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Abstract

Archimedean copulas form a prominent class of copulas which lead to the construction of multivariate distribu-

tions involving one-dimensional generator functions. This paper investigate properties of Archimedean copulas

of stochastic processes. Specifically we propose analytical expressions of the survival copulas of Archimedean

processes. The parametric survival distributions of Archimedean copulas are also characterized. We give condi-

tional characterizations for Archimax copulas both for strictly Archimedean and for strictly extremal subclasses in

parametric context.
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1. Introduction

In multivariate stochastic analysis the use of copulas offers a convenient framework for modelling and capturing the

dependence of two or more random variables. The term “copula” was first introduced by Abe Sklar (1959) while

modelling a structure of stochastic dependence for given marginal laws. Thenceforth, copulas have been largely

used to construct multivariate distributions even when the univariate margins are not identically distributed (Nelsen,

2007). For example in risk management, probabilistic statements about portfolio returns would be misleading

unless one has a realistic model of the multivariate distribution of the assets returns. By the theorem of Sklar (1959),

copulas appear implicitly in any multivariate distribution as linked functions that join the univariate marginal to

form joint distribution functions. Specifically a copula C associated to a random vector (X1, ..., Xn) with continuous

margins {Fi; i = 1, .., n} is defined on the unit cube [0, 1]n as the joint distribution function of the uniform vector

(U1, ...,Un) obtained via the probability integral transformations Ui = Fi (Xi), that is, for all (u1, ..., un) ∈ [0, 1]n ,

C(u1, ..., un) = P [F1 (X1) ≤ u1, ..., Fn (Xn) ≤ un)] . (1)

Standard references for copulas analysis are Joe (1997) or Nelsen (2007) which provides detailed and readable

introductions to copulas and their statistical and mathematical foundations. Other Probabilistic and statistical

aspects of copulas are to be found for instance in McNeil et al. (2009) or in Müller et al. (2005) while Embrechts

et al. (2001) perform copula-based algorithms for numerical simulations for risk management purposes.

Archimedean copulas not only arise naturally in the context of Laplace Transform (Joe, 1997), they form also an

important family that allows multivariate dependence modelling involving one-dimensional generator functions

(Charpentier et al., 2009). Following McNeil (2008), a n-dimensional copula C is a Archimedean copula if, for all

(u1, ..., un) ∈ [0, 1]n , it has the simple algebraic representation

Cϕ(u1, ..., un) = ϕ
[
ϕ−1(u1) + ... + ϕ−1(un)

]
, (2)

where ϕ is a specific function called Archimedean generator of Cϕ. Archimedean copulas present particular at-

tracted interest due to their analytical form given by the generator and which make them simple to analysis and their

exchangeability. The particular case of bivariate Archimedean copulas have been largely developped by Genest

and Mackay (1986) while tractable Archimedean families are applied in multivariate survival analysis by Clayton

(1978) and in actuariat loss by Klugman et al. (1999).
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In quantitative finance field however portfolio managers need non-exchangeable models of copulas (Bouyé, 2002).

More generally, in situation where causality among stochastic process flows in certain direction, symmetry property

turns out to be restrictive. That prompted Capérà et al. (2000) to model in bivariate context a new family called

Archimax copulas which combines both Archimedean and extreme values models.

The paper is organized as follows: Section 2 collects preliminary tools of multivariate analysis that turn out to be

necessary for our results. Section 3 presents our main results. Specifically, an analogue to the Sklar theorem is

discovered but for a parametric family of Archimedean copulas and in a survival context. Then it is proved that the

copula associated to the survival distribution of Archimedean copula is still Archimedean. Finally, Section 4 deals

with sampling conditional copulas both for parametric Archimedean and for Archimax subfamilies.

2. Materials and Methods

In this section we collect important definitions and usefull properties on the copula associated to a conditional

distribution function and the copulas of Archimedean and Archimax subfamilies. These results turn out to be

necessary for our approach. We refer the reader to Genest and Mackay (1986) for bivariate Archimedean copulas

and to Cherubini et al. (2004) for Archimedean copulas applications in different degrees of quantitative finance.

