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Abstract

This paper proves several extended theoretical results of transitive Cayley digraphs. Several generalization of

transitive Cayley digraphs also have been provided. Moreover, various graph properties have been expressed in

terms of algebraic properties. This did not attract much attention in the literature.
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1. Introduction

A binary relation on a set V is a subset E of V × V . A digraph is a pair (V, E) where V is a nonempty set (called

vertex set) and E is a binary relation on V . The elements of E are the edges of the digraph. An edge of the

form (x, x) is called a loop. Through out this paper we assume that G is a digraph without loops. A k- chain
or a path of length k, is a sequence (x0, x1, . . . , xk) of vertices, each adjacent to its successor, and all the internal

vertices x1, x2, . . . , xk−1 are distinct. A digraph G is said to be transitive if E2 ⊆ E, that is, (x, y), (y, z) ∈ E implies

(x, z) ∈ E. A digraph is quasi-transitive if (x, y), (y, z) ∈ E implies (x, z) ∈ E or (z, x) ∈ E (Galeana-Sanchez &

Cesar Hernandez-Cruz, 2011). Observe that every transitive digraph is quasi-transitive.

Let G be a group and let S be a subset of G. The Cayley digraph of G with respect to S is defined as the digraph

X = (G, E), where E is a subset of G × G, such that (x, y) ∈ E if and only if x−1y ∈ S (Dobson, 2006). The

Cayley digraph of G with respect to S is denoted by Cay(G, S ). The subset S is called the connection set of

X. That is, Cayley digraph Cay(G, S ) has as its vertex-set and edge-set, respectively, V = G and E = {(x, y) :

y = xz for some z ∈ S }. Observe that transitive/quasi-transitive Cayley digraphs are special classes of Cayley

digraphs and these Cayley digraphs play an import role in algebraic graph theory. In this paper, we introduce

some generalization of transitive/quasi-transitive Cayley digraphs. Moreover, we express various graph properties

in terms of algebraic properties.

2. k-(quasi-) Transitive Cayley Digraphs

The concepts of k-transitive and k-quasi transitive digraphs were first introduced by Galeana-Sanchez and Cesar

Hernandez-Cruz (2011). Observe that the above concepts are generalizations of transitive and quasi-transitive

digraphs respectively. The aim of this section is to characterize k-transitive/k-quasi-transitive Cayley digraphs. We

start with the following definitions due to Galeana-Sanchez and Cesar Hernandez-Cruz (2011).

Definition 2.1 A digraph G is k- transitive if the existence of a directed path (x0, x1, . . . , xk) of length k in G implies

that (x0, xk) ∈ E.

Definition 2.2 A digraph G is k-quasi-transitive if, whenever (x0, x1, . . . , xk) is a directed path of length k, then

(x0, xk) ∈ E or (xk, x0) ∈ E.

Here we prove that Cay(G, S ) is k-transitive if and only if S k ⊆ S and k-quasi-transitive if and only if S k ⊆ S ∪S −1.

We also provide examples of k-transitive/k-quasi-transitive Cayley digraphs.

Theorem 2.3 Cay(G, S ) is k-transitive if and only if S k ⊆ S .
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Proof. Assume that Cay(G, S ) is k-transitive. Let x ∈ S k. Then there exists x1, x2, . . . , xk ∈ S such that

x = x1x2 . . . xk (1)

Let z0 = 1, z1 = x1, z2 = x1x2, . . . , zk−1 = x1x2 . . . xk−1. Consider the following ordered pairs of elements in G:

(z0, z1), (z1, z2), (z2, z3), . . . , (zk−1, x).

We see that

z−1
0 z1 = 1−1x1 ∈ S ⇒ (z0, z1) ∈ E,

z−1
1 z2 = x−1

1 x1x2 = x2 ∈ S ⇒ (z1, z2) ∈ E,
...

z−1
k−1x = (x1x2 · · · xk−1)−1(x1x2 · · · xk) = xk ∈ S ⇒ (zk−1, x) ∈ E.

