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Abstract

We prove some equivalence results between limit theorems for sequences of (�)-group-valued measures, with

respect to order ideal convergence. A fundamental role is played by the tool of uniform ideal exhaustiveness of a

measure sequence already introduced for the real case or more generally for the Banach space case in our recent

papers, to get some results on uniform strong boundedness and uniform countable additivity. We consider both

the case in which strong boundedness, countable additivity and the related concepts are formulated with respect to

a common order sequence and the context in which these notions are given in a classical like setting, that is not

necessarily with respect to a same (O)-sequence. We show that, in general, uniform ideal exhaustiveness cannot

be omitted. Finally we pose some open problems.
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1. Introduction

Ideal convergence was introduced by Kostyrko, Šalát, and Wilczyński (2000/2001) and independently by Nuray

and Ruckle (2000) with the name of “cofilter convergence”, while filter convergence was introduced by Katětov

(1968). Ideal convergence includes as a particular case the statistical convergence, introduced by Fast (1951) and

Steinhaus (1951) (see also Connor, 1992; Fridy & Miller, 1991; Kolk, 1993; Šalát, 1980). Several fundamental

properties of ideal convergence have been recently investigated. Among the literature, we quote for instance Boc-

cuto, Das, and Dimitriou (2012); Boccuto, Dimitriou, and Papanastassiou (2013); Dems (2004/2005); Komisarski

(2008); Laczkovich and Recław (2009); Lahiri and Das (2003); Letavaj (2011); Šalát, Tripathy, and Ziman (2004).

This concept has been studied even in topological spaces (see e.g. Das, 2012; Das & Ghosal, 2011; Lahiri &

Das, 2005; Lahiri & Das, 2007/2008) and in (�)-groups (see also Boccuto & Dimitriou, 2011a, 2011b, 2011c,

2013b; Boccuto, Dimitriou, & Papanastassiou, 2010b, 2011b, 2011c, 2012a, 2012b, 2012d; Boccuto, Dimitriou,

Papanastassiou, & Wilczyński, 2012, 2013). This notion has been several applications in the very recent literature.

Among them we recall weak ideal compactness in measure spaces (see also Boccuto, Das, & Dimitriou, 2012; Boc-

cuto, Das, Dimitriou, & Papanastassiou, 2012; Boccuto, Dimitriou, & Papanastassiou, 2010b; Dimitriou, 2011),

Approximation Theory, signal sampling and reconstruction of images (see also Bardaro, Boccuto, Dimitriou, &

Mantellini, 2012, 2013; Boccuto & Dimitriou, 2012, 2013c; Duman, 2007; Higgins & Stens, 1999), and in partic-

ular Brooks-Jewett, Dieudonné, Nikodým convergence and Vitali-Hahn-Saks-type theorems, with which we deal

in this paper.

In the classical context, among the extensions of the classical convergence theorems (see Brooks & Jewett, 1970;

Choksi, 2001; Dieudonné, 1951; Hahn, 1922; Nikodým, 1933a, 1933b; Saks, 1932, 1937; Vitali, 1907), we quote

Candeloro (1985a, 1985b, 1985c), de Lucia and Morales (1986) and Drewnowski (1972a, 1972b) for topological
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group-valued measures and Boccuto (1996a, 1996b); Boccuto and Candeloro (2001/2002, 2002, 2004, 2010,

2011); Boccuto, Dimitriou, and Papanastassiou (2012c) for Riesz space- and/or lattice group-valued measures

(see also de Lucia & Pap, 2002; Dimitriou, 2007, 2011 and their bibliographies). In Boccuto, Dimitriou, and

Papanastassiou (2011b) some ideal limit theorems are proved for positive (�)-group-valued measures, extending

some results of Boccuto (1996b). In Boccuto, Dimitriou, and Papanastassiou (2011c, 2012d) some limit theorems

are given in this setting for not necessarily positive measures and for a suitable class of filters, extending earlier

results of Aviles Lopez, Cascales Salinas, Kadets, and Leonov (2007). Similar results have been recently proved

in topological group context in Boccuto and Dimitriou (2013a). In Boccuto, Das, Dimitriou, and Papanastassiou

(2012) and Boccuto and Dimitriou (2011a, 2011b) some other versions of ideal limit theorems for real-valued and

lattice group-valued measures are given. In this framework, a fundamental role is played by uniform ideal ex-

haustiveness, which in general, when I � Ifin, cannot be dropped (see also Boccuto & Dimitriou, 2011b). These

theorems are given when σ-additivity and related concepts are formulated not necessarily with respect to a same

(O)-sequence. Moreover, in Boccuto, Dimitriou, and Papanastassiou (2010b, 2012a) some versions of basic matrix

theorems are given, extending earlier results of Aizpuru and Nicasio-Llach (2008); Aizpuru, Nicasio-Llach, and

Rambla-Barreno (2010); Antosik and Swartz (1985). Note that in general these kinds of theorems, in their ideal

version, do not produce immediate results for measure convergence like in the classical case, since in lattice groups

the nature of order convergence is in general not topological, and because filter convergence is not inherited by

subsequences. Furthermore note that, in the ideal setting, in general one cannot have results completely analogous

to the classical limit theorems, even in the case of positive real-valued measures (see also Boccuto, Dimitriou, &

Papanastassiou, 2012a).

In this paper we continue the investigation initiated in Boccuto, Das, Dimitriou, and Papanastassiou (2012); Boc-

cuto and Dimitriou (2011a, 2011b), in the context of (�)-group-valued measures and in connection with uniform

ideal exhaustiveness. We consider both cases when countable additivity and strong boundedness are intended

relatively to a same order sequence, and when these notions are formulated like in the classical approach, that

is not necessarily with respect to a common (O)-sequence. We give some equivalence results between limit the-

orems in the setting of order ideal convergence. Here, absolute continuity is intended with respect to a general

Fréchet-Nikodým topology. Similar equivalence results are given in Drewnowski (1972a) in topological groups.

In particular, when it is proved that the Nikodým convergence theorem implies the Brooks-Jewett theorem, count-

ably additive restrictions of finitely additive (s)-bounded topological group-valued measures, defined on suitable

σ-algebras, are considered (see also Boccuto, Dimitriou, & Papanastassiou, 2010a, 2011a for a lattice group ver-

sion). However in our setting, in order to relate finitely and countably additive measures, it is not advisable to

use an approach of this kind. Indeed, in topological groups, the involved convergences fulfil some suitable prop-

erties, which are not always satisfied by order convergence in (�)-groups, because in general it does not have a

topological nature. So, to prove our results, we use the Stone Isomorphism technique (see also Sikorski, 1964), by

means of which it is possible to construct a σ-additive extension of a finitely additive (s)-bounded measure, and

to study the properties of the starting measures in relation with the corresponding ones of the considered exten-

sions. For lattice group-valued measures, the Stone extension is examined in Boccuto (1995) when σ-additivity

and (s)-boundedness are intended in a classical like sense, that is not necessarily with respect to a same order

sequence, and in Boccuto and Candeloro (2002, 2004) when these notions are formulated with respect to a com-

mon (O)-sequence or regulator. Note that, in topological groups, it is possible to use not only the Drewnowski

Lemma (see Drewnowski, 1972a), but also the Stone Isomorphism Technique, to construct σ-additive measures by

starting from finitely additive (s)-bounded measures (see also Candeloro, 1985c; Sion, 1969, 1973). Moreover, to

prove that the Brooks-Jewett theorem implies the Nikodým theorem, when we link uniform (s)-boundedness and

σ-additivity, when these concepts are intended not necessarily with respect to a same order sequence, in general

for technical reasons it is not advisable to consider a direct approach, and we use the Maeda-Ogasawara-Vulikh

representation theorem for Dedekind complete (�)-groups, studying the related properties of the corresponding

real-valued measures. When we deal with a common (O)-sequence, it is possible to give direct proofs, and it is

not always advisable to use the tool of the Maeda-Ogasawara-Vulikh representation theorem, because it yields

informations in general only about convergence of suitable (�)-group-valued sequences by means of convergence

of suitable real-valued sequences, and not necessarily about whether they can be obtained with respect to a single

(O)-sequence in the (�)-group involved.

