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Abstract

In this paper it is proved that anisotropic fractional maximal operator M, ., 0 < @ < |o| is bounded on anisotropic
generalized Morrey spaces M, , -, where |o| = >/, 0 is the homogeneous dimension of R”". We find the condi-
tions on the pair (¢, ¢2) which ensure the Spanne-Guliyev type boundedness of the operator M, from anisotropic
generalized Morrey space M, ,, » t0 My g, . 1 < p < g <oo,1/p—1/q = a/|o|, and from the space M, ,, . to the
weak space WM, ,, 1 < g < o0, 1 —1/q = a/|o|. We also find conditions on the ¢ which ensure the Adams-
Guliyev type boundedness of My fromM 1+ toM 1 forl < p < g < ocoandfrom M;,,to WM . for
Pt .o a9 a9

1 <g<oco.

As applications, we establish the boundedness of some Schodinger type operators on anisotropic generalized Mor-
rey spaces related to certain nonnegative potentials belonging to the reverse Holder class.
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1. Introduction

In the present paper we will prove the boundedness of the anisotropic fractional maximal operator in the anisotropic
generalized Morrey spaces.

For x € R" and r > 0, let B(x,t) denote the open ball centered at x of radius ¢ and DB(x, t) = R"\ B(x,t). Let
0<b<l,0=(0y,..,0p) witho; >0fori=1,...n,|lo|l=01+..+0,and t“x = (t' x1, ..., 1" x,,) for t > 0. For
xeR"and > 0, let E;(x,1) = [T, (x; — 7%, x; + 17*) denote the open parallelepiped centered at x of side length
t%ifori=1,..,n.

By Besov, II'in and Lizorkin (1966) and Fabes and Rivere (1966), the function F(x,p) = )}, xizp’z‘”, considered
for any fixed x € R”, is a decreasing one with respect to p > 0 and the equation F(x,p) = 1 is uniquely solvable.
This unique solution will be denoted by p(x). Define p(x) = p and p(0) = 0. It is a simple matter to check that
p(x — y) defines a distance between any two points x, y € R*. Thus R”, endowed with the metric p, defines a
homogeneous metric space (Besov, II'in, & Lizorkin, 1966; Bramanti & Cerutti, 1996; Fabes & Rivere, 1966).

1
Note that p(x) is equivalent to | x|, = {nax ;| .
<i<n

One of the most important variants of the anisotropic maximal function is the so-called anisotropic fractional
maximal function defined by the formula

Mo o f(x) = sup |E,(x, )|/ f lfOldy, 0<a<|ol,
>0 Eq(x,1)

where |E(x,1)| = 2"#“! is the Lebesgue measure of the parallelepiped E(x, ?).

It coincides with the anisotropic maximal function M, f = My f and is intimately related to the anisotropic Riesz
potential operator
JO)dy

Ia,o’f(x) = ||0'|—oz >

0O<a<|ol.
R/l Ix—y
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If o =1, then M, = M, and I, = I, is the fractional maximal operator and Riesz potential, respectively. The
operators My, M, ., I, and I, , play important role in real and harmonic analysis (see, for example Besov, II'in, &
Nikol’skii, 1996; Stein, 1993).

Definition 1.1 Let 0 < b < 1 and 1 < p < co. We denote by L, » = L, (R") anisotropic Morrey space, the set
of locally integrable functions f(x), x € R", with the finite norm

1/p
I£llz,,, = sup (f’"” f If(y)l”dy) .
E,(x,1)

xeR™, >0

Remark 1.1 Note that L, o = L,(R") and L, 1 » = Lo(R"). If b <O or b > 1, then L, = O, where O is the set
of all functions equivalent to 0 on R". Inthecase c =1 = (1,..,1)and b = ﬁ we get the classical Morrey space
Lpa(R") =L, 1,(R"),0<2<n.

In the theory of partial differential equations, together with weighted L, ,,(R") spaces, Morrey spaces L, 4(R") play
an important role. Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain problems
in elliptic partial differential equations and calculus of variations (see Morrey, 1938). Later, Morrey spaces found
important applications to Navier-Stokes (Mazzucato, 2003; Taylor, 1992) and Schrodinger (Perez, 1990; Ruiz &
Vega, 1991 & 1993; Shen, 2002 & 2003) equations, elliptic problems with discontinuous coefficients (Caffarelli,
1990; Fazio, Palagachev, & Ragusa, 1999; Softova, 2006 & 2008), and potential theory (Adams, 1975 & 1998).
An exposition of the Morrey spaces can be found in the book Kufner, John and Fucik (1977).