Hence (z0, z1, z2, . . . , zk−1, x) is a directed path of length k from 1 to x. Since Cay(G, S ) is k- transitive, (1, x) is an

edge in Cay(G, S ). In other words x ∈ S . Hence S k ⊆ S .

Conversely, assume that S k ⊆ S . Let (x0, x1, . . . , xk) be a directed path of length k in Cay(G, S ). This implies that

x−1
0 x1, x−1

1 x2, x−1
2 x3, . . . , x−1

k−1
xk ∈ S . Equivalently,

(x−1
0 x1)(x−1

1 x2)(x−1
2 x3) . . . (x−1

k−1xk) ∈ S k.

In other words x−1
0 xk ∈ S . This implies that (x0, xk) is an edge in Cay(G, S ). Hence Cay(G, S ) is k-transitive.

Corollary 2.4 Cay(G, S ) is 2-transitive(that is, transitive) if and only if S 2 ⊆ S .

Theorem 2.5 Cay(G, S ) is k-quasi-transitive if and only if S k ⊆ S ∪ S −1.

Proof. Assume that Cay(G, S ) is k-quasi-transitive. Let x ∈ S k. Then there exists x1, x2, . . . , xk such that x =
x1x2 . . . xk. Note that

(1, x1, x1x2, . . . , x1x2 . . . xk−1, x)

is a directed path of length k from 1 to x. Since Cay(G, S ) is k- transitive, either (1, x) or (x, 1) is an edge in

Cay(G, S ). In other words x ∈ S ∪ S −1. Hence S k ⊆ S ∪ S −1.

Conversely, assume that S k ⊆ S ∪ S −1. Let (x0, x1, . . . , xk) be a directed path of length k in Cay(G, S ). Then,

x−1
0 x1, x−1

1 x2, x−1
2 x3, . . . , x−1

k−1
xk ∈ S . Equivalently,

(x−1
0 x1)(x−1

1 x2)(x−1
2 x3) . . . (x−1

k−1xk) ∈ S k.

In other words x−1
0 xk ∈ S ∪ S −1. This implies that either (x0, xk) or (xk, x0) is an edge in Cay(G, S ). Hence

Cay(G, S ) is k-quasi-transitive.

Corollary 2.6 Cay(G, S ) is 2-quasi transitive(that is, quasi-transitive) if and only if S 2 ⊆ S ∪ S −1.

The following are some examples of k- transitive/ k-quasi transitive Cayley digraphs.

Example 2.7 Let k be any positive integer greater than or equal to 2. Let S = {k, k2, 2k2 − k, 3k2 − 2k, . . .}. Then

the Cayley digraph, Cay(Z, S ) is an infinite k-transitive Cayley digraph.

Example 2.8 Let Z6 denotes the cyclic group of order 6. Then Cay(Z6, {2, 5}) and Cay(Z6, {4, 1}) are 4-transitive

Cayley digraphs (see Figure 1).

Example 2.9 Consider the permutation group S 3 = {(1), (123), (132), (23), (12), (13)}. Let S = {(23), (12), (13)}.
Then Cay(S 3, S ) is a 3-transitive Cayley digraph.

Example 2.10 Let Z8 denotes the cyclic group of order 8. Then the Cayley digraphs, Cay(Z8, {1, 3}) and Cay(Z8, {1, 5})
are 3-quasi-transitive Cayley digraphs (see Figure 2).
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Figure 1. Cay(Z6, {2, 5}) and Cay(Z6, {4, 1})
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Figure 2. Cay(Z8, {1, 3}) and Cay(Z8, {1, 5})
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Figure 3. A portion of Cay(Z, {3, 9, 15, 21, . . .})
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Remark 2.11

1) Any 2- transitive(that is, transitive) Cayley digraph is k-transitive for any positive integer k greater than equal

to 3. But the converse need not be true. For example, Cay(Z6, {2, 5}) is 4-transitive but not 2-transitive.