The paper is structured as follows. In Section 2 we present some basic notions and results on (�)-groups, order ideal

convergence, submeasures, Fréchet-Nikodým topologies and (�)-group-valued measures. In Section 3, using the

Stone extension of measures in connection with uniform ideal exhaustiveness, we present our main results about
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ideal limit theorems and their equivalence, and we show that, in general, the condition of uniform ideal exhaustive-

ness cannot be dropped in our context, and it is impossible to obtain versions of limit theorems analogous to the

classical ones, when pointwise convergence of the measures involved is replaced by ideal pointwise convergence.

Finally we pose some open problems.

Our thanks to the referee for his/her valuable comments, remarks and suggestions to improve some parts of the

paper.

2. Preliminaries

2.1 Lattice Groups

We recall some basic properties of lattice groups (see also Birkhoff, 1940; Boccuto, Riečan, & Vrábelová, 2009;

Luxemburg & Zaanen, 1971; Riečan & Neubrunn, 1997; Vulikh, 1967).

An (�)-group is said to be Dedekind complete iff every nonempty subset A ⊂ R, bounded from above, has lattice

supremum in R, denoted by ∨A.

A Dedekind complete (�)-group is super Dedekind complete iff every nonempty set A ⊂ R, bounded from above,

has a countable subset A′ ⊂ R, with ∨A′ = ∨A.

A sequence (σp)p in R is an (O)-sequence iff it is decreasing and ∧p σp = 0, where the symbol ∧ denotes the lattice

infimum.

A bounded double sequence (at,l)t,l in R is called a (D)-sequence or regulator iff (at,l)l is an (O)-sequence for every

t ∈ N.

An (�)-group R is said to be weakly σ-distributive iff

∧
ϕ∈NN

( ∞∨
t=1

at,ϕ(t)

)
= 0

for every (D)-sequence (at,l)t,l.

Note that weak σ-distributivity is a necessary and sufficient condition in order that, for any abstract nonempty

set G and any algebra A of subsets of G, every σ-additive R-valued measure defined on A admits a σ-additive

extension, defined on the σ-algebra Σ(A) generated byA (see Wright, 1971).

A sequence (xn)n in R is said to be order-convergent (or (O)-convergent) to x ∈ R iff there is an (O)-sequence (σp)p

such that for each p ∈ N there is np ∈ N with |xn − x| ≤ σp for every n ≥ np. In this case we write (O) lim
n

xn = x
(with respect to (σp)p).

We now recall the Maeda-Ogasawara-Vulikh representation theorem in its version for Dedekind complete (�)-
groups (see also Bernau, 1965, Theorem 6; Boccuto & Dimitriou, 2011b, Theorem 2.3).

Theorem 2.1 Given a Dedekind complete (�)-group R, there exists a compact Hausdorff extremely disconnected
topological space Ω, such that R can be lattice isomorphically embedded as a subgroup of C∞(Ω) = { f ∈ R̃Ω: f
is continuous, and {ω ∈ Ω: | f (ω)| = +∞} is nowhere dense in Ω}. Moreover, if (aλ)λ∈Λ is any family such that
aλ ∈ R for all λ, and a = ∨λ aλ ∈ R (where the supremum is taken with respect to R), then a = ∨λ aλ with respect
to C∞(Ω), and the set {ω ∈ Ω: (∨λ aλ)(ω) � supλ [aλ(ω)]} is meager in Ω.

In this paper we deal with the order convergence for sequences in the (�)-group setting. Another kind of con-

vergence is widely studied in this context, the (D)-convergence (see also Boccuto, 2003; Boccuto, Riečan, &

Vrábelová, 2009; Riečan & Neubrunn, 1997). Note that, in any Dedekind complete (�)-group R, every (O)-

convergent sequence (D)-converges to the same limit, while the converse is true if and only if R is weakly σ-

distributive.

For technical reasons, there are some situations in which (O)-convergence is easier to handle than (D)-convergence,

and other contexts in which it is preferable to consider (D)-convergence. In particular, we will often use the tool

of replacing a series of (D)-sequences with a single regulator (Fremlin Lemma), and in this setting it is advisable

to deal with regulators.

Lemma 2.2 (Fremlin Lemma, see also Fremlin, 1975, Lemma 1C; Riečan & Neubrunn, 1997, Theorem 3.2.3) Let
R be any Dedekind complete (�)-group and (a(n)

t,l )t,l, n ∈ N, be a sequence of regulators in R. Then for every u ∈ R,
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u ≥ 0 there is a (D)-sequence (at,l)t,l in R with

u ∧
( q∑

n=1

( ∞∨
t=1

a(n)
t,ϕ(t+n)

))
≤
∞∨

t=1

at,ϕ(t) for every q ∈ N and ϕ ∈ NN.

The following result links order and (D)-sequences and will be useful to study some properties of lattice group-

valued measures.

Theorem 2.3 (see also Boccuto, 2003, Theorems 3.1 and 3.4) Given any Dedekind complete (�)-group R and any
(O)-sequence (σl)l in R, the double sequence defined by at,l := σl, t, l ∈ N, is a regulator, with the property that for
every ϕ ∈ NN, if l = ϕ(1), then

σl ≤
∞∨

t=1

at,ϕ(t).

Conversely, if R is super Dedekind complete and weakly σ-distributive, then for every (D)-sequence (at,l)t,l in R
there is an (O)-sequence (βp)p such that for each p ∈ N there exists ϕp ∈ NN with

∞∨
t=1

at,ϕp(t) ≤ βp.

2.2 Ideal Convergence

We now recall the main properties of ideal convergence in the (�)-group setting.

A class of sets I ⊂ P(N) is called an ideal of N iff A ∪ B ∈ I whenever A, B ∈ I and for each A ∈ I and B ⊂ A
we get B ∈ I. An ideal of N is said to be admissible iff N � I and I contains all singletons.

Given an ideal I of N, we call dual filter of I the family of sets F = F (I) := {N \ A: A ∈ I}.
An admissible ideal I of N is called a P-ideal iff for any sequence (Aj) j in I there are a sequence (Bj) j in P(N),

such that the symmetric difference AjΔBj is finite for all j ∈ N and

∞⋃
j=1

Bj ∈ I.

An admissible ideal I of N is said to be maximal iff, for every subset A ⊂ N, we get that either A ∈ I or N \ A ∈ I.

Some examples of P-ideals of N are the ideal Ifin of all finite subsets of N and the ideal Iδ of all subsets of N
having null asymptotic density (see also Kostyrko, Šalát, & Wilczyński, 2000/2001; Farah, 2000). Observe that Iδ
is not maximal. Indeed, if E is the set of all even integers, then we get E � Iδ and N \E � Iδ. However it is known

that, if we assume the continuum hypothesis, then there are several maximal P-ideals of N (see also Henriksen,

1959, (1,7)).

Some other examples of P-ideals are the Erdős-Ulam ideals associated with a function f : N → R+, consisting on

all subsets A ⊂ N for which

lim
n

∑
i∈A∩[1,n] f (i)∑n

i=1 f (i)
= 0,

whose Iδ is a particular case, obtained by taking f (n) = 1 for each n ∈ N (see also Farah, 2000, Example 1.2.3

(d)).

Let N =
∞⋃

k=1

Δk be a partition of N into infinite sets, and I0 = {A ⊂ N: A intersects at most a finite number of Δk’s}.
The ideal I0 is not a P-ideal (see also Kostyrko, Šalát, & Wilczyński, 2000/2001, Example 3.1 (g)).

For further properties of ideals, see also Farah (2000) and the bibliography therein.

We now recall the concept of order ideal convergence (see also Boccuto, Dimitriou, & Papanastassiou, 2012a).

Let I be an admissible ideal of N. A sequence (xn)n in R (OI)-converges to x ∈ R iff there exists an (O)-sequence

(σp)p in R with {n ∈ N: |xn − x| � σp} ∈ I for all p ∈ N, and in this case we write (OI) lim
n

xn = x. If R = R, we

write simply (I) lim
n

xn = x.

The following result relates (OI)-convergence with the classical (O)-convergence (see also Boccuto, Dimitriou, &

Papanastassiou, 2012a, Proposition 2.11).
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Proposition 2.4 Let R be any Dedekind complete (�)-group and I be any admissible ideal of N. If there is B ∈ I
with (O) lim

n∈N\B
xn = x with respect to an (O)-sequence (σp)p in R, then (OI) limn xn = x with respect to (σp)p.