Definition 1.2 (Burenkov, Guliyev, H. V., & Guliyev, V. S., 2007) Let 1 < p < oo and 0 < b < 1. We denote by
WL, s = WL, -(R") the weak anisotropic Morrey space as the set of locally integrable functions f(x), x € R"
with finite norm
_ ~blor : l/p
Ifllwe,,, =sup r sup (77 Ky € Ex(x,0): 1fO) > r)l)

r>0  xeR" >0

Note that

WLp(Rn) = WLp,O,(r(Rn)7
Lp,b,o-(Rn) - WLp,b,o‘(Rn) and ”f”WL

pbo

< A1l

pbo ?

The anisotropic result by Hardy-Littlewood-Sobolev states that if 1 < p < g < oo, then I, is bounded from
L,(R") to L,(R") if and only if @ = |0 (% - é) and for p = 1 < g < o0, I, is bounded from L;(R") to WL,(R")

if and only if @ = |o]| (1 - é) Spanne (see Spanne, 1966) and Adams (1975) studied boundedness of the Riesz
potential /, for 0 < & < nin Morrey spaces L, ;. Later on Chiarenza and Frasca (1987) was reproved boundedness
of the Riesz potential I, in these spaces. By more general results of Guliyev (1994) (see also 1999 & 2009) one
can obtain the following generalization of the results in Adams (1975), Chiarenza and Frasca (1987) and Spanne
(1966) to the anisotropic case.
Theorem A Let 0 < @ <o and 0 < b < 1,1 < p < 12209,

1 ) Ifl<p< %, then condition % -1 =4 b)I(rI is necessary and sufficient for the boundedness of the operators

M, and Lo from Lpho‘(Rn) o quo‘(R ).

2) If p = 1, then condition 1 — m
and 1, from Ly j -(R") to WLy, (r(]R")

is necessary and sufficient for the boundedness of the operators M, »

It is known that the anisotropic maximal operator M, is also bounded from L, to L, forall 1 < p < co and
0 < b < 1 (see, for example Guliyev, 1994 & 1999), which isotropic case proved by Chiarenza and Frasca (1987).

In this work, we prove the boundedness of the fractional maximal operator M, -, 0 < a < |o| from one generalized
Morrey space M), ,, » to My, 5, 1 <p < g <oo,1/p—1/g=a/|o], and from M, ,, , to the weak space WM, ,, -,
1 <g<oo,1-1/g = aflo]. We also prove the Adams-Guliyev type boundedness of the operator M, , from

M o to M . for 1 < p < g < oo and from M, to WM oo for 1 < g < oo. In all the cases the conditions
o 9.

fof the boundedness are given it terms of supremal-type 1nequaht1es on (¢1,¢>) and ¢, which do not assume any
assumption on monotonicity of (¢1,¢,) and ¢ in r. By using the (M, , », M, ) boundedness of the fractional
maximal operators we establish the boundedness of some Schodinger type operators on anisotropic generalized
Morrey spaces related to certain nonnegative potentials belonging to the reverse Holder class.
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By A < B we mean that A < CB with some positive constant C independent of appropriate quantities. If A < B
and B < A, we write A ~ B and say that A and B are equivalent.

2. Notations

Everywhere in the sequel the functions ¢(x, r), ¢1(x,r) and ¢,(x, r) used in the body of the paper, are non-negative
measurable function on R” X (0, 00).

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 2.3 Let 1 < p < co. The anisotropic generalized Morrey space M, is defined of all functions
fe LZ’”(R") by the finite norm

_ 1
1f1lag,,, = sup ¢(x,r) YNEL(x, |77 Wz, &, ery-
xeR",r>0

. ) .. 0-1c]
According to this definition, when ¢(x,r) = r~# , we can see that

Mp,ap,o‘(Rn) = Lp,b,(r(Rn)~
There are many papers discussed the conditions on ¢ to obtain the boundedness of integral operators on the gener-
alized Morrey spaces (see Guliyev, 1994, 1999 & 2009; Mizuhara, 1991; Nakai, 1994 & 2006; Softova, 2006).
In Nakai (2006) the following statements were proved.