2.1 An Overview on Copulas of Conditional Distributions

A complete definition of multivariate copulas will be needed for further discussions.

Definition 1 A n-dimensional copula is a multivariate distribution function C: [0, 1]n −→ [0, 1] satisfying the

following properties

i) C(u1, ..., ui−1, 0, ui+1, ..., un) = 0 for all (u1, ..., ui−1, ui+1, ..., un) ∈ [0, 1]n−1.

ii) C(1, ..., 1, ui, 1, ..., 1) = ui for all ui ∈ [0, 1], i = 1, 2, ..., n.

iii) C is n-increasing, i.e., the volume VB of any hyperrectangle B =
n
Π
i=1

[ai, bi] ⊆ [0, 1]n is positive,

VB =

∫
B

dC (u1, ..., un) =

2∑
i1=1

...

2∑
in=1

(−1)i1+...+in C
(
ui1 , ..., uin

) ≥ 0. (3)

While modelling dependence of asymmetric time-varying exchange rate, Patton (2006) pointed out the importance

of conditional copulas in financial market analysis. Let X1 and X2 be two random variables with joint distribution

F = (F1, F2) and W be a conditioning set in R
2.

Theorem 2 (Patton, 2006) Let
{
Fi,W ; i = 1, 2

}
be the conditional distributions of Xi|W and FW the joint conditional

distribution of (X1, X2) /W. Assume that Fi,W are continuous on R̄. Then there exists a unique conditional copula

CW such as, for all (x1, x2) ∈
(
R̄

)2
,

FW (x1, x2|w) = CW (F1,W (x1|w), F2,W (x2|w)|w) ; w ∈ W. (4)

Conversely, if we let Fi,W be the conditional distribution of Xi|W and CW be a conditional copula, then the function
FW defined by (4) is a conditional bivariate distribution function with conditional marginal distribution Fi,W.

Note that Theorem 2 provides the conditional version of the theorem of Sklar (1959). It means in particular that

the conditional copula CW of (X1, X2) /W is the joint distribution function of (U1,U2) ∼ (F1 (X1/W) , F2 (X2/W))

given W.

2.2 An Overview on Archimedean and Archimax Copulas

The concept of Archimedean copula is inherently related to Archimedean generator.

Definition 3 (Archimedean generator) A continuous and strictly decreasing function ϕ: [0,+∞] −→ [0, 1] is called

Archimedean generator if it is convex and satisfies the condition ϕ(0) = 1 and ϕ(+∞) = 0.

A Archimedean copula satisfies the relation (2) for some generator ϕ with inverse ϕ−1: [0, 1] −→ [0,+∞] such as,

for all (u1, ..., un) ∈ [0, 1]n;

C(u1, ..., un) = ϕ
[
ϕ−1(u1) + ... + ϕ−1(un)

]
with ϕ−1 (y) = inf {t ∈ [0, 1] : ϕ (t) ≤ y} .

McNeil et al. (2009) show that a necessary and sufficient condition for the right hand side of (2) to be a copula is
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that ϕ−1 is completely monotone on [0;∞], that is, it is (n-2) times derivative and

(−1)k
(
ϕ−1

)(k)
(t) ≥ 0 for all k = 1, 2, ..., n − 2, (5)

and (−1)k
(
ϕ−1

)(n−2)
is non-negative, non-increasing and convex on [0;∞] .

The class of Archimax copulas contains a special subclass of all Archimedean copulas and all extreme values

copulas (see Capéràa et al., 2000). A bivariate member of this class with generator ϕ is in the form

Cϕ,A(u, v) = ϕ−1

(
min

[
ϕ(0), ϕ (u) + (ϕ(v)A

(
ϕ(u)

ϕ (u) + ϕ(v)

)])
; (u, v) ∈ [0, 1]2 ; (6)

where, in multivariate case, A is a Pickands (1981) dependence function mapping the unit simplex S n of Rn, given

by

S n =

⎧⎪⎪⎨⎪⎪⎩x ∈ Rn; ‖x‖1 = 1; ‖x‖1 =
n∑

i=1

xi

⎫⎪⎪⎬⎪⎪⎭ ,
to

[
1
n , 1

]
, satisfying max(t; 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0; 1].