2) Cay(Z, {3, 9, 15, 21, . . .}) is 2n + 1-transitive for each n ∈ N.

3) Cay(Z, {3, 9, 15, 21, . . .}) is the disjoint union of three copies of the Cayley digraph: Cay(3Z, {3, 9, 15, 21, . . .})
(see Figure 3).

4) Let k be any positive integer greater than or equal to 2. Let S = {k, k2, 2k2 − k, 3k2 − 2k, . . .}. Then the Cayley

digraph, Cay(Z, S ) is a disjoint union of k, k-transitive digraphs.

Theorem 2.12 Any infinite k-transitive Cayley digraph Cay(G, S ) is n(k − 1) + k-transitive for every n ∈ N.

Proof. Assume that Cay(G, S ) be k-transitive. We will prove the result by induction on n. For n = 1, consider

S k+k−1. Observe that S k+k−1 can be written as:

S k+k−1 =S kS k−1 ⊆ S S k−1 = S k ⊆ S .

Next, assume that the theorem is true for n = r. Hence S r(k−1)+k ⊆ S . We will show that the result is true for

n = r + 1. For, it suffices to show that S (r+1)(k−1)+k ⊆ S . Note that S (r+1)(k−1)+k can be written as:

S (r+1)(k−1)+k = S [r(k−1)+k]+(k−1)

= S [r(k−1)+k]S k−1 ⊆ S S k−1 = S k ⊆ S .

Hence the result follows by mathematical induction.

Theorem 2.13 Cay(G, S ) is k-(quasi-) transitive if and only if Cay(G, S −1) is k-(quasi-) transitive.

Proof. First, assume that Cay(G, S ) is k-transitive. Let (x0, x1, . . . , xk) be a directed path of length k in Cay(G, S −1).

This implies that

x−1
0 x1, x−1

1 x2, x−1
2 x3, . . . , x−1

k−1xk ∈ S −1.

Equivalently, x−1
1 x0, x−1

2 x1, x−1
3 x2, . . . , x−1

k xk−1 ∈ S . This tells us that

(xk, xk−1, . . . , x1, x0)

is a path of length k in Cay(G, S ). Since Cay(G, S ) is k-transitive, x−1
k x0 ∈ S . That is x−1

0 xk ∈ S −1. Hence (x0, xk)

is an edge in Cay(G, S −1). The converse is straightforward.

Definition 2.14 Let G be a digraph. The least positive integer k such that G is k-transitive is called the k-transitivity

number of G, denoted by A (G). That is,

A (G) := min{k ∈ N : G is k - transitive}.
If no such k exists, we define A (G) = 0. In a similar manner we can define the k-quasi- transitivity number of G
as follows:

B(G) = min{k ∈ N : G is k - quasi- transitive}.
We define B(G) = 0, if no such k exists.

Theorem 2.15 The k-transitivity number of Cay(G, S ) is the least positive integer k such that S k ⊆ S . That is,

A (Cay(G, S )) = min{k ∈ N : S k ⊆ S }.

Theorem 2.16 The k-quasi-transitivity number of Cay(G, S ) is the least positive integer k such that S k ⊆ S ∪ S −1.
That is,

B(Cay(G, S )) = min{k ∈ N : S k ⊆ S ∪ S −1}.

The transitivity/quasi-transitivity numbers of some Cayley digraphs are given below:

(i)A (Cay(Z6, {2, 5})) = 4, A ((Cay(Z, {3, 9, 15, 21, . . .})) = 3,

(ii)B(Cay(Z8, {1, 3})) = 3, B(Cay(Z8, {1, 5})) = 3.

46



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

Theorem 2.17 Let Cay(G, S ) be a cayley digraph with connection set S . Then we have the following:

(i) A (Cay(G, S )) = A (Cay(G, S −1))

(ii) B(Cay(G, S )) = B(Cay(G, S −1)).