Theorem 2.1 Let 1 < p < 00,0 < < '%', ;11 = Il) - ﬁ and ¢(x, T) satisfy conditions

clo(x, 1) < @(x,7) < c(x, 1), @2.1)

whenever r < T < 2r, where ¢ does not depend on r,t and x € R",

= d
f TP(x, TV = < CrP(x, Y. 2.2)
, T

Then for p > 1 the operator M, , is bounded from M, » to My, , and for p = 1 M, is bounded from M, to
WMo

The following statements, containing results obtained in Nakai (2006) was proved in Nakai (1994) (see also
Guliyev, 1999 & 2009; Guliyev & Mustafayev, 1997 & 1998).

Theorem 2.2 Let 1 < p < o0, 0 < @ < %, é = % - \%I and (1, @) satisfy the condition

o dr
f re(x, r)T < Cor(x, 1), (2.3)

where C does not depend on x and t. Then the operator M, is bounded from M, ,, - to My, - for p > 1 and
from My 4, - to WMo, - for p = 1.

In Guliyev, Aliyev, Karaman and Shukurov (2011) obtained sufficient conditions on the pair (¢, ¢2)

1<s<00

foo ess inf ¢ (x, s)s%
P

- dt < Cpy(x, 1), 2.4)
ﬁ+1
for the boundedness of M, from M, 1 to M, 1, where é = % -
3. Boundedness of the Fractional Maximal Operator in the Spaces M, ,

3.1 Spanne-Guliyev Type Result

Sufficient conditions on ¢ for the boundedness of M, and M, in generalized Morrey spaces M, , - have been
obtained in Akbulut, Guliyev and Mustafayev (2012), Burenkov, Gogatishvili, Guliyev and Mustafayev (2010),
Guliyev (2009), Guliyev and Mustafayev (1997 & 1998) and Nakai (2006).

The following lemma is true.
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Lemma3.1Let1§p<oo,03a<%,é=%

ol -
1Moo flly s e S WAL E 2ry + 70 SUp T 7 FllL, 2, i)

™2r

holds for all f € Li?C(R”).
Moreover for p = 1 the inequality

ol -
IMao fllwr,Eery S WlLEsa + 70 sup T fllL )

™2r

holds for all f € Llloc(R”).
Proof. Let1<p<q<ooandl—1)—
fZ = fXG(ZE(T)'

1
q

Moo fllz,E,) < Moo fillL, k) + 1Moo folln,E-

By the continuity of the operator M, : L,(R") — L,(R") we have

Moo fille, e S NSl E,)-

- ﬁ Then for p > 1 and any ball E, = E,(x, r) the inequality

@3.1)

(3.2)

= 15~ Forarbitrary ball E, = E;(x,r) let f = fi + f», where f| = fx2g, and

Let y be an arbitrary point from E,. If E,(y,t) N B(ZEU) # 0, then t > r. Indeed, if z € E,(y,£) N G(ZEU), then

t> 1y = 2 ¥ = 2lp =[x = Yl > 270y = r = (2700 = 1)r.

On the other hand, E, (v, 1) N (2E,) € E,(x,2). Indeed, z € Ey(y,1) N (2E,), then we get |x — 2], < 27mn(Jy —

Zo + X = Ylo) < 27mint + r < (2770 + 1)1

Hence

1
M, f(y) = su —f |f(2)ldz
acf2y 0 [Eq(y, ]I/ Eo (00 SQE,) /

o 1
<) qup — f If(2)ldz
r>£) |Eq(x, 28)|1 -/l Eq(x21) f

o 1
) —f |f(2)ldz.
z>213 |E,(x, t)ll_a/‘o_l Eq(x.1) f

Therefore, for all y € E, we have
Moo <205 sup e [ (0l
’ >2r IE(;-()C, t)|1—cz/|o’\ E,(x,t)

Thus

1 1
Moo fllL, ) S WL, e + |Eql [sSUp ——— |f(2)ldz).
7 ’ [1=a/lol Jg on

t>2r |EO-(X, t)

Let p = 1. It is obvious that for any ball E, = E,(x, r)

Moo fllwe, e, < Moo fillwe, e, + 1Moo follwe, e,

By the continuity of the operator M, : L{(R") — WL,(IR") we have

1Moo fillwe, e, S WL cE,)-

Then by (3.3) we get the inequality (3.2).

Lemma32Lletrl <p<co,0<a<d 1=

1
. . p’q p ol
inequality
Il el
Moo fllL e ST supt @ fllL, &,

>2r
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holds for all f € Ly*(R").