3. Analytical Form of Survival Copulas of Archimedean Processes

Let
{
Xt =

(
Xt,1, ..., Xt,n

)
, t ∈ χ} be a continuous stochastic random vector with distribution Ft =

(
Ft,1, ..., Ft,n

)
where

χ is a set (time or space) of parameters, see (Schmitz, 2003). The following definition introduces the concept of

Archimedean Process.

Definition 4 Let {ϕt, t ∈ χ} be a parametric Archimedean generator. A continuous stochastic process {Xt, t ∈ χ} is

called Archimedean process with generator ϕt (or a ϕt-Archimedean process) if its corresponding copula is the

Archimedean copula Cϕt , that is, generated by ϕt.

Particularly, if the process {Xt, t ∈ χ} deals with reliability theory in actuarial science, duration analysis in eco-

nomics or event history analysis in sociology, it is more appropriate to use the complementary distribution function

or survival distribution F̄t given for
(
xt,1, ..., xt,n

) ∈ R̄n, t ∈ χ by

F̄t
(
xt,1; ...; xt,n

)
= P

[
Xt,1 > xt,1; ...; Xt,n > xt,n

]
. (7)

The following key result provides the analytical form for survival copulas of a Archimedean process.

Theorem 5 Let C̄ϕt be the survival copulas of a ϕt-Archimedean process {Xt, t ∈ χ} . Then, for all
(
ut,1;...; ut,n

) ∈
[0, 1]n ,

C̄ϕt

(
ut,1; ...; ut,n

)
=

n∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k

⎛⎜⎜⎜⎜⎜⎜⎝
∑

S k⊂N

⎡⎢⎢⎢⎢⎢⎢⎣ϕt

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

ϕ−1
t

(
1 − ut,i j

)⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ; (8)

for specific k-dimensional elements S k = {i1, i2, ..., ik} of the set of non-empty subsets of N = {1, 2, ..., n} .

Figure 1. Graphic of a bivariate Archimedean copula
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Proof. Definition 4 means that, for all t ∈ χ, the copula Cϕt of a ϕt-Archimedean process has the form

Cϕt (u1, ..., un) = ϕt

[
ϕ−1

t (ut,1) + ... + ϕ−1
t (ut,n)

]
;
(
ut,1; ...; ut,n

) ∈ [0, 1]n . (9)

Moreover, since any copula is also a cumulative distribution, then by denoting C̃ the survival distribution of the

survival copula C̄, it follows from Frahm (2006) that, for all (u1, ..., un) ∈ [0, 1]n ,

C̄(u1, ..., un) = C̃(1 − u1, ..., 1 − un). (10)

Then, using the Sylvester–Poincaré sieve formula (see Durante et al., 2010), we obtain that;

C̃(u1, ..., un) =

n∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k

⎛⎜⎜⎜⎜⎜⎜⎝
∑

v(u1,...,un)∈Z(n−k,n,1)

C(v1, ..., vn)

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (11)

where Z (M,N, ε) denotes the set

{
v ∈ [0, 1]n ; vi ∈ {u i, ε} ,

n∑
i=1

1{ε} (vi) = M
}
.

Then, we check easily that the formula (11) can be written more simply as, for all (u1, ...un) ∈ [0, 1]n,

C̃(u1, ..., un) =

n∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k
∑

S k⊂N

C
(
ui1 ; ...; uin

)
; i j ∈ S k)

⎤⎥⎥⎥⎥⎥⎥⎦ ; (12)

where S k =
{
i1,i2, ..., ik

}
are k-dimensional elements of the set of non-empty subsets of N = {1, 2, ..., n} with where

ui j = 1 for all i j � S k. Therefore, by replacing (12) in (10) it follows that, for all (u1, ..., un) ∈ [0, 1]n ,