3. k-path-(quasi-) Transitive Cayley Digraphs

Galeana-Sanchez and Cesar Hernandez-Cruz (2011) generalized the definition of transitive digraphs as follows:

Definition 3.18 A digraph G is called k-path transitive if whenever there is a xy directed path of length less than or

equal to k and a yz directed path of length less than or equal to k, then there exists a xz-directed path of length less

than or equal to k.

We define the k-path transitivity number of a digraph G as follows:

C (G) := min{k ∈ N : G is k path transitive}.
We define C (G) = 0, if no such k exists.

Theorem 3.19 Cay(G, S ) is k-path-transitive if and only if (S ∪ S 2 ∪ · · · S k)2 ⊆ S ∪ S 2 · · · ∪ S k.

Proof. First assume that Cay(G, S ) is k-path-transitive. Let x ∈ (S ∪ S 2 ∪ · · · S k)2. Then x = z1z2 for some

z1, z2 ∈ (S ∪ S 2 ∪ · · · S k). This implies that there exists a path of length less than or equal to k from 1 to z1 and a

path of length less than or equal to k from z1 to x. Since Cay(G, S ) is k-path-transitive there exists a path of length

less than or equal to k from 1 to x. This implies that x ∈ (S ∪S 2∪· · · S k). Hence (S ∪S 2∪· · · S k)2 ⊆ S ∪S 2 · · ·∪S k.

Converse is straight forward.

Corollary 3.20 Cay(G, S ) is 1-path-transitive (that is, transitive) if and only if S 2 ⊆ S .

Theorem 3.21 For any Cayley digraph Cay(G, S ), we have C (Cay(G, S )) = min{k ∈ N : (S ∪ S 2 ∪ · · · S k)2 ⊆
S ∪ S 2 · · · ∪ S k}.
We define the following:

Definition 3.22 A digraph G is called k-path-quasi-transitive if whenever there is a xy directed path of length less

than or equal to k and a yz directed path of length less than or equal to k, then there exists a xz-directed path

of length less than or equal to k or there exists a zx-directed path of length less than or equal to k. We define

k-path-quasi-transitivity number of G as:

D(G) = min{k ∈ N : G is k − quasi-path- transitive}.
Theorem 3.23 Cay(G, S ) is k-path-quasi-transitive if and only if (S ∪S 2∪· · · S k)2 ⊆ (S ∪S −1)∪ (S 2∪ (S −1)2) · · ·∪
(S k ∪ (S −1)k).

Corollary 3.24 Cay(G, S ) is 1-path-quasi-transitive(that is, quasi-transitive) if and only if S 2 ⊆ S ∪ S −1.

Theorem 3.25 Cay(G, S ) is k-path-quasi-transitive if and only if Cay(G, S −1) is k-path-quasi-transitive.

Theorem 3.26 For any Cayley digraph Cay(G, S ), D(Cay(G, S )) is given by

D(Cay(G, S )) = min{k ∈ N : (S ∪ S 2 ∪ · · · S k)2 ⊆ (S ∪ S −1) ∪ (S 2 ∪ (S −1)2) · · · ∪ (S k ∪ (S −1)k)}.
Theorem 3.27 Let Cay(G, S ) be a Cayley digraph with connection set S . Then we have the following:

(i) C (Cay(G, S )) = C (Cay(G, S −1))

(ii) D(Cay(G, S )) = D(Cay(G, S −1)).

4. (m, n)-(quasi-) Transitive Cayley Digraphs

In this section we generalize the definition of k-transitive and k-quasi-transitive digraphs as follows:

Definition 4.28 Let m and n be two positive integers such that m > n. A digraph G is (m, n)-transitive whenever

there is a directed path of length m from x to y there is a directed path of length n from x to y. We define the
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(m, n)-transitivity number of a digraph as the least positive integers m and n such that G is (m, n)-transitive. That

is,

E (G) = min
m,n{(m, n) ∈ N × N,m > n : G is (m, n) − transitive}.

We define, E (G) = (0, 0), if no such m and n exist.

