

∣∣∣x=xn .

Now, we can take i = 1, 2, . . . , n instead of index μ, i.e.

δG+(xi, s) = G+(xi + 0, s) −G+(xi − 0, s) = ψi(s)yi(x)
∣∣∣x=xi . (26)

Let us specify the difference of derivatives

δG+(k)(xi, s) =
∂kG+(xi + 0, s)

∂xk − ∂
kG+(xi − 0, s)

∂xk = ψi(s)
dkyi(x)

dxk

∣∣∣x=xi . (26)

Supposing the first corresponding coefficients (different from zero) at the senior derivatives are rn−ki (xi) in the

adjoint boundary conditions (19), i.e.

rn(xi) = rn−1(xi) = ... = rn−ki+1(xi) = 0.
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Then it is easy to determine from the boundary conditions for the operator Ly (5) considering (d) that

dki yi(x)

dxki

∣∣∣x=xi = Wn−ki−1,n−1(xi)e
− ∫ xi

xi
bn−1(t)dt

=
(−1)2n+i

W(xi)
(−1)n−ki+iW(xi)rn−ki (xi) = (−1)n−ki rn−ki (xi) � 0, (28)

where ki is a natural number corresponding to each point xi.

Let us consider saltus ki-derivatives of the Green’s function of the adjoint boundary value problem at the corre-

sponding lines x = xi:

δG+(ki)(xi, s) = ∂
ki G+(xi+0,s)

∂xki
− ∂ki G+(xi−0,s)

∂xki
= ψi(s)

dki yi(x)

dxki

∣∣∣x=xi = ψi(s)(−1)n−ki rn−ki (xi).

So, we can define

ψi(s) = (−1)n−ki
1

rn−ki (xi)
δG+(ki)(xi, s). (29)

Applying this expression and considering (20), we can produce a solution of the homogenous adjoint equation

L+z(s) = 0 at the boundary conditions (19) for the case (28):

z(s) =

n∑
i=1

(−1)n−ki
Aik

rn−ki (xi)
δG+(ki)(xi, s), rn−ki (xi) � 0. (30)

Theorem 2 Let G+(x,s) be a Green’s function of the m-point boundary value problem for the adjoint Equations
(18), (19). Then the only solution to the nonhomogenous boundary problem (18), (19) is defined by the following
formula

z(s) =

m∑
i=1

ri∑
k=1

Aikψik(s) +

∫ xm

xi

F(x)G+(x, s)dx. (31)

Proof. It is obvious from Theorem 1 of the previous paragraph that the double sum is a solution of the homogenous

adjoint equation L+z(s) = 0 at condition (19).

Therefore, it is sufficient to prove that an integral is a solution of the nonhomogenous adjoint Equation (18) at the

zero boundary conditions
(
T+k z
)

(xi) = 0. Let us take a random strip xμ ≤ s ≤ xμ+1 and write an integral out for the

sum of m integrals by considering assignment of the Green’s function (23):

∫ xm

xi

F(x)G+(x, s)dx =
∫ x2

x1

F(x)

r1∑
l=1

ψ1l(s)y1l(x)dx +
∫ x3

x2

F(x)[

r1∑
l=1

ψ1l(s)y1l(x)+

+

r2∑
l=1

ψ2l(s)y2l(x)]dx + ... +
∫ xμ

xμ−1

F(x)[

r1∑
l=1

ψ1l(s)y1l(x) + ... +

rμ−1∑
l=1

ψμ−1l(s)yμ−1l(x)]dx+

+

∫ s

xμ
F(x)[

r1∑
l=1

ψ1l(s)y1l(x)dx +
r2∑

l=1

ψ2l(s)y2l(x)dx + ... +
rμ∑

l=1

ψμl(s)yμl(x)]dx−

−
∫ xμ+1

s
F(x)[

rμ+1∑
l=1

ψμ+1l(s)yμ+1l(x) +

rμ+2∑
l=1

ψμ+2l(s)yμ+2l(x) + ... +

rm∑
l=1

ψml(s)yml(x)]dx−

−
∫ xμ+2

xμ+1

F(x)[

rμ+2∑
l=1

ψμ+2l(s)yμ+2l(x) +

rμ+3∑
l=1

ψμ+3l(s)yμ+3l(x) + ... +

rm∑
l=1

ψml(s)yml(x)]dx − ...−

−
∫ xm−1

xm−2

F(x)[

rm−1∑
l=1

ψm−1l(s)ym−1l(x) +

rm∑
l=1

ψml(s)yml(x)]dx −
∫ xm

xm−1

F(x)

rm∑
l=1

ψml(s)yml(x)dx.

For the first, let us consider only positive terms. Since the sum
∑r1

l=1
ψ1l(s)y1l(x) is under all the integrals beginning

with the first and including the integral with variables of the upper limit s, and there is
∑r2

l=1
ψ2l(s)y2l(x) beginning

from the second integral and including the integral with variables upper limit s and so on, then we have

∫ s

x1

F(x)

r1∑
l=1

ψ1l(s)y1l(x)dx +
∫ s

x2

F(x)

r2∑
l=1

ψ2l(s)y2l(x)dx + ...+
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+

∫ s

xμ
F(x)

rμ∑
l=1

ψμl(s)yμl(x)dx =
μ∑

i=1

ri∑
l=1

ψil(s)

∫ s

xi

F(x)yil(x)dx.

It is true for the negative integrals as well. Having applied addition of integrals and mobbing from the last to the

integral with variable lower limit s, we will have

−
∫ xμ+1

s
F(x)

rμ+1∑
l=1

ψμ+1l(s)yμ+1l(x)dx −
∫ xμ+2

s
F(x)

rμ+2∑
l=1

ψμ+2l(s)yμ+2l(x)dx − ...−

−
∫ xm

s
F(x)

rm∑
l=1

ψml(s)yml(x)dx = −
m∑

i=μ+1

ri∑
l=1

ψil(s)

∫ xi

s
F(x)yil(x)dx.

Having changed integration limits and having summed up the integrals, finally we have

∫ xm

x1

F(x)G+(x, s)dx =
m∑

i=1

ri∑
l=1

ψil(s)

∫ s

xi

F(x)yil(x)dx.

This integral is congruent with the second sum of the proportion (20), therefore, Theorem 1 of the previous para-

graph proves that the formula (31) is true.
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