Proof. By hypothesis there is B ∈ I such that, if M := N \ B, M = {m1 < . . . < mh < . . .}, then

(O) lim
h

xmh = x (1)

with respect to a suitable (O)-sequence (σp)p in R.

Choose arbitrarily p ∈ N. By (1) there exists h0 ∈ N with |xmh − x| ≤ σp whenever h ≥ h0. Thus the set

Ap := {n ∈ N: |xn − x| � σp} ⊂ B ∪ {m1, . . . ,mh0−1} belongs to I, since I is admissible. This ends the proof. �

The converse of Proposition is in general not true, and holds if and only if I is a P-ideal (see also Boccuto &

Dimitriou, 2011b; Boccuto, Dimitriou, Papanastassiou, & Wilczyński, 2013).

The following property of P-ideals will be useful in the sequel.

Proposition 2.5 (Boccuto & Dimitriou, 2011b, Proposition 3.2) Let (xn, j)n, j be a double sequence in R, I be a
P-ideal of N, and suppose that (OI) lim

n
xn, j = x j for every j ∈ N with respect to a common (O)-sequence (σp)p.

Then there is a set B0 ∈ F with (O) lim
n∈B0

xn, j = x j for all j ∈ N, with respect to the same (O)-sequence (σp)p.

2.3 Set Functions and FN-Topologies

We now recall some notions and properties of submeasures, (�)-group-valued measures and Fréchet-Nikodým

topologies. From now on, let Σ be a σ-algebra of subsets of an abstract infinite set G.

A submeasure η: Σ → [0,+∞] is a set function with η(∅) = 0, η(A) ≤ η(B) whenever A, B ∈ Σ, A ⊂ B, and

η(A∪B) ≤ η(A)+η(B) whenever A, B ∈ Σ and A∩B = ∅. Note that, if η is a submeasure, then η
( n⋃

i=1

Ai

)
≤

n∑
i=1

η(Ai)

for any n ∈ N and A1, . . . , An ∈ Σ (see also Drewnowski, 1972b, §2).

A submeasure η is order continuous iff lim
k
η(Hk) = 0 for every decreasing sequence (Hk)k in Σ with

∞⋂
k=1

Hk = ∅.

A topology τ on Σ is called a Fréchet-Nikodým topology iff the functions (A, B) �→ AΔB and (A, B) �→ A ∩ B from

Σ× Σ (endowed with the product topology) to Σ are continuous, and for each τ-neighborhood V of ∅ in Σ there is a

τ-neighborhood U of ∅ in Σ with the property that, if E ∈ Σ is contained in some suitable element of U, then E ∈ V
(see also Drewnowski, 1972b, §1).

Observe that a topology τ on Σ is a Fréchet-Nikodým topology if and only if there exists a family of submeasures

Z := {ηi: i ∈ Λ}, with the property that a base of τ-neighborhoods of ∅ in Σ is given by

D := {Uε,J := {A ∈ Σ : ηi(A) < ε for all i ∈ J} : ε ∈ R+, J ⊂ Λ is finite}
(see also Boccuto & Dimitriou, 2011b; Drewnowski, 1972a, 1972b; Weber, 2002).

We recall the basic properties of measures with values in a Dedekind complete (�)-group R.

Given a finitely additive measure m: Σ → R, we denote by positive part, negative part and semivariation of m the

quantities

m+(A) =
∨

B∈Σ,B⊂A

m(B), m−(A) =
∨

B∈Σ,B⊂A

(−m(B)), v(m)(A) =
∨

B∈Σ,B⊂A

|m(B)|

respectively, where A ∈ Σ.

We say that the finitely additive measures mn: Σ → R, n ∈ N, are equibounded on Σ iff there is a w ∈ R with

|mn(A)| ≤ w for all n ∈ N and A ∈ Σ.

A finitely additive measure m: Σ → R is said to be (s)-bounded on Σ iff (O) lim
k

v(m)(Ck) = 0 for every disjoint

sequence (Ck)k in Σ.

The finitely additive measures mn: Σ→ R, n ∈ N, are uniformly (s)-bounded on Σ iff

(O) lim
k

[∨n v(mn)(Ck)] = 0
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whenever (Ck)k is a sequence of pairwise disjoint elements of Σ.

A finitely additive measure m: Σ → R is said to be σ-additive on Σ iff for every disjoint sequence (Ck)k in Σ we

get (O) lim
k

v(m)
( ∞⋃

l=k

Cl

)
= 0. The measures mn: Σ → R, n ∈ N, are uniformly σ-additive on Σ iff for each disjoint

sequence (Ck)k in Σ we get (O) lim
k

(∨
n

v(mn)
( ∞⋃

l=k

Cl

))
= 0.

Let τ be a Fréchet-Nikodým topology on Σ. A finitely additive measure m: Σ→ R is said to be τ-continuous on Σ,

iff for each decreasing sequence (Hk)k in Σ, with τ-lim
k

Hk = ∅, we get

(O) lim
k

v(m)(Hk) = 0.

The finitely additive measures mn: Σ→ R, n ∈ N, are uniformly τ-continuous on Σ, iff

(O) lim
k

(∨
n

v(mn)(Hk)
)
= 0

whenever (Hk)k is a decreasing sequence in Σ such that τ-lim
k

Hk = ∅.
Let G,H ⊂ Σ denote two lattices, satisfying the following property:

(R0) the complement with respect to G of every element ofH belongs toG andG is closed under countable unions.

A finitely additive measure m: Σ→ R is regular on Σ iff

(R1) for each E ∈ Σ and r ∈ N there exist Fr ∈ H , Gr ∈ G with Fr ⊂ Fr+1 ⊂ E ⊂ Gr+1 ⊂ Gr for any r, and

(O) lim
r

v(m)(Gr \ Fr) = 0.

The finitely additive measures mn : Σ → R, n ∈ N, are uniformly regular on Σ iff for every E ∈ Σ and r ∈ N there

exist Fr ∈ H , Gr ∈ G with Fr ⊂ Fr+1 ⊂ E ⊂ Gr+1 ⊂ Gr for all r, and (O) lim
r

(∨
n

v(mn)(Gr \ Fr)
)
= 0.

Analogously as above it is possible to formulate the notions of global and global uniform (s)-boundedness, σ-

additivity, τ-continuity and regularity, by requiring that the involved (O)-limits exist with respect to a common

(O)-sequence. Note that, in general, these concepts are not identical. Indeed there exist bounded finitely additive

lattice group-valued measures, which are not globally (s)-bounded (see Boccuto & Candeloro, 2002, Example

2.17), while every bounded finitely additive (�)-group-valued measure is (s)-bounded too (see Boccuto, Dimitriou,

& Papanastassiou, 2010a, Theorem 3.1).

The following technical lemma will be useful in the sequel to link global uniform (s)-boundedness of (�)-group-

valued measures with the other related global properties. A similar result (see Boccuto & Dimitriou, 2011b,

Lemma 3.3) holds also for (s)-bounded measures, not necessarily with respect to a same (O)-sequence, but for

technical reasons in this case we use the Maeda-Ogasawara-Vulikh theorem and assume uniform (s)-boundedness

of the measures mn(·)(ω), n ∈ N, for ω belonging to a complement of a meager subset of Ω, where Ω is as in

Theorem 2.1.

Lemma 2.6 Let G ⊂ Σ be a lattice, closed under countable unions, (σp)p be an (O)-sequence in R and mn: Σ→ R,
n ∈ N, be a sequence of finitely additive measures, globally uniformly (s)-bounded on Σ. Fix W ∈ Σ and a
decreasing sequence (Hk)k in G, with W ⊂ Hk for each k ∈ N. If

(O) lim
k

v(mn)(Hk) = 0 for all n ∈ N (2)

with respect to the same (O)-sequence (σp)p, then

(O) lim
k

(∨
n

v(mn)(Hk)
)
= 0

with respect to (σp)p.

Proof. PutW := {A ∈ Σ: A ∩W = ∅}. For every A ∈ W and n, q ∈ N, we have

mn(A) − mn(A \ Hq) = mn(A ∩ Hq). (3)
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As A ∩ Hq ⊂ Hq−1 \W for any q ∈ N, from (2) and (3), for each n ∈ N we get

mn(A) = (O) lim
q

mn(A \ Hq) for all A ∈ W. (4)

If the thesis of the lemma is not true, then there exists p ∈ N such that for every r ∈ N there are n, k ∈ N with k > r
and A ∈ Σ with A ⊂ Hk \W, |mn(A)| � σp, and thus, thanks to (4),

|mn(A \ Hq)| � σp

for q large enough.