Definition 4.29 Let m and n be two positive integers such that m > n. A digraph G is (m, n)-quasi-transitive

whenever there is a directed path of length m from x to y there is a directed path of length n from x to y or a

directed path of length n from y to x. We define the (m, n)-quasi-transitivity number of a digraph as the least

positive integers m and n such that G is (m, n)-quasi-transitive. That is,

F (G) = min
m,n{(m, n) ∈ N × N,m > n : G is (m, n) − quasi transitive}.

If no such m and n exist, we define F (G) = (0, 0).

Theorem 4.30 Cay(G, S ) is (m, n)-transitive if and only if S m ⊆ S n.

Proof. First assume that Cay(G, S ) is (m, n)-transitive. Let x ∈ S m. Then

x = z1z2 · · · zm for some z1, z2, . . . , zm ∈ S .

Let x0 = 1, x1 = z1, x2 = z1z2, . . . , xm = x. This implies that the sequence of vertices: (x0, x1, x2, . . . , xm) is a path

of length m from x0 to x. Since Cay(G, S ) is (m, n)- transitive, there is a path of length n, say, (1, y1, y2, . . . , yn−1, x)

from 1 to x. This implies that x ∈ S n. Hence S m ⊆ S n.

Conversely, assume that S m ⊂ S n. We will show that Cay(G, S ) is (m, n)-transitive. Let (x0, x1, x2, . . . , xm) be a

path of length m from x0 to xm. This implies that x−1
0 x1, x−1

1 x2, . . . , x−1
m−1xm ∈ S . That is

(x−1
0 x1)(x−1

1 x2) . . . (x−1
m−1xm) = x−1

0 xm ∈ S m ⊆ S n

This implies that

x−1
0 xm = t1t2 . . . tn for some ti ∈ S

This implies that (1, t1, t1t2, . . . , t1t2 . . . tn) is a path of length n form 1 to t1t2 . . . tn. That is,

(x0, x0t1, x0t1t2, . . . , x0t1t2 . . . tn)

is a path of length of n from x0 to xm. Hence Cay(G, S ) is (m, n)-transitive.

Corollary 4.31 Cay(G, S ) is (k, 1)-transitive (that is, k-transitive) if and only if S k ⊆ S .

Corollary 4.32 Cay(G, S ) is (2, 1)-transitive (that is, transitive) if and only if S 2 ⊆ S .

Theorem 4.33 Cay(G, S ) is (m, n)-quasi-transitive if and only if S m ⊆ S n ∪ (S −1)n.

Corollary 4.34 Cay(G, S ) is (k, 1)-quasi-transitive (that is, k-quasi-transitive) if and only if S k ⊆ S ∪ S −1.

Corollary 4.35 Cay(G, S ) is (2, 1)-quasi-transitive (that is, quasi-transitive) if and only if S 2 ⊆ S ∪ S −1.

Theorem 4.36 The (m, n)-transitivity number of Cay(G, S ) is the least positive integers m, n(m > n) such that
S m ⊆ S n. That is,

F (Cay(G, S )) = min
m,n{(m, n) ∈ N × N,m > n : S m ⊆ S n}.

Theorem 4.37 The (m, n)-quasi-transitivity number of Cay(G, S ) is the least positive integers m, n(m > n) such
that S m ⊆ S n ∪ (S −1)n. That is,

F (Cay(G, S )) = min
m,n{(m, n) ∈ N × N,m > n : S m ⊆ S n ∪ (S −1)n}.

5. (m, n)-path-(quasi-) Transitive Cayley Digraphs

Definition 5.38 Let m and n be two positive integers such that m ≥ n. A digraph G is called (m, n)-path-transitive

if whenever there is a xy directed path of length less than or equal to m and a yz directed path of length less than

or equal to m, then there exists a xz-directed path of length less than or equal to n. We define the (m, n)-path-

transitivity number of G as:

G (G) = min
m,n{(m, n) ∈ N × N,m ≥ n : G is (m, n) path transitive}.
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Also, define G (G) = (0, 0), if no such numbers m and n exist.