Moreover for p = 1 the inequality

Moo fllwe,Esery S re supt- 0 ”f”Ll(E(,(x ) (3.5)
1>2r
holds for all f € Lll"c(]R”).
Proof. Let 1 < p < oo, 0<a<m 7= 5~ & Denote

1
= |Eq|v ( —f |f(Z)|dZ),
t>2r |Ex(x, D' g en
My = 1fll,@E,)-

Applying Holder’s inequality, we get

| 3
M S |E, i (Su — (f If(z)l”dz) ]
27 |Eg(x, D] \JE,(x)

On the other hand,

1 7
|E,|i (sup— ( f If(z)l”dz) ]
>2r |E(r(x l‘)| E (x,0)

1
sup —) Wz, k) = M.
2 |Eq(x, 1|4

1
2 |Egle

Since by Lemma 3.1
Moo fllL,E,) < M+ My,

we arrive at (3.4).

Let p = 1. The inequality (3.5) directly follows from (3.2).

Theorem 3.3 Let 1 < p < oo, 0<a < l(" é = ;1, - ‘Ul, and (1, @) satisfies the condition
sup 17 ¢1(x, 1) < C pa(x, 1), (3.6)
r<t<eco

where C does not depend on x and r. Then for p > 1, My, is bounded from My o, - to My, » and for p =1, M, »
is bounded from M ,, - to WMy, .

Proof. By Lemma we get

kel
Moo fllu,,,, < sup ¢a(x, n! (supt SNy Es ey

xeR™r>0 t>r

S Ay, . SUP @a(x. ) sup® @y (x,1)

xeR",r>0 >r

< Al

if p e (1,00) and

1
Moo fllwm,,,, S sup ¢a(x,1)" (supt ””f”L](E(,(xt))

xeR™,r>0 >r

S, sup @a(xr) " supt® @i (x,1)

xeR"r>0 >r

S g,

if p=1.
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In the case @ = 0 and p = g from Theorem 3.3 we get the following corollary, which proven in Akbulut, Guliyev
and Mustafayev (2012) on R".

Corollary 3.1 Ler 1 < p < oo and (g1, p2) satisfies the condition

sup ¢1(x,1) < Cpa(x, 1), 3.7

r<t<oco

where C does not depend on x and r. Then for p > 1, M is bounded from M, 4, - to M, , »~ and for p = 1, M is
bounded from M o, » to WM o, ;.

Corollary 3.2 Let p € [1,0) and let ¢ : (0,00) — (0, c0) be an decreasing function. Assume that the mapping
lol lo|

lol . . . Il ol
r = @(r)rr is almost increasing (there exists a constant c such that for s < r we have ¢(s)s» < co(r)re ). Then
there exists a constant C > 0 such that

IMflim,,. < Cliflim,,, if p>1,

and
1M fliwm,,e < CllIM -

3.2 Adams-Guliyev Type Result
The following is a result of Adams-Guliyev type for the fractional maximal operator.

Theorem 3.4 Let1 < p<g<oo,0<a< % and let ¢(x, t) satisfy the condition

sup @(x,1) < Co(x,7) (3.8)
r<t<oco
and
sup 1“@(x,1)r < Cris, 3.9)
r<t<oo

where C does not depend on x € R" and r > 0. Then the operator M, is bounded from Mpwl o Mqﬁ i for
WP C w4 ,C
p > land from My o to WM 1
a9

1,0

Proof. Let]l < p<g<oo,0<a< % and fe M Lo Write f = fi + f>, where E, = E,(x,7), fi = fx2£, and
pe? o

f2 = fXU(ZE,,-)'

For M, , f>(y) for all y € E,; from (3.3) we have

1
Moo (f2)() <277 sup —— f |f(2)ldz
o oo 0= Jg

_w
Ssupt 9 fllL, &y (3.10)
>2r

Then from conditions (3.9) and (3.10) for all y € E, we get

I
Moo f() S 78 M) +sup 7 || fllL, e, o

>2r

1
<M+ Iflle . supte(x, Hr

pelP .o 1>2r

_ap.
SrME) +rer | fllm

1
poP o

L/ 1las ki

1/, “ag
L””) “ forevery y € E,, we have

Hence choose r = ( 7o)

Mo FOO S (MFGDS £

pel o
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Hence the statement of the theorem follows in view of the boundedness of the anisotropic maximal operator M,
in M,, o provided by Corollary 3.1 in virtue of condition (3.8).