C̄(u1, ..., un) =

n∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k

⎛⎜⎜⎜⎜⎜⎜⎝
∑

S k⊂N

C
(
1 − ui1 ; ...; 1 − uin

)⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (13)

where S k is rather such as ui j = 0 for all i j � S k. Particularly, for a parametric ϕt-Archimedean process (Xt, t ∈ χ),
it follows from (13) that,

C̄ϕt

(
ut,1; ...; ut,n

)
=

n∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k
∑

S k⊂N

C
ϕt

(
1 − ut,i1 ; ...; 1 − ut,in

)⎤⎥⎥⎥⎥⎥⎥⎦ with ut,ik = 0, ik � S k (14)

Finally, by replacing Cϕt by its analytical expression (9) in (14) the result (8) follows as disserted.

Theorem 6 Let F̄t be the n-dimensional survival function of a ϕt-Archimedean process. Then there exists a para-
metric copula C̄ϕt satisfying (1), that is, for all

(
ut,1; ...; ut,n

) ∈ [0, 1]n , t ∈ χ.
C̄ϕt (ut,1; ...; ut,n) = P

[
F̄t,1

(
Xt,1

) ≤ ut,1; ...; F̄t,n
(
Xt,n

) ≤ ut,n)
]

; (15)

where F̄t,i; i = 1, ..., n are the survival margins of the process. Moreover, C̄ϕt is the survival copula of the process.

Proof. In copulas analysis, multivariate properties result from symmetric or asymmetric extensions of bivariate

case. So, there is no loss of generality by proving Theorem 6 for 2 or 3-dimensional case. For this end, consider

the copulas Cϕt of a 3-dimensional ϕt-Archimedean process.

Then, from the formula (13) and for a specific S k, it follows that, for all ut,i ∈ [0, 1] ; i = 1, 2, 3;

C̄ϕt (ut,1; ut,2; ut,3) =

3∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)k

⎛⎜⎜⎜⎜⎜⎜⎝
∑

S k⊂{1,2,3}
C
ϕt

(
1 − ut,1k ; ...; 1 − ut,ik

)⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ; t ∈ χ. (16)

Then, after some algebra, we obtain

C̃ϕt

(
ut,1; ut,2; ut,3

)
= Cϕt (1, 1, 1) −Cϕt

(
ut,1; 1; 1

) −Cϕt

(
1; ut,2; 1

) −Cϕt

(
1; 1; ut,3

)
+Cϕt

(
1; ut,2; ut,3

)
+Cϕt

(
ut,1; 1; ut,3

)
+Cϕt

(
ut,1; ut,2; 1

) −Cϕt

(
ut,1; ut,2; ut,3

)
.

(17)

By denoting Ci, j,ϕt the marginal copulas of Cϕt related to {i, j} the relation (17) yields,

C̃
ϕt

(
ut,1; ut,2; ut,3

)
= 1 − ut,1 − ut,2 − ut,3 +C2,3,ϕt

(
ut,2; ut,3

)
+C1,3,ϕt

(
ut,1; ut,3

)
+C1,2,ϕt

(
ut,1; ut,2

) −Cϕt

(
ut,1; ut,2, ut,3

)
.
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Then, applying the relation (10) the survival copula C̄ϕt is given, for all ut,i ∈ [0, 1]; t ∈ χ, by

C̄ϕt

(
ut,1, ut,2, ut,3

)
= ut,1 + ut,2 + ut,3 − 2 +C2,3,ϕt

(
1 − ut,2, 1 − ut,3

)
+C1,3,ϕt

(
1 − ut,1, 1 − ut,3

)
+C1,2ϕt

(
1 − ut,1, 1 − ut,2

)
-Cϕt

(
1 − ut,1,1 − ut,2, 1 − ut,3

)
.