Theorem 5.39 Cay(G, S ) is (m, n)-path-transitive if and only if (S ∪ S 2 ∪ · · · S m)2 ⊆ (S ∪ S 2 ∪ · · · S n).

Corollary 5.40 Cay(G, S ) is (k, k)-path-transitive if and only if (S ∪ S 2 ∪ · · · S k)2 ⊆ (S ∪ S 2 ∪ · · · S k).

Corollary 5.41 Cay(G, S ) is (k, 1)-path-transitive if and only if (S ∪ S 2 ∪ · · · S k)2 ⊆ S .

Corollary 5.42 Cay(G, S ) is (1, 1)-path-transitive if and only if S 2 ⊆ S .

Theorem 5.43 The (m, n)-path-transitivity number of the (m, n)-path-transitive Cayley digraph Cay(G, S ) is the
least positive integers m, n(m ≥ n) such that (S ∪ S 2 ∪ · · · S m)2 ⊆ (S ∪ S 2 ∪ · · · S n). That is,

G (Cay(G, S )) = min
m,n{(m, n) ∈ N × N,m ≥ n : (S ∪ S 2 ∪ · · · S m)2 ⊆ (S ∪ S 2 ∪ · · · S n)}.

Definition 5.44 Let m and n be two positive integers such that m ≥ n. A digraph G is called (m, n)-path-quasi-

transitive if whenever there is a xy directed path of length less than or equal to m and a yz directed path of length less

than or equal to m, then there exists a xz-directed path of length less than or equal to n or there exists a zx-directed

path of length less than or equal to n. We define the (m, n)-quasi-transitive number of G as:

H (G) = min
m,n{(m, n) ∈ N × N,m ≥ n : G is (m, n) -quasi-path transitive}.

Theorem 5.45 Cay(G, S ) is (m, n)-path-quasi-transitive if and only if

(S ∪ S 2 ∪ · · · S m)2 ⊆ (S ∪ S −1) ∪ (S 2 ∪ (S −1)2) ∪ · · · (S n ∪ (S −1)n).

Corollary 5.46 Cay(G, S ) is (k, k)-path-quasi-transitive if and only if

(S ∪ S 2 ∪ · · · S k)2 ⊆ (S ∪ S −1) ∪ (S 2 ∪ (S −1)2) ∪ · · · (S n ∪ (S −1)k).

Corollary 5.47 Cay(G, S ) is (k, 1)-path-quasi-transitive if and only if (S ∪ S 2 ∪ · · · S k)2 ⊆ S ∪ S −1.

Corollary 5.48 Cay(G, S ) is (1, 1)-path-transitive if and only if S 2 ⊆ S ∪ S −1.

Theorem 5.49 The (m, n)-path-quasi-transitivity number of the digraph Cay(G, S ) is the least positive integers
m, n(m ≥ n) such that (S ∪ S 2 ∪ · · · S m)2 ⊆ (S ∪ S −1)∪ (S 2 ∪ (S −1)2)∪ · · · (S n ∪ (S −1)n). That is, I (Cay(G, S )) is
given by

I (Cay(G, S )) = min
m,n{(m, n) ∈ N × N,m > n : (S ∪ · · · ∪ S m)2 ⊆ (S ∪ S −1) ∪ · · · ∪ (S n ∪ (S −1)n)}.

6. m-n-(quasi)-transitive Transitive Cayley Digraphs

In this section we define the following:

Definition 6.50 Let m and n be positive integers such that m > n. A digraph G is m-n transitive whenever there is

a directed path of length m from x to y there is a directed path of length almost n from x to y. We define the m-n
transitivity number of G as:

J (G) = min
m,n{(m, n) ∈ N × N,m > n : G is m − n transitive}.

Also, define J (G) = (0, 0), if no such numbers m and n exist.