P o

N
||M(l/,(1'f||M ., = Sup ‘P(x’ t) it 4 ”Ma,a'f”Lq(E(,(x,f))

a99 .o xeR”, >0

1-2 _1 _l 4
Sl *, sup @Con e CIMA &

poP o XER, >0
P

1-2 1. a
= 1flly ", sup  @(x,1) 717 ”Mf”Lp(E(,(x,t)))

peP o xeR”, >0

1-2 4
= Al " IMANy

pol o PP o
S e

PP o

if ]l <p<gqg<ocoand

_1 .
Moo fllwar sup  @(x, 1) 7t 7| Moo fllwe, &y )

.99 .0 xeR”, >0

1-1 L _ldl 1
q —ut 7 q
rg ||f||M1,¢,1T Xg]§?€>0 ‘10()5, fy at HMf”WLl(E[r(x,t))

1

1-1 q
.-
Iy, | sup (et lO—IHMf”WL](E(,(x,t)))

xR, >0

1-1 :
p q
W g, WMy,

S Il
if 1 <g < oo.

In the case ¢(x,1) = t(hfl)‘%l, 0 < b < 1 from Theorem we get the following Adams type result for the fractional
maximal operator.

Corollary 33 LetO < a <o, 1 <p < % 0<A<|o|-apand % - é = ML_A Then for p > 1, the operator M, »

is bounded from L, - to Ly}, and for p = 1, M, , is bounded from Ly, to WLy, .
4. Parabolic Schrodinger Type Operators VV(% ~A+V)” and VVVZ(% ~A+ V)P

In this section we consider the parabolic Schrodinger operator

0
— —A+V on R"™!,
ot

where V = V(x,1) is a nonnegative potential which belongs to the parabolic reverse Holder class B,(R"™*!).
Examples of such potentials are all positive polynomials but also singular functions like max{|x|, 12} for @ >

—%. We prove the parabolic generalized Morrey M, , o, (R"™!) — M, ,, - (R™") estimates for the operators

V(2 -A+ V)P and VIV3(L - A+ V)P, where op = (1,..., 1,2).

The investigation of Schrodinger operators on the Euclidean space R” with nonnegative potentials which belong to
the reverse Holder class has attracted attention of a number of authors (cf. Fefferman, 1983; Shen, 1995; Zhong,
1993). Shen (1995) studied the Schrodinger operator —A + V, assuming the nonnegative potential V belongs to the
reverse Holder class B,(R") for ¢ > n/2 and he proved the L, boundedness of the operators (—=A + V), V2(=A +
V)Y 'L V(-A+V =2 and V(-A + V)~!. Kurata and Sugano generalized Shens results to uniformly elliptic operators
in Kurata and Sugano (2000). Sugano (1998) also extended some results of Shen to the operator V?(=A + V)77,
0<y<B<land V'V(-A+ V)P 0<y< % <B <1landfB -7y > L. Following Shen’s approach, Gao and Jiang
extend the results to the parabolic case. In Gao and Jiang (2005), they consider the parabolic operator % -A+V
where V € B,(R"™!) is a nonnegative potential depending only on the space variables and, under the assumptions
n>3and p > (n+2)/2, they proved the boundedness of V(£ — A + V) in L,(R™").
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The main purpose of this section is investigate the parabolic generalized Morrey M, o, -, (R™) = M, 5, - (R™")
boundedness of the operators

0 -
T =V7((,Tt—A+V) Fo<y<p<l,
yo2, 0 -8 1 1
‘TQZVV(E—A-FV) ,Oﬁyﬁzﬁﬁﬁl,ﬁ—yzi.
Note that the operator Vz(g -A+ V)_1 in Gao and Jiang (2005) is the special case of 7.

It is worth pointing out that we need to establish pointwise estimates for 77, 7, and their adjoint operators by
using the estimates of fundamental solution for the Schrodinger operator on R™! in Gao and Jiang (2005). And
we prove the parabolic generalized Morrey estimates by using M, -, (R™") = M, ,, - (R"*!) boundedness of
the parabolic fractional maximal operators.

Definition 4.4 1) A nonnegative locally L, integrable function V on R"*! is said to belong to the parabolic reverse
Holder class Bq(R"“) (1 < g < o) if there exists C > 0 such that the reverse Holder inequality

1
1 a C
— | V(y,t)dydr S—fV,TddT
(|K|f1<(y)y) K] Jy VOO

holds for every parabolic cylinder
K=K(x,1),r)={01)eR"™ : |xi =yl <nlt—1l<r’i=1,...,n)

of center (x, ) and radius r in R"*!.