}
(18)

Furthermore, Clayton (1978) showed that a lower dimensional marginal of a multivariate Archimedean copula is

still an Archimedean copula with the same generator. So, the relation (18) yields

C̄
ϕt

(
ut,1, ut,2, ut,3

)
= ut,1 + ut,2 + ut,3 − 2 + ϕt

[
ϕ−1

t
(
1 − ut,2

)
+ ϕ−1

t
(
1 − ut,3

)]
+ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − ut,3

)]
+ ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − ut,2

)]
−ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − ut,2

)
+ ϕ−1

t
(
1 − ut,3

)]
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(19)

It is sufficient to prove that C̄ϕt is a trivariate copula, that is, it satisfies properties of Definition 1. For this end, let’s

remark that the definition of ϕt and the relation (5) ensure the bijectivity of ϕt. So, for all x in R̄; ϕt ◦ ϕ−1
t (x) = x

while ϕt (∞) = 0 = ϕ−1
t (1) .

i) For all
(
ut,1; ut,2; ut,3

) ∈ [0, 1]3 ; t ∈ χ

C̄
ϕt

(
0; ut,2; ut,3

)
= ut,2 + ut,3 − 2 + ϕt

[
ϕ−1

t
(
1 − ut,2

)
+ ϕ−1

t
(
1 − ut,3

)]
+ ϕt

[
ϕ−1

t
(
1 − ut,3

)]
+ϕt

[
ϕ−1

t
(
1 − ut,2

)] − ϕt

[
ϕ−1

t
(
1 − ut,2

)
+ ϕ−1

t
(
1 − ut,3

)]
= 0.

Then, the exchangeability yieds that C̄
ϕt

(
0; ut,2; ut,3)

)
= C̄

ϕt

(
ut,1; 0; ut,3)

)
= C̄

ϕt

(
ut,1; ut,2; 0

)
= 0.

ii) For all ut,i ∈ [0, 1] we check easily that C̄ϕt

(
1, 1, ut,3)

)
= ut,3 + 3ϕt (∞) = ut,3 and more generally

C̄
ϕt

(
ut,1; ut,2; ut,3

)
= ut,i if ut, j = 1 for 1 ≤ i � j ≤ 3.

iii) Furthermore, note that in bivariate case, the relations (3) and (9) imply respectively

C (u1, v1) −C (u1, v2) −C (v1, u2) +C (u2, v2) ≥ 0 for ui, vi ∈ [0, 1] with u1 ≤ v1, u2 ≤ v2. (20)

and

C̄
ϕt

(
ut,1; ut,2

)
= ut,1 + ut,2 − 1 + ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − ut,2

)]
.

Otherwise, for all t ∈ χ the function ϕt and ϕ−1
t are strictly decreasing and increasing respectively.

So, for all
(
ut,1; ut,2

) ∈ [0, 1] ,
(
vt,1; vt,2

) ∈ [0, 1] with ut,1 ≤ vt,1 and ut,2 ≤ vt,2, it follows that,

ut,2 − vt,2 − ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − ut,2

)]
+ ϕt

[
ϕ−1

t
(
1 − ut,1

)
+ ϕ−1

t
(
1 − vt,2

)] ≥ 0. (21)

and

ut,1 − vt,1 − ϕt

[
ϕ−1

t
(
1 − vt,1

)
+ ϕ−1

t
(
1 − vt,2

)]
+ ϕt

[
ϕ−1

t
(
1 − vt,1

)
+ ϕ−1

t
(
1 − ut,2

)] ≥ 0. (22)

Then, by adding (21) and (22) member to member, we obtain the C̄ϕt -version of the (20). Hence, in the bivariate

survival copula C̄ϕt is 2-increasing and a symmetric extension allows to conclude for high dimensional case.

4. Sampling Conditional Copulas of Archimedean Processes

Archimax copulas have the advantage to include both the Archimedean and the strictly extremal copulas. Specif-

ically every extremal copula C is associated to a Pickands (1981) AC defined on S n such as, for all (u1, ..., un) ∈
[0, 1]n,

C(u1, ..., un) = exp

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

ũiAC

(
ũi∑n

i=1 ũi
, . . . ,

ũn−1∑n
i=1 ũi

)⎫⎪⎪⎬⎪⎪⎭ , ũi = log ui. (23)

We characterize here a conditional distribution whose underlying copula belongs to Archimax class.