At the first step, we find a set A1 ∈ Σ and three integers k1 > 1, n1 ∈ N and q1 > max{k1, n1}, with A1 ⊂ Hk1
\W,

|mn1
(A1)| � σp and |mn1

(A1 \ Hq1
)| � σp. From (2), in correspondence with n = 1, 2, . . . , n1 there exists h1 > q1

with

|mn(A)| ≤ σp (5)

whenever k ≥ h1 and A ⊂ Hk \W.

At the second step, there are A2 ∈ Σ, k2 > h1, n2 ∈ N and q2 > max{k2, n2}, with A2 ⊂ Hk2
\W and

|mn2
(A2)| � σp; |mn2

(A2 \ Hq2
)| � σp. (6)

From (5) and (6) it follows that k2 > k1.

By induction, we find a sequence (Ak)k in Σ and three strictly increasing sequences in N, (kr)r, (nr)r, (qr)r, with

qr > kr > qr−1 for all r ≥ 2; qr > nr, Ar ⊂ Hkr \W, |mnr (Ar \Hqr )| � σp for all r ∈ N. But this is impossible, because

the sets Ar \ Hqr , r ∈ N, are pairwise disjoint, and the measures mn, n ∈ N, are globally uniformly (s)-bounded on

Σ with respect to (σp)p. �

The proof of the following result is similar to that of Lemma 2.6 (see also Boccuto & Candeloro, 2010, Lemma

3.2 and Corollary 3.3; Boccuto & Dimitriou, 2011b, Lemma 3.3).

Lemma 2.7 Let Ω be as in Theorem 2.1, and assume that there exist a meager set N1 ⊂ Ω such that the real-valued
measures mn(·)(ω), n ∈ N, are uniformly (s)-bounded on Σ for all ω ∈ Ω \N1. Let G be as in Lemma 2.6, and (Hk)k

be a fixed decreasing sequence in G, with W ⊂ Hk for each k ∈ N. If

lim
k

( sup
A∈Σ,A⊂Hk

|mn(A)(ω)|) = 0

for every n ∈ N and ω belonging to the complement of a meager set N2 ⊂ Ω, then

lim
k

(sup
n

( sup
A∈Σ,A⊂Hk

|mn(A)(ω)|)) = 0

for all ω ∈ Ω \ (N1 ∪ N2).

3. The Main Results

We begin with recalling the concept of uniform ideal exhaustiveness for measures (see also Athanassiadou, Dim-

itriou, Papachristodoulos, & Papanastassiou, 2012; Boccuto, Das, Dimitriou, & Papanastassiou, 2012; Boccuto

& Dimitriou, 2011a, 2011b; Boccuto, Dimitriou, Papanastassiou, & Wilczyński, 2011, 2012), which plays a very

important role in the versions of limit theorems with respect to ideal order convergence, and we deal with some

properties of the Stone extension of a finitely additive measure, in connection with uniform ideal exhaustiveness

and ideal pointwise convergence with respect to a common (O)-sequence.

In what follows, we suppose that R is a Dedekind complete (�)-group, I is a P-ideal of N and λ: Σ → [0,+∞] is

a finitely additive measure, such that Σ is separable with respect to the Fréchet-Nikodým topology generated by λ
(shortly, λ-separable). Let B := {F j: j ∈ N} be a countable λ-dense subset of Σ.

A sequence of finitely additive measures mn: Σ → R, n ∈ N, is λ-uniformly I-exhaustive on Σ iff there is an

(O)-sequence (σp)p in R such that for every p ∈ N there are a positive real number δ and a set D ∈ I, with

|mn(E) − mn(F)| ≤ σp whenever E, F ∈ Σ with

|λ(E) − λ(F)| ≤ δ (7)
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and for each n ∈ N \ D.

A sequence mn: Σ → R, n ≥ 0, of finitely additive measures, together with λ, satisfies property (∗) with respect
to R and I iff it is λ-uniformly I-exhaustive on Σ and (OI) lim

n
mn(E) = m0(E) for every E ∈ Σ with respect to a

common (O)-sequence.

The following lemma will be useful to prove our results about equivalence of limit theorems.

Lemma 3.1 Let mn: Σ → R, n ∈ N, be a λ-uniformly I-exhaustive sequence of finitely additive measures, and
assume that

(OI)lim
n

mn(F j) =: m(F j) for any j ∈ N
with respect to a common (O)-sequence. Then,

α) there exist a set M0 ∈ F = F (I) and a finitely additive measure m0: Σ → R, which extends m and such that
(O) lim

n∈M0

mn(E) = m0(E) for each E ∈ Σ and with respect to a same (O)-sequence (bp)p;

αα) the measures mn, n ∈ M0, and m0 satisfy together with λ property (∗) with respect to R and Ifin;

ααα) if Ω is as in Theorem 2.1, then there is a meager set N0 ⊂ Ω such that for each ω ∈ Ω \ N0 the real-valued
measures mn(·)(ω), n ∈ M0, and m0(·)(ω), satisfy together with λ property (∗) with respect to R and Ifin.

Proof. α) It is a consequence of Boccuto and Dimitriou (2011b) Lemma 3.9 and Proposition 2.5.

αα) By λ-uniform I-exhaustiveness of the mn’s there is an (O)-sequence (σp)p such that for every p ∈ N there are

a positive real number δ and a set Ap ∈ I with |mn(E) − mn(F)| ≤ σp for any E, F ∈ Σ with |λ(E) − λ(F)| ≤ δ and

n � Ap. For each p ∈ N, set M′p := N \ Ap. Since I is a P-ideal, there exists a sequence (Mp)p of subsets of N such

that MpΔM′p is finite for each p ∈ N and M :=

∞⋂
p=1

Mp ∈ F . For every p ∈ N, set Zp := M \ M′p. Note that Zp is

finite for every p ∈ N, and so |mn(E) − mn(F)| ≤ σp whenever E, F ∈ Σ with |λ(E) − λ(F)| ≤ δ and n ∈ M \ Zp.

This proves αα).

ααα) Let m0, M0, (bp)p be as in α) and (σp)p be as in αα). By α) and Theorem there is a meager set N0 ⊂ Ω such

that the sequences (bp(ω))p and (σp(ω))p are (O)-sequences in R for each ω ∈ Ω \ N0, and with the property that

for every p ∈ N and E ∈ Σ there is an integer n ∈ M0 with

|mn(E)(ω) − m0(E)(ω)| ≤ bp(ω) for all n ≥ n, n ∈ M0, and ω ∈ Ω \ N0. (8)

Furthermore, from αα) and λ-uniform Ifin-exhaustiveness of the mn’s, n ∈ M0, it follows that for each p ∈ N there

are δ > 0 and Zp ∈ Ifin with

|mn(E)(ω) − mn(F)(ω)| ≤ σp(ω) (9)

whenever E, F ∈ Σ, |λ(E) − λ(F)| ≤ δ, n ∈ M \ Zp and ω ∈ Ω \ N0. From (8) and (9) it follows that the measures

mn(ω), n ∈ M0, are λ-uniformly Ifin-exhaustive and lim
n∈M0

mn(E)(ω) = m(E)(ω) for every ω ∈ Ω \ N0 and E ∈ Σ.

This proves ααα). �

In order to prove the equivalence between our ideal limit theorems, we will relate (globally) (s)-bounded and

(globally) σ-additive measures. Indeed, in general, many problems involving finitely additive measures can be

solved by finding suitable σ-additive measures, related to them, and then studying their properties. One of the

main tools in this setting is the Stone extension, by means of which it is possible to construct a globally σ-additive

measure, defined on a larger σ-algebra than the original one (see also Boccuto & Candeloro, 2002; Boccuto &

Candeloro, 2004; Sikorski, 1964).

