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Abstract

In this paper, we reconsider a formula of Mellin. We present a formula which relates the sum of two positive real
numbers m, n to their product mn. We apply this formula to derivation of a relationship involving the Hurwitz
zeta-function. Then we define a series function (stemming from the proved relationship) and discuss an analogy
in regard to the Lindelöf hypothesis. Finally, a proof of the Lindelöf hypothesis of the Riemann zeta-function is
deduced from this analogy.
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1. Introduction

In this paper, we present

Theorem 1 Let Re(x1),Re(x2) > 0 and m, n > 0. We have

2πΓ(x1 + x2)
(m + n)x1+x2

=

∫ ∞

−∞
m−x1−itn−x2+itΓ(x1 + it)Γ(x2 − it)dt. (1)

To prove the theorem, we recall a formula of Mellin (Montgomery & Vaughan, 2006): for 0 < c < Re(a),

Γ(a)
(1 + z)a =

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(a − s)z−sds. (2)

We perform the following manipulations on (2):

1) replace a by x1 + x2, with Re(x1),Re(x2) > 0;

2) replace c by x1;

3) replace z by mn−1;

4) multiply both sides by n−x1−x2 .

By these, (2) is rewritten as

2πΓ(x1 + x2)
(m + n)x1+x2

=

∫ ∞

−∞
m−x1−itn−x2+itΓ(x1 + it)Γ(x2 − it)dt.

This completes the proof of Theorem 1.

Regardless of the straightforward derivation of Theorem 1 from Mellin’s formula, however, we decided to present
it in a research paper because of its rare characteristic; that is, it relates the sum of two numbers m and n to their
product mn.

Throughout the rest of the discussion, we choose −π ≤ arg z < π as the domain of complex logarithm log z.

An application of Theorem 1 is given in a proof of the following formula.

Theorem 2 Let Re(δ) > −1, ϵ > 0, and α be any real number. In addition, let a be any complex number such that
arg(a) > 0.
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Define

Zϵ(1 − δ + ϵ + iα, a) :=
∑
m≥1

[−(m + a)]−(1−δ+ϵ)+iαγ(ϵ, δ, α)

E(1 − δ + ϵ + iα, a) :=
∑

m≤−1

[|m| − a]−(1−δ+ϵ)+iαγ(ϵ, δ, α),

where
γ(ϵ, δ, α) := Γ(δ + iα)Γ(1 − δ + ϵ − iα).

Then we have
Zϵ(1 − δ + ϵ − iα, a) + E(1 − δ + ϵ − iα, a) + (−a)−(1−δ+ϵ)+iαγ(ϵ, δ, α)

= Γ(1 + ϵ)
∫ 1

0
uδ+iα−1

∑
m∈Z

1
[u − (m + a)]1+ϵ du + Γ(1 + ϵ)

∫ 1

0
ζ(1 − δ − iα, r)

∑
m∈Z

1
[r − (m + a)]1+ϵ dr, (3)

where ζ(s, a) is the Hurwitz zeta-function defined for Re(s) > 1 by

ζ(s, a) :=
∑
n≥1

1
(n + a)s .

Notes:

1) The first integral on the right would be regarded as its analytic continuation to Re(δ) > −1 (see (15) for the
existence of such an extension).

2) The left series Zϵ and E, converging for Re(δ) < ϵ, should be considered as its analytic continuation whenever
Re(δ) ≥ ϵ.
3) The conventional definition of ζ(s, a) takes the sum

∑
n≥0. Because we often consider the case a = 0, however,

we separate the n = 0-term.

4) The subscript ϵ for Zϵ is to make clear the order of magnitude of the polynomially growing factor |α|ϵ in γ(ϵ, δ, α).

We note that the main term of the left side of Theorem 2 as α → ∞ is the function Zϵ . This is by the appearance
of the number (−1) in its terms; the other function E vanishes exponentially because it lacks a factor which should
cancel out the exponentially decaying factor γ.

As another objective of this paper other than presentation of Theorem 1 and 2, we shall relate the latter theorem to
the study of the Riemann zeta-function.