Theorem 6.51 Cay(G, S ) is m-n transitive if and only if S m ⊆ S ∪ S 2 · · · ∪ S n.

Corollary 6.52 Cay(G, S ) is k-1 transitive(that is, k-transitive) if and only if S k ⊆ S .

Corollary 6.53 Cay(G, S ) is 2-1 transitive (that is, transitive) if and only if S 2 ⊆ S .

Definition 6.54 A digraph G is m-n-quasi-transitive whenever there is a directed directed path of length m from x
to y there is a directed path of length almost n from x to y or there is a directed path of length almost n from y to x.

We define the m-n-quasi-transitivity number of G as:

K (G) = min
m,n{(m, n) ∈ N × N,m > n : G is m − n quasi- transitive}.
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Also, define K (G) = (0, 0), if no such numbers m and n exist.

Theorem 6.55 Cay(G, S ) is m-n transitive if and only if S m ⊆ (S ∪ S −1) ∪ (S 2 ∪ (S −1)2) · · · ∪ S n ∪ (S −1)n.

Corollary 6.56 Cay(G, S ) is k-1 quasi-transitive(that is, k-quasi-transitive) if and only if S k ⊆ S ∪ S −1.

Corollary 6.57 Cay(G, S ) is 2-1-transitive (that is, quasi-transitive) if and only if S 2 ⊆ S .

7. k-(quasi-)hasse Diagrams

We define the following:

Definition 7.58 A digraph G is a k-hasse diagram if the existence of a directed path (x0, x1, . . . , xk) of length k in

G implies that (x0, xk) � E.

We prove the following:

Theorem 7.59 Cay(G, S ) is a k-hasse diagram if and only if S k ∩ S = ∅.
Proof. First, assume that S k∩S = ∅. Let (x0, x1, . . . , xk) be path of length k in G. Then we have x−1

0 x1, x−1
1 x2, . . . , xk−1xk ∈

S . This implies that

(x−1
0 x1)(x−1

1 x2) . . . (xk−1xk) = x−1
0 xk ∈ S k

This implies that x−1
0 xk � S . Hence (x0, xk) is not an edge in Cay(G, S ).

Conversely, suppose that Cay(G, S ) is a k-hasse diagram. Assume that x ∈ S k. Then x = z1z2 · · · zk for some

z1, z2, . . . , zk ∈ S . This implies that (1, z1, z1z2, . . . , x) is a path of length k in Cay(G, S ). Since Cay(G, S ) is a

k-Hasse diagram, we have (1, x) � S . This implies that x � S . Hence S k ∩ S = ∅.
Definition 7.60 A digraph G is called a hasse diagram if and only if G is a k-hasse diagram for every k ≥ 2.

Theorem 7.61 Cay(G, S ) is a hasse diagram if and only if S k ∩ S = ∅ for every k ≥ 2.

Definition 7.62 A digraph G is a k-strong-hasse diagram if the existence of a directed path (x0, x1, . . . , xk) of length

k in G implies that (x0, xk) � E and (xk, x0) � E.

Theorem 7.63 Cay(G, S ) is a k-strong-hasse diagram if and only if S k ∩ S = ∅ and 1 � S k.

Definition 7.64 A digraph G is called a strong-hasse diagram if and only if it is k-strong-hasse diagram for every

k ≥ 2.

Theorem 7.65 Cay(G, S ) is a strong-hasse diagram if and only if S k ∩ S = ∅ and 1 � S k for every k ≥ 2.

We define the following:

Definition 7.66 A digraph G is called an anti-k-hasse diagram if the existence of a directed path (x0, x1, . . . , xk) of

length k in G implies that there exists some i (2 ≤ i ≤ k) such that (x0, xi) ∈ E. We define the anti-k-hasse index of

G as:

L (G) = min{k ∈ N : G is an k anti-hasse diagram}.
Sampathkumarachar et al. (2010) generalized the definition of transitive digraphs as follows:

Definition 7.67 A digraph G is said to be k- transitive if whenever (x0, x1, . . . , xk) is a directed path of length k,

then there exists an integer i, 2 ≤ i ≤ k such that (x0, xi) ∈ E.