Let R be a super Dedekind complete and weakly σ-distributive (�)-group, λ: Σ → [0,+∞], mn: Σ → R, n ∈ N,

be finitely additive measures, Q be the Stone space associated with Σ, that is a totally disconnected Hausdorff

compact space, such that the algebra Q of its clopen subsets is algebraically isomorphic to Σ. If we denote by

ψ: Σ → Q such isomorphism, then it is possible to “transfer” the measures λ and mn, n ≥ 0, to Q, by putting

(λ◦ψ−1)(E) = λ(ψ−1(E)), (mn ◦ψ−1)(E) = mn(ψ−1(E)), E ∈ Q. Observe that, by the particular structure of Q, every

monotone sequence (Hk)k of sets of Q is eventually constant. This implies that the measures λ ◦ ψ−1 and mn ◦ ψ−1

are globally σ-additive. By Boccuto and Candeloro (2004, Theorem 4.4), these measures admit (unique) globally
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σ-additive extensions λ̃, m̃n respectively, to the σ-algebra Σ(Q) generated by Q. These extensions are called the

Stone extensions of λ and mn respectively. We now prove that the Stone extensions “inherit” property (∗).
Theorem 3.2 Let λ: Σ → R, mn: Σ → R, n ≥ 0, be finitely additive measures, which together with λ satisfy
property (∗) with respect to I and R.

Then the σ-algebra Σ(Q) is λ̃-separable, and the measures λ̃: Σ(Q) → R, m̃n: Σ(Q) → R satisfy together with λ̃
property (∗) with respect to I and R.

Proof. We first claim that Σ(Q) is λ̃-separable. Fix arbitrarily ε > 0. By Boccuto and Candeloro (2002, Theorem

4.4), for each A ∈ Σ(Q) there is a set E ∈ Q with |̃λ(A) − λ̃(E)| ≤ ε
2
. Since Σ is λ-separable and {F j: j ∈ N} is a

countable λ-dense subset of Σ, the set E := {ψ(F j): j ∈ N} is a countable λ̃-dense subset of Q. Hence there is j ∈ N
with |̃λ(E) − λ̃(ψ(F j))| ≤ ε

2
, from which it follows that |̃λ(A) − λ̃(ψ(F j))| ≤ ε. This proves the claim, and we get

also that E is a countable λ̃-dense subset of Σ(Q).

We now prove that the m̃n’s are λ̃-uniformly I-exhaustive. According to λ-uniform I-exhaustiveness of the mn’s on

Σ, let (σp)p be an (O)-sequence related with it, choose arbitrarily p ∈ N and pick δ > 0, D ∈ I in correspondence

with p.

By proceeding analogously as in Boccuto and Candeloro (2004, Theorems 4.4 and 4.5), it is possible to see that

for every n ∈ N there is a (D)-sequence (a(n)
t,l )t,l in R, such that for every ϕ ∈ NN and A1, A2 ∈ Σ(Q) there are E(n)

1
,

E(n)
2
∈ Q with

|̃λ(E(n)
s ) − λ̃(As)| ≤ δ

3
, |m̃n(E(n)

s ) − m̃n(As)| ≤
∞∨

t=1

a(n)
t,ϕ(t+n)

, s = 1, 2.

Since, by construction, the m̃n’s are equibounded (see also Boccuto & Candeloro, 2004), then by Lemma 2.2, in

correspondence with u :=
∨

A∈Σ(Q),n∈N
|m̃n(A)| and the (D)-sequences (a(n)

t,l )t,l, n ∈ N, there is a (D)-sequence (at,l)t,l in

R with

(2 u) ∧
( q∑

n=1

( ∞∨
t=1

a(n)
t,ϕ(t+n)

))
≤
∞∨

t=1

at,ϕ(t)

for every q ∈ N and ϕ ∈ NN, and hence

|m̃n(E(n)
s ) − m̃n(As)| ≤

∞∨
t=1

at,ϕ(t), s = 1, 2.

Since R is super Dedekind complete and weakly σ-distributive, by Theorem 2.3 we find an (O)-sequence (vp)p,

such that for every p ∈ N there exists ϕp ∈ NN, such that

∞∨
t=1

at,ϕp(t) ≤ vp.

Thus we obtain that for each p, n ∈ N and A1, A2 ∈ Σ(Q) there exist E(n)
1

, E(n)
2
∈ Q with

|m̃n(E(n)
s ) − m̃n(As)| ≤ vp, s = 1, 2. (10)

Moreover we get:

|̃λ(E(n)
1

) − λ̃(E(n)
2

)| ≤ |̃λ(E(n)
1

) − λ̃(A1)| + |̃λ(A1) − λ̃(A2)| + |̃λ(A2) − λ̃(E(n)
2

)| ≤ 3δ

3
= δ,

namely |λ(ψ−1(E(n)
1

)) − λ(ψ−1(E(n)
2

))| ≤ δ. Thus condition (7) is satisfied, and then we have

|m̃n(A1) − m̃n(A2)| ≤
≤ |m̃n(E(n)

1
) − m̃n(A1)| + |m̃n(E(n)

1
) − m̃n(E(n)

2
)| + |m̃n(A2) − m̃n(E(n)

2
)| =

= |m̃n(E(n)
1

) − m̃n(A1)| + |mn(ψ−1(E(n)
1

)) − mn(ψ−1(E(n)
2

))| +
+ |m̃n(A2) − m̃n(E(n)

2
)| ≤ σp + 2 vp.
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Let wp: = σp + 2 vp, p ∈ N. Note that (wp)p is an (O)-sequence, and we have obtained that for each p ∈ N there

exist δ > 0 and D ∈ I such that for every pair A1, A2 of elements of Σ(Q) with |̃λ(A1) − λ̃(A2)| ≤ δ
3

and for each

n ∈ N \ D we get |m̃n(A1) − m̃n(A2)| ≤ wp.

Thus we have proved that, if the measures mn: Σ → R are λ-uniformly I-exhaustive on Σ, then the measures m̃n:

Σ(Q)→ R are λ̃-uniformly I-exhaustive on Σ(Q).

The last step is to prove that

(OI) lim
n

m̃n(A) = m̃0(A) for all A ∈ Σ(Q) (11)

with respect to a common (O)-sequence. Since the ψ(F j)’s, j ∈ N, form a countable λ̃-dense subset of Σ(Q) and

satisfy (11), then by Lemma 3.1, α) applied to the sequence m̃n: Σ(Q)→ R, n ∈ N, there are an (O)-sequence (ξp)p

in R and a set M∗0 ∈ F (I), with (O) lim
n∈M∗

0

m̃n(A) = m̃0(A) for each A ∈ Σ(Q) with respect to (ξp)p. From this and

Proposition 2.4 we obtain (11). This concludes the proof of the theorem. �

We now recall the following Brooks-Jewett-type theorem in the (�)-group context with (O)-convergence (with

respect to a same (O)-sequence or not).

Theorem 3.3 (see Boccuto & Candeloro, 2010, Theorem 3.1; Boccuto & Dimitriou, 2011b, Theorem 3.4; Boccuto

& Candeloro, 2004, Theorem 6.8) Let R be a Dedekind complete (�)-group, and assume that mn: Σ → R, n ∈ N,
is a sequence of equibounded finitely additive measures, (O)-convergent pointwise on Σ to a measure m0: Σ → R
with respect to a common (O)-sequence.

Then the measures mn(·)(ω), n ∈ N, are uniformly (s)-bounded on Σ for ω belonging to the complement of a
meager set N ⊂ Ω. Moreover m0(·)(ω), ω ∈ Ω \ N, is (s)-bounded, the mn’s are uniformly (s)-bounded and m0 is
(s)-bounded on Σ.

Furthermore, if the mn’s are globally (s)-bounded and R is super Dedekind complete and weakly σ-distributive,
then they are also globally uniformly (s)-bounded.

We now are ready to prove the following limit theorems for (�)-group-valued measures with respect to ideal con-

vergence and their equivalence (see also Boccuto & Dimitriou, 2011b, Theorem 3.10).

Theorem 3.4 (Brooks-Jewett (BJ)) Let R be a Dedekind complete (�)-group, λ: Σ→ [0,+∞] be a finitely additive
measure, such that Σ is λ-separable, I be a P-ideal of N, m0: Σ → R, mn: Σ → R, n ∈ N, be equibounded finitely
additive measures, which together with λ satisfy property (∗) with respect to R and I. Then,

I) there exists a set M0 ∈ F (I), such that the measures mn, n ∈ M0, are uniformly (s)-bounded on Σ.