Proposition 7 Let Ft be the n-dimensional function associated to an Archimax copula Cϕt . Then, for every xt =(
xt,1; ...; xt,n

)
and ut =

(
ut,1; ...; ut,n

) ∈ (
R̄

)n
such as xt,i ∈ [

0; ut,i
]

the conditional distribution Ft,C(xt |ut ) is given,
for all t ∈ χ and yt = Ft(xt), by

i) Ft,C(xt |ut ) = S ϕt (yt, ut) for a specific function S ϕt : [0, 1]n × [0, 1]n −→ [0, 1[ if Cϕt is strictly Archimedean.
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ii) Ft,C(xt |ut ) = exp
{
−Dϕt (yt, ut)

}
where Dϕt is a conditional measure defined on [0, 1]n×[0, 1]n , if Cϕt is strictly

extremal.

Proof. Let’s consider two realizations xt =
(
xt,1; ...; xt,n

) ∈ (
R̄

)n
and ut =

(
ut,1; ...; ut,n

) ∈ (
R̄

)n
of the process X

such as, 0 ≤ xt,i ≤ ut,i. It follows that,

Ft,C(xt |ut ) = P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

(
Xt,i ≤ xt,i

) ∣∣∣∣∣∣∣
n⋂

i=1

(
Xt,i ≤ ut,i

) ⎞⎟⎟⎟⎟⎟⎠ , (24)

Moreover, note that FUt,i (x) = x for the distribution function of standard uniform law. So, from (24) it follows that

Ft,C(xt |ut ) = P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

(
Ft,i

(
Xt,i

) ≤ yt,i
) ∣∣∣∣∣∣∣

n⋂
i=1

(
Ft,i

(
Xt,i

) ≤ ut,i
) ⎞⎟⎟⎟⎟⎟⎠ ; (25)

where, for a fixed t ∈ χ and yt,i = F−1
t,i

(
xt,i

)
. Moreover, since for all t ∈ χ, the variables Ut,i are still the probability

integral transformations, Ut,i ∼ Ft,i
(
Xt,i

)
. Then from (25), it follows that

Ft,C(xt |ut ) =

P
(

n⋂
i=1

(
Ut,i ≤ yt,i

)
;

n⋂
i=1

(
Ut,i ≤ ut,i

))

P
(

n⋂
i=1

(Ui ≤ ui)

) =

P
(

n⋂
i=1

(
Ut,1 ≤ yt,1

))

P
(

n⋂
i=1

(
Ut,1 ≤ ut,1

)) . (26)

Furthermore, from (1) every copula C is the distribution function of uniform vector (U1, ...,Un) even Ui ∼ Hi (Xi)

regardless of the original distribution H, it results that

Ft,C(xt |ut ) =
Cϕt

(
yt,1; ...; yt,n

)
Cϕt

(
ut,1; ...; ut,n

) for all yt ∈ [0, 1]n , ut ∈
(
R̄

)n
. (27)

i) If C̃ϕ is strictly Archimedean, then

Ft,C(xt |ut ) =
ϕt

(
ϕ−1

t
(
yt,i

)
+ ... + ϕ−1 (

yt,i
))

ϕt

(
ϕ−1

t
(
ut,i

)
+ ... + ϕ−1

t
(
ut,i

)) = S ϕt (yt, ut) .

Moreover, the function ϕ−1
t is stricly increasing from [0,+∞] to [0, 1]. Since xi ∈ [0, ui], then,

∑n
i=1 ϕ

−1 (xi) ≤∑n
i=1 ϕ

−1 (ui) and finaly S ϕt (xt, ut) < 1 since ϕt is instead decreasing.

ii) If Cϕ is strictly an extremal model, by setting tzt ,i =
zi∑n

i=1 zi
, zt ∈ {xt, ut} the relation (26) gives

HC(x |u ) = exp

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

xiACϕ
(
tx,1, . . . tx,1

) −
n∑

i=1

ũiACϕACϕ
(
tu,1, . . . tu,1

)⎫⎪⎪⎬⎪⎪⎭ .
Finally, it follows a convex measure Dϕ, mapping

[
(R ∪ {±∞})n]2

to [0, 1] such as

Dϕ (y, u) =

n∑
i=1

yiACϕ
(
tx,1, . . . tx,1

) −
n∑

i=1

ũiACϕACϕ
(
tu,1, . . . tu,1

)
(28)

which proves Theorem 7 as disserted.