2)Let V = V(x,t) > 0. We say V € B (R""), if there exists a constant C > 0 such that
C
Vo < — | V. Ddydr
K| Jx

holds for every parabolic cylinder K = K((x, 1), ) in R**!,

Clearly, B(R™") c B,(R"") for I < g < oo. But it is important that the B,(R"*!) class has a property of
“self-improvement”; that is, if V € Bq(R””), then V € Bq+g(R”+1) for some & > 0 (see Li, 1999).

By the functional calculus, we may write, forall 0 < 8 < 1,

_ﬁ 0o -1
2—A+V =1f AP Q—A+V+/1 da.
ot 7 Jo ot

Let f € C(R™"). From

-1
(% -A+V+ /l) fx, 1) = f I'(x,t;y, 7 V) f(y, 7)dydr,
Rm—l

it follows that
T1f(x,1) = f 1 Ki(x, t;y,0)V(y, 1) f(y, T)dydT,
Rn+
where

LT APy, i dA for 0<p <1

Ki(x,1;y,7) =
(X, 1,9, 7) { T(x.t:y.7:0)  for f=1.

The following two pointwise estimates for 7 and 7, which proven in Zhong (1993), Lemma 3.2 with the potential
V € Boo(R™1).

Theorem A Suppose V € Bo(R™!) and 0 <y < 8 < 1. Then, for any f € C(‘;"(R””)

|T1f(x’ t)' S} Ma,o’of(x’ t)s

where a = 2(8 — ).
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Theorem B Suppose V € Bo(R™™"), 0 <y <1 <p<landB -y > % Then, forany f € Cy(R™")

|T2f(x? Z‘)| S M(X,O’(Jf(x5 t)7

where @ = 2(8 —y) — 1.
n+2

Note that the similar estimates for the adjoint operators T} and T with the potential V € B, for some ¢; > *3=
also valid (see Liu, 2009).

Theorem C Suppose V € B, (R"™Y) for some q; > %, 0<y<pB<1andlet qu =1- q—y]. Then there exists a
constant C > 0 such that

IT5 £ D] < C (Mg (I12)(x,0) 7, f € CR®R™),

where a = 2(8 — 7).
Theorem D Suppose V € By, (R"™) for some gy > %2, 0<y <1 <p<landp-y> 1. Andlet

1 —q—y], ifqr >n+2,
Tl -4 L if <q<n+2.

Then there exists a constant C > 0 such that

IT5 £ D] < C (Mg (I12)(x,0) 7, f € CRR™),

where @ = 2(8 —vy) — 1.
The above theorems will yield the parabolic generalized Morrey estimates for 77 and 75.

Corollary 4.4 Assume that V € Bo(R™!), and 0 <y << 1. Let 1 < p<g<o00,2(B—7y) = (n+ 2)( )and
the condition (3.6) be satisfied for a = 2(8 — ).

Then, for any f € CS"(R"”)
0T Aty Sty for p> 1

and

171 fllwnyy, oy < WMy, .,  for p=1
Corollary 4.5 Assume that V € Bo(R™"), 0 <y < 1 < B < landB-y > 3. Let1 < p < g < oo,
2B—y)—-1=mn+2) (% - é) and the condition (3.6) be satisfied for « = 2(8 —y) — 1.

Then, for any f € Cy(R™")
T2 My, 0y S WMy, s Sor p>1

and

T2 Wty S Wbty for p=1
Corollary 4.6 Assume that V € By, (R™") for q; > 5%, and 0 < y <B < 1. Let 1 < p < v+, % - 611 =2
L=-1-2 and the condition (3.6) be satisfied for « = 2(8 — ).

qp  n+2
112

Then, for any f € Cy(R™1)
71y, oy S WA, s for p>1

and

171 fllwnyy, oy < Wby, .,  for p=1
Corollary 4.7 Assume that V € B, (R™") for q > 2, and

0<y<3<B<1, ifq1>n+2
0<y<

<B<l,  ifHE<q<n+2.

[SIEE ST
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Letﬂ—yz%,1§p< lji,%—ézﬁ,é=1—qllandthecondition(3.6)besatisﬁedfora=2(ﬂ—y)—1,
qp  n+2
where
1 q—yl, ifq1>n+2,
) 1 Lo nt2
P1 T—m, l%<q1<n+2.

Then, for any f € Cy(R™")
72fm,y, 0y S WAy, 0ys  for p>1

and
T2 wnyy, oy S Wby, .,  for p=1
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