II) If the mn’s are globally (s)-bounded and R is super Dedekind complete and weakly σ-distributive, then M0 can
be chosen in such a way that the measures mn, n ∈ M0, are globally uniformly (s)-bounded on Σ.

Theorem 3.5 (Vitali-Hahn-Saks (VHS)) Let R, Σ, λ, I, mn be as in Theorem 3.4, and τ be a Fréchet-Nikodým
topology on Σ.

I) If each mn is τ-continuous, then there exists M0 ∈ F (I), such that the measures mn, n ∈ M0, are uniformly
τ-continuous on Σ.

II) If the mn’s are globally (s)-bounded and globally τ-continuous, and R is super Dedekind complete and weakly
σ-distributive, then M0 can be chosen to have global uniform τ-continuity of the mn’s, n ∈ M0.

Theorem 3.6 (Nikodým (N))

I) If R, Σ, λ, I are as above and the mn’s, n ∈ N, are σ-additive, then there is M0 ∈ F (I), such that the measures
mn, n ∈ M0, are uniformly σ-additive on Σ.

II) If each mn is globally σ-additive and R is super Dedekind complete and weakly σ-distributive, then M0 can be
chosen in order that the measures mn, n ∈ M0, are globally uniformly σ-additive.

Theorem 3.7 (Dieudonné (D)) Let R, Σ, λ, I, mn be as in Theorem 3.4.

I) If each mn is regular, then a set M0 ∈ F (I) can be found, with the property that the measures mn, n ∈ M0, are
uniformly (s)-bounded and uniformly regular on Σ.

II) If each mn is globally (s)-bounded and globally regular, and R is super Dedekind complete and weakly σ-
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distributive, then M0 can be chosen in such a way that the measures mn, n ∈ M0, are globally uniformly (s)-bounded
and globally uniformly regular.

To prove Theorem 3.4 (BJ), observe that there exist M0 ∈ F (I) and N0 ⊂ Ω, satisfying the thesis of Lemma 3.1.

The assertion of (BJ) follows by applying Theorem 3.3 to the sequence mn, n ∈ M0, and to N0.

We now prove equivalence between (BJ) II), (VHS) II), (N) II) and (D) II).

We begin with the implication (BJ) II) =⇒ (VHS) II). Let mn: Σ → R, n ∈ N, be a sequence of globally (s)-

bounded and globally τ-continuous finitely additive equibounded measures, satisfying together with λ property (∗)
with respect to R and I. By Lemma 3.1, αα), there is M0 ∈ F (I) such that the measures mn, n ∈ M0, and m0

satisfy property (∗) with respect to R and Ifin. By (BJ) II) used with I = Ifin, there is a set M′0 ⊂ M0, such that

M0 \ M′0 is finite and with the property that the measures mn, n ∈ M′0, are globally uniformly (s)-bounded, that

is there is an (O)-sequence (σp)p with (O) lim
k

[ sup
n∈M′

0

v(mn)(Ck)] = 0 for any disjoint sequence (Ck)k in Σ and with

respect to the same (O)-sequence (σp)p. Note that M′0 ∈ F (I).

Fix arbitrarily any decreasing sequence (Hk)k in Σ, with τ-limk Hk = ∅. By global τ-continuity of mn, n ∈ N, we

get (O) lim
k

v(mn)(Hk) = 0 for all n ∈ N and with respect to a same (O)-sequence (ζp)p. By Lemma 2.6, we obtain

(O) lim
k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∨

n∈M′
0

v(mn)(Hk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 0 (12)

with respect to (ζp)p, and so we get global uniform τ-continuity of the mn’s, n ∈ M′0. Thus, (BJ) II) implies (VHS)

II).

The proof of (BJ) II) =⇒ (D) II) is analogous to that of (BJ) II) =⇒ (VHS) II).

We now prove (VHS) II) =⇒ (N) II). Let τ be the Fréchet-Nikodým topology generated by the family of all order

continuous submeasures defined on Σ. If (Hk)k is any decreasing sequence in Σ with τ-lim
k

Hk = ∅ and H =
∞⋂

k=1

Hk,

then we get η(H) = 0 for every order continuous submeasure η on Σ, and hence H = ∅. From this it follows that, if

mn: Σ → R, n ∈ N, is a sequence of globally σ-additive measures, then they are globally τ-continuous. Since the

mn’s are also globally (s)-bounded, then by (VHS) II) they are globally uniformly τ-continuous, and hence also

globally uniformly σ-additive. Thus, (VHS) II) implies (N) II).

We now prove (N) II) =⇒ (BJ) II). Let mn: Σ→ R, n ∈ N, be a sequence of equibounded finitely additive globally

(s)-bounded measures, satisfying together with λ property (∗) with respect to I and R. By Lemma 3.1, αα), a set

M0 ∈ F (I) can be found, with the property that the measures mn, n ∈ M0, and m0 satisfy property (∗) with respect

to Ifin and R. If m̃n: Σ(Q) → R, n ∈ N, and λ̃: Σ(Q) → R, are the Stone extensions of mn and λ respectively,

then, by Theorem 3.2, the σ-algebra Σ(Q) is λ̃-separable, and the m̃n’s, n ∈ M0, are σ-additive measures, satisfying

together with λ̃ property (∗) with respect to Ifin and R. By (N) II) used with Σ(Q) and Ifin, we find a finite set

M′′0 ⊂ M0, such that the measures m̃n, n ∈ M∗ := M0 \ M′′0 , are globally uniformly σ-additive, and hence also

globally uniformly (s)-bounded, on Σ(Q). “Coming back” to Σ, we get global uniform (s)-boundedness of the

measures mn, n ∈ M∗. Since M∗ ∈ F (I), then it follows that (N) II) implies (BJ) II).

We now prove (D) II) =⇒ (BJ) II). Let G∗,H∗ be the lattices of all open and all closed subsets of the Stone space

Q which belong to Σ(Q) respectively. It is not difficult to see that G∗ andH∗ satisfy condition (R0).

Let mn: Σ→ R, n ≥ 0, be equibounded globally (s)-bounded finitely additive measures satisfying, together with λ,
property (∗) with respect to I and R. Arguing as in the previous implication, let us consider the global σ-additive

Stone extensions m̃n: Σ(Q)→ R and λ̃: Σ(Q)→ [0,+∞] of mn and λ respectively.

We now prove that the m̃n’s are globally regular. Fix arbitrarily n ∈ N. Obviously, condition (R1) is fulfilled for

each set E ∈ Q. We now claim that the class of all sets satisfying (R1) is a σ-algebra. From this it will follow that

every set E ∈ Σ(Q) fulfils (R1), and hence that m̃n is globally regular. Without loss of generality, assume that m̃n is

positive (indeed, in the general case, it will be enough to consider m̃n
+ and m̃n

−). It is readily seen that, if E ∈ Σ(Q)

fulfils (R1), then Q \ E does. Let Ek, k ∈ N, be a disjoint sequence in Σ(Q), satisfying (R1) and (σp)p be a related

(O)-sequence. For each t, l ∈ N, put at,l = σl. Note that (at,l)t,l is a (D)-sequence, such that for every ϕ ∈ NN there
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is p ∈ N, p = ϕ(1), with σp ≤
∞∨

t=1

at,ϕ(t), so that the (O)-limit in the condition (R1) of global regularity with respect

to (σp)p is a (D)-limit with respect to the (D)-sequence (at,l)t,l. For every k ∈ N there are two sequences (G(k
r )r

and (F(k)
r )r in G∗ and H∗ respectively, with F(k)

r ⊂ F(k)
r+1
⊂ Ek ⊂ G(k)

r+1
⊂ G(k)

r for all r ∈ N, and such that for every

ϕ ∈ NN there is rk ∈ N with

m̃n(G(k)
r \ F(k)

r ) ≤
∞∨

t=1

at,ϕ(t+k) whenever r ≥ rk.

By Lemma 2.2 there is a (D)-sequence (bt,l)t,l, with

m̃n(Q) ∧
( q∑

k=1

( ∞∨
t=1

at,ϕ(t+k)

))
≤
∞∨

t=1

bt,ϕ(t) for all q ∈ N and ϕ ∈ NN.