Firstly, using Theorem 2, we could think of an analogy between the function Zϵ(1 − δ + ϵ − iα, a)|α|−ϵ and the
Riemann zeta-function.

For instance, a property of the function Z analogous to the Riemann zeta-function is that when −1 < Re(δ) < 0, by
(Whittaker & Watson, 2008)

Γ(s + it) ≍ |t|Re(s)−1/2e−π|t|/2 as |t| → ∞, (4)

the Equation (15) below, and by Theorem 2, it is easy to see that as α→ ∞,

Zϵ(1 − δ + ϵ − iα, a)|α|−ϵ ≪ 1, for each ϵ > 0 and δ ≤ 0,

while for σ > 1,
ζ(σ − it)α−ϵ ≪ 1.

Choosing ϵ = 1/2 and δ = 1 in Theorem 2 and using the well-known result (Whittaker & Watson, 2008)

ζ(σ + it, a) = O(|t|1/2−σ log |t|), σ ≤ 0, (5)

we obtain the following corollary to Theorem 2.

Corollary 1 We have
Z1/2(1/2 − iα, a)α−1/2 = O(logα), as α→ ∞.

Note: The corollary does not include the case α→ −∞.
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The Lindelöf hypothesis states that for each ϵ > 0, the Riemann zeta-function would satisfy

ζ(1/2 + it) = O(|t|ϵ).

If we note that the function Zϵ(1− δ+ ϵ − iα, a)|α|−ϵ is essentially reduced to the Riemann zeta-function by putting
a = 0, that is, ∑

m≥1

(−m)−(1−δ+ϵ)+iαγ(ϵ, δ, α)|α|−ϵ = ζ(1 − δ + ϵ + iα)γ(ϵ, δ, α)|α|−ϵ(−1)−(1−δ+ϵ)+iα

≍ ζ(1 − δ + ϵ + iα), as α→ ∞,

(by our convention on complex logarithm, (−1) = e−πi and (−1)iα = eαπ) we may conclude from the corollary that
the Lindelöf hypothesis for the function Zϵ(1 − δ + ϵ − iα, a)|α|−ϵ is true.

Secondly, we will give a proof of the original Lindelöf hypothesis based on Theorem 2.

2. Method

All the techniques used in our analysis are in the realm of classics.

We mainly rely on the following well-established theoretical tools:

1) Complex analysis (especially analytic continuation);

2) Fourier transform;

3) Rigors by real analysis.

As for the rigors, we leave the reader for verifying any details, such as convergence in taking the summation
∑

m≥1,
etc.

When we use the theory of Fourier integrals, we discuss in the Schwartz space of rapidly decreasing functions.

Two important tools in our discussion, together with analytic continuation, are Theorem 1 and the following func-
tion

Fs(z, a) :=
∑
m∈Z

1
[z − 2(m + a)ω1]s , (6)

where a and ω1 are some complex numbers. It is easy to show that the series Fs(z, a) has the period 2ω1 as a
function of z. The extensive use of these tools are to be seen as follows.

2.1 Proof of Theorem 2

Throughout the argument, δ is a complex variable, while ϵ is a positive real number.

First, for any small δ, ϵ satisfying 0 < Re(δ) < ϵ, we put x1 = δ, x2 = 1 − δ + ϵ in Theorem 1 and get

2πΓ(1 + ϵ)
(m + n)1+ϵ =

∫ ∞

−∞
m−δ−itn−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt. (7)

Here, we note that if
| arg[−2(m + a)ω1]| < π, (8)

then with (4), it is easy to see that we could extend (7) in the variable n to a neighborhood of the number −2(m+a)ω1
by analytic continuation.