Let’s consider a ϕt-Archimedean process {Xt, t ∈ χ} and a conditioning subset Wt. For simplification purpose, let

reduce Wt to a single element, Wt = {wt} . The following result provides a key property of parametric conditional

Archimedean copulas.

Proposition 8 For a given conditioning set Wt, the conditional copula CWt of Xt |Wi where Xt,i|Wt ∼ Ft,i; 1 ≤ i ≤ n
exists and it coincides with the joint distribution function of Ui ≡ Ft,i(Xt |Wi); 1 ≤ i ≤ k given Wt. Moreover if, for
the bivariate case, the Archimax copula Cϕt is an extremal model then CWt is a conditional extremal copula.

Proof. For a fixed parameter t ∈ χ the conditioning set Wt is such that for all ut =
(
ut,1, ..., ut,n

) ∈ (
R̄

)n
; ut,i/wt ∈

[0, 1] . Then, Theorem 2 can also be applied for the parametric case. Therefore, the relation (4) insures that CWt

exists and it coincides with the joint distribution function of the uniform vector(
Ut,1; ...; Ut,n

) ∼ (
Ft,1(Xt,1|Wt); ...; Ft,n(Xt,n|Wt)

)
or Ft(xt,1; ...; xt,n/wt) = Cϕt

(
Ft,1(xt,1|wt); ...; Ft,n(xt,n|wt)

)
.
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Furthermore, note that, in bivariate case, the formula (6) can be written more simply such as

Cϕ,A(u1, u2) = ϕ−1

[
(ϕ (u1) + ϕ(u2)) A

(
ϕ(u1)

ϕ (u1) + ϕ(u2)

)]
; (u1, u2) ∈ [0, 1]2 ; (29)

Using both parametric and condtional context, (29) gives, for all (ut, vt) ∈ [0, 1]2 , t ∈ χ.

Cϕt ,A(ut, vt/wt) = ϕ
−1
t

[
(ϕt (ut |wt ) + ϕ(ut |wt )) A

(
ϕ(ut |wt )

ϕ (ut |wt ) + ϕ(ut |wt )

)]
. (30)

Moreover, for Archimax copulas, a copula is also extremal if its parametric generator is given by ϕt (x) = − ln x in

the relation (30). So, the copula Cϕt ,A is such as

C(
(
ut,1 |wt

)
,
(
ut,2 |wt

)
) = exp

{(
ln

(
ut,1 |wt

)
+ ln

(
ut,2 |wt

))
A
(

ln
(
ut,1 |wt

)
ln

(
ut,1 |wt

)
+ ln

(
ut,2 |wt

)
)}
. (31)

By making the variable change vt,i = ut,i |wt , we have vt,i ∈ [0, 1], 1 ≤ i ≤ 2 and (31) gives rather

C(vt,1; vt,2) = exp

{(
v̄t,1 + v̄t,2

)
A
(

v̄t,1

v̄t,1 + v̄t,2

)}
,
(
vt,1; vt,2

) ∈ [0, 1]2 , ṽt,i = log vt,i. (32)

The formula (32) is the 2-dimensional case of (23) which characterize the extremal copulas.

5. Conclusion and Discussion

The results of the study show that the survival copula associated to a Archimedean copula can also be expressed

analytically via the Archimedean generator of the original copula. We have also proved that the distribution func-

tion describing a uniform vector of survival distribution is a survival copula in Archimedean context. Conditional

distribution and copulas have also been charcterized both for simple Archimedean field and in Archimax classes.

These are very interesting results at different levels. First characterizing analytically the survival copula provides

an explicite form involving more tractability. Morover, that consist also in characterizing analytically the dual

copula given by the survival distribution of the original copula. Another important thing is to have introduced the

concept of Archimedean process. The specificity of our paper on the topic of stochastic processes analysis is that

it investigates both survival and conditional properties of Archimedean copulas.
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