For each k ∈ N, let Gk := G(k)
rk , Fk := F(k)

rk , and put E :=

∞⋃
k=1

Ek, F :=

∞⋃
k=1

Fk, G′ :=

∞⋃
k=1

Gk: observe that G′ ∈ G∗.
By global σ-additivity of m̃n there is a (D)-sequence (ct,l)t,l, such that for every ϕ ∈ NN there is a natural number

k0 with

m̃n

(
F \

h⋃
k=1

Fk

)
≤
∞∨

t=1

ct,ϕ(t) whenever h ≥ k0. (13)

Put F′ :=

k0⋃
k=1

Fk: note that F′ ∈ H∗. For every t, l ∈ N, set dt,l = 2(bt,l+ct,l). Observe that (dt,l)t,l is a (D)-sequence.

We get:

m̃n(G′ \ F′) ≤ m̃n(G′ \ F) + m̃n(F \ F′)

≤
∨
q∈N

(
m̃n(Q) ∧

( q∑
k=1

m̃n(Gk \ F)
))
+ m̃n(F \ F′) ≤

≤
∨
q∈N

(
m̃n(Q) ∧

( q∑
k=1

m̃n(Gk \ Fk)
))
+ m̃n(F \ F′) ≤

≤
∨
q∈N

(
m̃n(Q) ∧

( q∑
k=1

( ∞∨
t=1

at,ϕ(t+k)

)))
+

∞∨
t=1

ct,ϕ(t) ≤

≤
∞∨

t=1

bt,ϕ(t) +

∞∨
t=1

ct,ϕ(t) ≤
∞∨

t=1

dt,ϕ(t).

By Theorem 2.3 we find an (O)-sequence (πp)p in R with the property that for every p ∈ N there is ϕp ∈ NN with
∞∨

t=1

dt,ϕp(t) ≤ πp. Thus for each p ∈ N there are G′p ∈ G∗, F′p ∈ H∗, with F′p ⊂ E ⊂ G′p and m̃n(G′p \ F′p) ≤ πp. For

each p ∈ N, set Gp :=

p⋂
i=1

G′i and Fp :=

p⋃
i=1

F′i . We get Fp ⊂ Fp+1 ⊂ E ⊂ Gp+1 ⊂ Gp, Gp ∈ G∗, Fp ∈ H∗, and

m̃n(Gp \ Fp) ≤ m̃n(G′p \ F′p) ≤ πp for all p ∈ N. Thus the set E satisfies condition (R1). This proves the claim.

Thus the finitely additive measures m̃n, n ∈ N, are globally (s)-bounded and globally regular on Σ(Q). Arguing

analogously as in the previous implication, by (D) II) used with Σ(Q) and Ifin, there is a finite set M0,∗ ⊂ M0, such

that the measures m̃n, n ∈ M∗ := M0 \ M0,∗, are globally uniformly (s)-bounded and globally uniformly regular

on Σ(Q). “Coming back” to Σ, we get global uniform (s)-boundedness of the measures mn, n ∈ M∗, on Σ. Since

M∗ ∈ F (I), then it follows that (N) II) implies (BJ) II).

We now prove equivalence between (BJ) I), (VHS) I), (N) I) and (D) I).

We start with the implication (BJ) I) =⇒ (VHS) I). Let R be a Dedekind complete (�)-group, Ω be as in Theorem

2.1 and mn: Σ → R, n ≥ 0, be a sequence of τ-continuous finitely additive equibounded measures, satisfying
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together with λ property (∗) with respect to R and I. By Lemma 3.1, ααα), there are a meager set N0 ⊂ Ω and a set

M0 ∈ F (I) with the property that for every ω ∈ Ω \ N0 the real-valued measures mn(·)(ω), n ∈ M0, and m0(·)(ω)

satisfy together with λ property (∗) with respect to R and Ifin. By (BJ) I) applied with R = R and I = Ifin, for each

ω ∈ Ω \ N0 there is a set M(ω)
0
⊂ M0, such that M0 \ M(ω)

0
is finite and the real-valued measures mn(ω), n ∈ M(ω)

0
,

are uniformly (s)-bounded on Σ, that is

lim
k

(
sup

n∈M(ω)
0

[ sup
A∈Σ,A⊂Ck

|mn(A)(ω)|]) = 0 (14)

for any disjoint sequence (Ck)k in Σ.

Fix arbitrarily ε > 0 and ω ∈ Ω \N0, and choose a disjoint sequence (Ck)k in Σ. Then, by (14), we find k0 ∈ N with

sup
A∈Σ,A⊂Ck

|mn(A)(ω)| ≤ ε (15)

whenever k ≥ k0 and n ∈ M(ω)
0

. Since the measures mn(ω), ω ∈ Ω \ N0, n ∈ M0 \ M(ω)
0

are (s)-bounded and

M0 \ M(ω)
0

is finite, then for each n ∈ M0 \ M(ω)
0

there is a natural number kn with

sup
A∈Σ,A⊂Ck

|mn(A)(ω)| ≤ ε (16)

for all k ≥ kn. If k∗ := max{k0, kn: n ∈ M0 \ M(ω)
0
}, from (15) and (16) it follows that

sup
A∈Σ,A⊂Ck

|mn(A)(ω)| ≤ ε for each k ≥ k∗ and n ∈ M0.

Thus the measures mn(·)(ω), ω ∈ Ω \ N0, n ∈ M0, are uniformly (s)-bounded.

Fix arbitrarily any decreasing sequence (Hk)k with τ-limk Hk = ∅. By τ-continuity of mn, n ∈ N, we get

(O) limk v(mn)(Hk) = 0 for all n ∈ N. From this and Theorem 2.1 it follows that there is a meager set N′ ⊂ Ω,

without loss of generality N′ ⊃ N0 (depending on (Hk)k), such that

lim
k

[ sup
A∈Σ,A⊂Hk

|mn(A)(ω)|] = inf
k

[ sup
A∈Σ,A⊂Hk

|mn(A)(ω)|] = 0 for all ω ∈ Ω \ N′. (17)

By Lemma 2.7, we obtain

lim
k

(sup
n

[ sup
A∈Σ,A⊂Hk

|mn(A)(ω)|]) = inf
k

(sup
n

[ sup
A∈Σ,A⊂Hk

|mn(A)(ω)|]) = 0 (18)

for every ω ∈ Ω \ N′.

From (18) and Theorem 2.1, proceeding with an analogous technique as in Boccuto and Candeloro (2010, Theorem

3.1), we find a meager set N′′ ⊂ Ω, without loss of generality N′′ ⊃ N′, with

[∧k(∨n[∨A∈Σ,A⊂Hk |mn(A)|])](ω) = 0

for each ω ∈ Ω \ N′′. Since the complement of a meager subset of Ω is dense in Ω, we get

0 = ∧k(∨n[∨A∈Σ,A⊂Hk |mn(A)|]) = ∧k(∨n v(mn)(Hk)) = (O) lim
k

(∨n v(mn)(Hk)),

and so we obtain uniform τ-continuity of the mn’s.

The proof of (BJ) I) =⇒ (D) I) is analogous to that of (BJ) I) =⇒ (VHS) I).

The proof of (VHS) I) =⇒ (N) I) is similar to that of (VHS) II) =⇒ (N) II).

We now prove (N) I) =⇒ (BJ) I). Assume that mn: Σ → R, n ∈ N, is a sequence of equibounded finitely additive

measures, satisfying property (∗) with respect to I and R. Let Ω be as in Theorem 2.1. By Lemma 3.1, ααα), there

exist a meager set N∗ ⊂ Ω and M0 ∈ F (I), such that for every ω ∈ Ω \ N∗ the real-valued measures mn(·)(ω),

n ∈ M0, are (s)-bounded and satisfy property (∗) with respect to R and Ifin.