Thus, varying m 7→ z (the value for z > 0 is kept fixed until a particular number is picked below), n 7→ −2(m+a)ω1
in (7), we get

2πΓ(1 + ϵ)
(z − 2(m + a)ω1)1+ϵ =

∫ ∞

−∞
z−δ−it[−2(m + a)ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt. (9)

At this point, we further assume that

arg(ω1) > 0 (so that −π < arg(−ω1) < 0) and m ∈ Z. (10)

One example of ω1 and a for which arg(a) > 0, (8), and (10) are satisfied is ω1 = 1 + i and a = i/2.
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Then since the right integral of (9) is∫ ∞

−∞
z−δ−itm−(1−δ+ϵ)+it[−2(1 + o(1))ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt, as m→ ∞,

and ∫ ∞

−∞
z−δ−it |m|−(1−δ+ϵ)+it[(2 + o(1))ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt, as m→ −∞,

it is easy to show that the summation
∑

m∈Z in (9) gives

2πΓ(1 + ϵ)F1+ϵ(z, a) =
∫ ∞

−∞
z−δ−it

∑
m∈Z

[−2(m + a)ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt. (11)

Replacing z by zeα in (11), we have

2πΓ(1 + ϵ)F1+ϵ(zeα, a) =
∫ ∞

−∞
(zeα)−δ−it

∑
m∈Z

[−2(m + a)ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)dt, (12)

or multiplying by eδα,

2πΓ(1 + ϵ)eδαF1+ϵ(zeα, a) =
∫ ∞

−∞
z−δ−it

∑
m∈Z

[−2(m + a)ω1]−(1−δ+ϵ)+itΓ(δ + it)Γ(1 − δ + ϵ − it)e−iαtdt. (13)

Applying the Fourier inversion theorem to (13), namely,

F [ f ](α) =
∫ ∞

−∞
f (t)e−iαtdt ⇐⇒ f (α) =

1
2π

∫ ∞

−∞
F [ f ](t)eiαtdt,

we obtain for 0 < Re(δ) < ϵ,

z−δ−iα
∑
m∈Z

[−2(m + a)ω1]−(1−δ+ϵ)+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα) = Γ(1 + ϵ)
∫ ∞

−∞
eδt+iαtF1+ϵ(zet, a)dt. (14)

Now, the right integral of (14) is a meaningful expression; in fact, in the same way as getting (12), an application
of Theorem 1 gives for Re(δ) < Re(δ′) < ϵ,

2πΓ(1 + ϵ)F1+ϵ(zeα, a) =
∫ ∞

−∞
(zeα)−δ

′−it
∑
m∈Z

[−2(m + a)ω1]−(1−δ′+ϵ)+itΓ(δ′ + it)Γ(1 − δ′ + ϵ − it)dt,

from which it follows readily that

F1+ϵ(zeα, a) = O(e−δ
′α), as α→ ∞.

With the change of variable u = et, the right integral of (14) is rewritten as∫ ∞

0
uδ+iα−1F1+ϵ(zu, a)du.

At this point, we break the right integral of (14) as

Γ(1 + ϵ)
∫ ∞

0
uδ+iα−1F1+ϵ(zu, a)du = Γ(1 + ϵ)

∫ 1

0
uδ+iα−1F1+ϵ(zu, a)du + Γ(1 + ϵ)

∫ ∞

1
uδ+iα−1F1+ϵ(zu, a)du

=: f1(δ + iα, z) + f2(δ + iα, z),

and extend (14) in the variable δ to −1 < Re(δ) ≤ 0 by analytic continuation. But in this process, it is plain that
the left expression of (14) keeps analytic in δ and valid for Re(δ) ≤ 0, and that f2(δ + iα, z) is also meaningful and
analytic in δ for Re(δ) ≤ 0.

15



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

Furthermore, for Re(δ) > 0, we rewrite the integral for f1(δ + iα, z) with integration by parts as∫ 1

0
uδ+iα−1F1+ϵ(zu, a)du =

[
F1+ϵ(z, a)uδ+iα

δ + iα

]1

0
− z
δ + iα

∫ 1

0
uδ+iαF′1+ϵ(zu, a)du

=
F1+ϵ(z, a)
δ + iα

− z
δ + iα

∫ 1

0
uδ+iαF′1+ϵ(zu, a)du.

(15)

Then the integral on the right converges also for −1 < Re(δ) ≤ 0, and so this gives the extension of f1(δ + iα, z)
into the the right half-plane Re(δ) > −1.