This definition is obviously, a generalization of transitive graphs. Observe that the definitions due to Sampathku-

marachar et al. (2010) and Galeana-Sanchez and Cesar Hernandez-Cruz (2011), are entirely different even though

they used the same term “k- transitive digraph”. In this paper, we use the term “anti-k-hasse diagram” instead of

k-transitive in the definition due to Sampathkumarachar et al. to avoid confusion.

We define the following:

Definition 7.68 A digraph G is anti-k-quasi-hasse diagram if the existence of a directed path (x0, x1, . . . , xk) of

length k in G implies that there exists some i (2 ≤ i ≤ k) such that or (x0, xi) ∈ E or (xi, x0) ∈ E. We define the

anti-k-quasi-hasse index of G as:

M (G) = min{k ∈ N : G is an anti k -quasi-hasse diagram}.
Theorem 7.69 Cay(G, S ) is an anti-k-hasse diagram if and only if there exists an integer i (2 ≤ i ≤ k), such that
S i ⊆ S .
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Proof. Assume that S i ⊆ S for some i. Let (x, x1, x2, . . . , y) be a directed path of length k from x to y. Then we

have the following sets of equations:

x1 = xt1,

x2 = x1t2,

x3 = x2t3,
...

y = xk−1tk.

(2)

for some t1, t2, . . . , tk ∈ S . From Equation (2), xi can be written as

xi = xt1t2 . . . ti (3)

Let t = t1t2 . . . ti. Then we have xi = xt where t ∈ S i ⊆ S . This implies that (x, xi) is an edge in Cay(G, S ). Hence

Cay(G, S ) is an anti k-hasse diagram.

Conversely, assume that Cay(G, S ) is an anti k-hasse diagram. For i = 1, 2, . . . k, let xi be an arbitrary element in

S i. Then xi = t1t2 . . . ti for some ti ∈ S . Let x = tktk−1 . . . t2t1. Then x is an arbitrary element in S k. Note that

(1, x1, x2, . . . , x) is a directed path leading from 1 to x. Then there exists an integer i such that (1, xi) is an edge in

Cay(G, S ). This implies that xi ∈ S . Since xi is an arbitrary element in S i, we have S i ⊆ S .

Corollary 7.70 Cay(G, S ) is an anti-2-hasse diagram (that is, transitive) if and only if S 2 ⊆ S .

Theorem 7.71 Cay(G, S ) is an anti-k-quasi-hasse diagram if and only if there exists an integer i (2 ≤ i ≤ n), such
that S i ⊆ S ∪ S −1.

Corollary 7.72 Cay(G, S ) is an anti-2-quasi-hasse diagram (that is, quasi-transitive) if and only if S 2 ⊆ S ∪ S −1.

Theorem 7.73 The anti-k-hasse index of Cay(G, S ) is the least positive integer k such that there exists some i,
2 ≤ i ≤ k and S i ⊆ S . That is,

L (Cay(G, S )) = min{k ∈ N : S i ⊆ S for some i, 2 ≤ i ≤ k, }.
Theorem 7.74 The anti-k-quasi-hasse index of Cay(G, S ) is the least positive integer k such that there exists some
i, 2 ≤ i ≤ k and S i ⊆ S ∪ S −1. That is,

M (Cay(G, S )) = min{k ∈ N : S i ⊆ S ∪ S −1 for some i, 2 ≤ i ≤ k, }.
Theorem 7.75 Cay(G, S ) is anti-k-(quasi)-hasse diagram if and only if Cay(G, S −1) is anti-k-(quasi)-hasse dia-

gram.

Theorem 7.76 Let Cay(G, S ) be a Cayley digraph with connection set S . Then we have the following:

(i) L (Cay(G, S )) = L (Cay(G, S −1))

(ii) M (Cay(G, S )) =M (Cay(G, S −1)).
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