Let Q be the Stone space associated with Σ, Q be the algebra of all clopen subsets of Q and Σ(Q) be the σ-algebra

generated by Q. For each n ≥ 0 and ω ∈ Ω \ N∗, let m̃n,ω: Σ(Q) → R be the Stone extensions of mn(·)(ω), and let

λ̃: Σ(Q)→ R be the Stone extension of λ.
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Fix ω ∈ Ω \ N∗. By (N) used with the ideal Ifin, R and Σ(Q), we find a set M(ω)
0
⊂ M0 such that M0 \ M(ω)

0

is finite and the measures m̃n,ω, n ∈ M(ω)
0

, are uniformly σ-additive. Proceeding analogously as in the proof of

the implication (N) II) =⇒ (BJ) II) and “coming back” to Σ, we obtain that the measures mn(·)(ω), n ∈ M(ω)
0

, are

uniformly (s)-bounded on Σ. Thus for every disjoint sequence (Ck)k in Σ we get

lim
k

( sup
n∈M(ω)

0

[ sup
A∈Σ,A⊂Ck

|mn(A)(ω)|] = 0. (19)

From (19), arguing analogously as in (15-16), we obtain

lim
k

( sup
n∈M0

[ sup
A∈Σ,A⊂Ck

|mn(A)(ω)|] = 0. (20)

Since ω ∈ Ω \ N∗ was chosen arbitrarily, by Theorem 2.1 and by a density argument, arguing analogously as

in the proof of (BJ) I) =⇒ (VHS) I) and in Boccuto and Candeloro (2010, Theorem 3.1), from (20) we get

(O) lim
k

[∨
n∈M0

v(mn)(Ck)
]
= 0. By arbitrariness of (Ck)k, the measures mn, n ∈ M0, are uniformly (s)-bounded on Σ.

This proves that (N) I) implies (BJ) I).

The proof of (D) I) =⇒ (BJ) I) is analogous to that of (N) I) =⇒ (BJ) I). Indeed, using the same notations and

proceeding analogously as in the previous implication, we get that the measures m̃n,ω, n ∈ M(ω)
0

, are σ-additive,

and hence also (s)-bounded and regular: indeed, it is enough to argue analogously as in the proof of the implication

(D) II) =⇒ (BJ) II) with R = R (see also Billingsley, 1968, Theorem 1.1). By (D) I), these measures are uniformly

(s)-bounded and uniformly regular. “Coming back” to Σ, we obtain that the measures mn(·)(ω), n ∈ M(ω)
0

, are

uniformly (s)-bounded on Σ. From this, arguing similarly as in (15-16), we get that the measures mn(·)(ω), n ∈ M0,

are uniformly (s)-bounded on Σ. Proceeding analogously as in the proof (N) I) =⇒ (BJ) I), we obtain that the

measures mn, n ∈ M0, are uniformly (s)-bounded on Σ. This ends the proof. �

Remarks 3.8 (a) By means of techniques similar to those used in the implications (BJ) I) =⇒ (VHS) I) and (BJ)

II) =⇒ (VHS) II), it is possible also to prove directly the implications (BJ) I) =⇒ (N) I) and (BJ) II) =⇒ (N) II).

(b) Observe that in the classical case, namely when the involved ideal is Ifin, our results about the Brooks-Jewett,

Vitali-Hahn-Saks, Nikodým convergence and Dieudonné theorems hold, even if we drop the condition of λ-uniform

Ifin-exhaustiveness, which however in general is essential when I � Ifin. In this framework, when it is dealt with

respect to a common (O)-sequence, the Vitali-Hahn-Saks theorem, when the involved Fréchet-Nikodým topology

is generated by a finitely additive extended real-valued positive measure, is proved in Boccuto and Candeloro

(2002, Corollary 5.7); the Nikodým convergence theorem (N) is demonstrated in Boccuto and Candeloro (2002,

Corollary 5.5), and some versions of the Dieudonné theorem are presented in Boccuto and Candeloro (2001/2002,

Theorem 3.3). When the concept of (s)-boundedness and those related with it are intended not necessarily with

respect to a common order sequence, the Brooks-Jewett, Nikodým and Vitali-Hahn-Saks theorem are proved in

Boccuto and Candeloro (2010, Theorem 3.1), Boccuto, Dimitriou, and Papanastassiou (2010a, Theorem 3.6) and

Boccuto and Dimitriou (2011b, Theorem 3.6) respectively, while some versions of the Dieudonné theorem are

given in Boccuto and Candeloro (2010, Theorem 5.1).

(c) Observe that, when I � Ifin, in general the condition of λ-uniform I-exhaustiveness cannot be dropped.

Indeed, let Σ = P(N), R = R, I be any fixed admissible and not maximal ideal of N, and F be its dual filter. As

seen in §2.2, the ideal Iδ of the subsets of N having asymptotical density 0 is not maximal.

Define λ: Σ → R by λ(A) =
∑
n∈A

1

2n , A ∈ Σ. It is easy to see that λ is a σ-additive measure, and Σ is λ-separable

(indeed, the set Ifin of all finite subsets of N is countable and dense in Σ with respect to the Fréchet-Nikodým

topology generated by λ).

Let us define the Dirac measures δn, n ∈ N, as follows. For every A ∈ Σ and n ∈ N, set δn(A) = 1 if n ∈ A,

and δn(A) = 0 if n ∈ N \ A. It is not difficult to see that δn is a σ-additive measure on Σ for all n ∈ N, and that

lim
n
δn(W) = 0, and hence (I) lim

n
δn(W) = 0, for each W ∈ Ifin.

However, observe that for every ϑ > 0 there is a cofinite set Zϑ ⊂ N, with λ(Zϑ) < ϑ, and hence |λ(E) − λ(F)| =
λ(EΔF) ≤ λ(Zϑ) < ϑ whenever E ∪ F ⊂ Zϑ. For each M ∈ F it is possible to find an integer n ∈ M large enough

and two sets E, F ∈ Σ, with E ∪ F ⊂ Zϑ and n ∈ E \ F, so that |δn(E) − δn(F)| = δn(E) = 1. Thus the measures δn,

n ∈ N, are not λ-uniformly I-exhaustive on Σ.
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Moreover, it is not true that the limit (I)lim
n
δn(A) exists in R for all A ⊂ N. Indeed, since I is not maximal, there

is a set C ⊂ N with C � I and N \ C � I, and so we get δn(C) = 1 if and only if n ∈ C and δn(C) = 0 if and only

if n � C. Let now l � 0 and ε0 := |l|/2 > 0. Then for each n ∈ N \ C we have |δn(C) − l| = |l| > ε0, and so {n ∈ N:

|δn(C) − l| > ε0} � I, because it contains N \ C and N \ C � I. In the case l = 0, take ε0 = 1/2. For every n ∈ C,

|δn(C)| = 1 > ε0. Thus, {n ∈ N: |δn(C)| > ε0} � I, since it contains C and C � I. Hence, the limit (I)lim
n
δn(C)

does not exist in R. Furthermore, given any infinite subset M ⊂ N and k ∈ M, we get sup
n∈M
δn({k}) = 1, and so the

measures δn, n ∈ M, are not uniformly (s)-bounded on Σ (see also Boccuto & Dimitriou, 2011b, Example 3.11).

(d) In general, it is not possible to formulate versions of limit theorems, for instance Brooks-Jewett or Nikodým-

type theorems, similar to the classical ones, when the classical pointwise convergence of the measures involved is

replaced with the weaker pointwise ideal convergence, even when R = R. Indeed, as soon as I is any admissible

ideal of N, different from Ifin, we have the following example.

Let H := {h1 < . . . < hs < hs+1 < . . .} be an infinite set belonging to I and such that N \ H is infinite. Since

I � Ifin, the set H does exist. For every n � H and E ⊂ N, set mn(E) = 0. For any s ∈ N and E ⊂ N, put

mhs (E) = 1 if s ∈ E and 0 otherwise. Note that m0(E) := (I) lim
n

mn(E) = 0 for each E ⊂ N. Moreover, it is easy to

check that the mn’s are σ-additive positive equibounded measures. Indeed, given n ∈ N and any disjoint sequence

(C j) j of subsets of N, the quantity mn(C j) can be different from zero (and in this case is equal to 1) at most for one

index j, since, for every s ∈ N, mn({s}) � 0 if and only if n = hs.

For every j ∈ N, set C j := { j}. We get: 1 ≥ sup
n∈N

mn(C j) ≥ mhj (C j) = 1, and so it is not true that (I) lim
j

[sup
n∈N

mn(C j)]

= 0. �

Open Problems

(a) Find similar results about limit theorems and their equivalence considering (D)-convergence and/or some other

classes of ideals/filters of N.

(b) Prove some other similar theorems involving σ-additivity and (s)-boundedness not necessarily with respect to

a common order sequence.

(c) Ask whether equivalence-type results remain valid when absolute continuity is not formulated in topological

terms.

(d) Find similar results in case of other notions of measure regularity.
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