Thus, we have

z−δ−iα
∑
m∈Z

[−2(m + a)ω1]−(1−δ+ϵ)+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα)

= f1(δ + iα, z) + f2(δ + iα, z), −1 < Re(δ) < ϵ, ϵ > 0.
(16)

Next, we extend (16) in the variable z to some neighborhood of the point z = 2ω1 by analytic continuation. To
validate this procedure, we first note that the left member of (16) and (by (15)) f1(δ + iα, z) readily have their
desired extensions.

In addition, if we choose Re(δ) < 0, then with

F1+ϵ(2ω1u, a) ≪ 1 (as u varies),

the integral expression for f2(δ + iα, z) is also meaningful for z = 2ω1, and so has its desired analytic continuation
for −1 < Re(δ) < 0.

Here we note that by (10) and arg(a) > 0, we could vary z (= a positive real number) continuously upward from
some point in the positive real line to the point 2ω1, while any singularity is not brought out from F1+ϵ(zu, a).

To give a new expression for f2(δ + iα, z) which is analytic in the variable δ + iα in C − {0} and for z = 2ω1, we
analyze as follows. (With this step, we could remove the restriction Re(δ) < ϵ, and give a meaningful expression
for the analytic continuation of the left members of (16) for Re(δ) ≥ ϵ.)
For −1 < Re(δ) < 0, if z is chosen to be 2ω1, then by the 2ω1-periodicity of F1+ϵ(z, a), we have∫ ∞

1
uδ+iα−1F1+ϵ(2ω1u, a)du =

∑
n≥1

∫ n+1

n
uδ+iα−1F1+ϵ(2ω1u, a)du

=
∑
n≥1

∫ 1

0
(n + r)δ+iα−1F1+ϵ(2ω1n + 2ω1r, a)dr

=

∫ 1

0

∑
n≥1

(n + r)δ+iα−1F1+ϵ(2ω1r, a)dr

=

∫ 1

0
ζ(1 − δ − iα, r)F1+ϵ(2ω1r, a)dr;

(17)

here, we used the change of variable u = n + r, and the interchanging of summation and integration symbols is
verified easily if we note Re(δ) < 0.

Factoring out 2ω1 in the expression F1+ϵ and multiplying by (2ω1)1+ϵ , with (16) and (17), we obtain (3) under the
condition (8) on the number a.

But observing (3), it is easy to see that this restriction on a is improved (by analytic continuation in a) to arg(a) > 0.
(When a passes the real line, however, a singularity occurs.)

This completes the proof of Theorem 2.

2.2 Proof of the Lindelöf Hypothesis

The main difficulty is to treat several singularities which arise when we let a → 0 in Theorem 2. Throughout this
section, a , 0 is fixed, unless otherwise a is chosen to be some number.
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To resolve the aforementioned problem, we first rewrite and sort out the m = 0-term of the left side of Theorem 2,
namely,

(−a)−1+δ+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα), (18)

and the following terms of the right side,

Γ(1 + ϵ)
∫ 1

0
ζ(1 − δ − iα, r)

[
1

(r − a)1+ϵ +
1

(r − 1 − a)1+ϵ

]
dr (19)

and

Γ(1 + ϵ)
∫ 1

0
uδ+iα−1

[
1

(u − a)1+ϵ +
1

(u − 1 − a)1+ϵ

]
du. (20)

Referring to (14), we have (considering only the m = 0-term in (14))

z−δ−iα(−2aω1)−(1−δ+ϵ)+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα) = Γ(1 + ϵ)
∫ ∞

−∞
eδt+iαt(zet − 2aω1)−1−ϵdt,

or with the change of variable u = et on the right, multiplying by (2ω1)1+ϵ , and choosing z = 2ω1,

(−a)−(1−δ+ϵ)+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα) = Γ(1 + ϵ)
∫ ∞

0
uδ+iα−1(u − a)−1−ϵdu. (21)

If we write

Γ(1 + ϵ)
∫ ∞

0
uδ+iα−1(u − a)−1−ϵdu = Γ(1 + ϵ)

(∫ 1

0
+

∫ ∞

1

)
=: Γ(1 + ϵ)

(∫ 1

0

)
+ B1,

then it is easy to see that (18) is equal to

(−a)−(1−δ+ϵ)+iαΓ(δ + iα)Γ(1 − δ + ϵ − iα) = Γ(1 + ϵ)
∫ 1

0
uδ+iα−1(u − a)−1−ϵdu + B1.

We note that B1 is a meaningful expression for a = 0 and Re(δ) ≤ 1.

Next, we rewrite the integrals in (19) and (20) which contain the factor (u − 1 − a)−1−ϵ by the change of variable
L = u − 1 as ∫ 1

0
ζ(1 − δ − iα, r)(r − 1 − a)−1−ϵdr =

∫ 0

−1
ζ(1 − δ − iα, L + 1)(L − a)−1−ϵdL (22)

and ∫ 1

0
uδ+iα−1(u − 1 − a)−1−ϵdu =

∫ 0

−1
(L + 1)δ+iα−1(L − a)−1−ϵdL. (23)

Summing up (22) and (23), if we recall the series definition of ζ(s, a) and note that the integral∫ 0

−1
(L + 1)δ+iα−1(L − a)−1−ϵdL

has an analytic continuation to the region −1 < Re(δ) ≤ 0 (easily shown by integration by parts as we saw in (15)),
we have∫ 0

−1
ζ(1 − δ − iα, L + 1)(L − a)−1−ϵdL +

∫ 0

−1
(L + 1)δ+iα−1(L − a)−1−ϵdL =

∫ 0

−1
ζ(1 − δ − iα, L)(L − a)−1−ϵdL.

Hence, the sum of two integrals in (19) and the second integral in (20) is∫ 1

−1
ζ(1 − δ − iα, L)(L − a)−1−ϵdL. (24)

Using all the results above, Theorem 2 is rewritten as, for Re(δ) > 0,

Zϵ(1 − δ + ϵ − iα, a) + E(1 − δ + ϵ − iα, a)

= − B1 + Γ(1 + ϵ)
∫ 1

−1
ζ(1 − δ − iα, L)(L − a)−1−ϵdL + Γ(1 + ϵ)

∫ 1

0
[rδ+iα−1 + ζ(1 − δ − iα, r)]F∗1+ϵ(r, a)dr,

(25)
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where

F∗1+ϵ(r, a) :=
∑

m∈Z−{0,1}

1
[r − (m + a)]1+ϵ .

Integrating (25) with respect to a over any path [a1, a2] on the upper half-plane, we obtain (recall the series defini-
tion of Zϵ and E)

− (δ − ϵ + iα)−1{[Zϵ(−δ + ϵ − iα, a)]a2
a=a1
+ [E(−δ + ϵ − iα, a)]a2

a=a1
}

= −
∫ a2

a1

B1da + Γ(1 + ϵ)(−ϵ)−1
∫ 1

−1
ζ(1 − δ − iα, L)[(L − a)−ϵ]a2

a=a1
dL

+ Γ(1 + ϵ)
∫ 1

0
[rδ+iα−1 + ζ(1 − δ − iα, r)]

[∫ a2

a1

F∗1+ϵ(r, a)da
]

dr.

(26)

The final step of the proof is to estimate all the terms in (26) except for Zϵ(−δ + ϵ − iα, a1) one by one under the
conditions

ϵ = 1 − η, a1 → 0, |a2| > 2, δ = 1/2, and α→ ∞,

where η > 0 is arbitrarily small.

Here, with Theorem 2 (choose ϵ = 1/2 − η and δ = 1) and (5), it is plain that

Z1/2−η(1/2 − η − iα, a2)α1/2−η ≪ α1/2 logα. (27)

Besides, with integration by parts and (5), it is easy to show that∫ 1

0
ζ(1/2 − iα, r)G(r)dr = [ζ(−1/2 − iα, r)(1/2 + iα)−1G(r)]1

0 −
∫ 1

0
ζ(−1/2 − iα, r)(1/2 + iα)−1G′(r)dr

≪ logα,
(28)

where

G(r) :=
∫ a2

a1

F∗1+ϵ(r, a)da.

Thus, we are left with the integral ∫ 1

−1
ζ(1/2 − iα, L)(L − a1)−(1−η)dL. (29)

In order to rewrite (29) in a form to which estimates from Theorem 2 are applicable, we apply Cauchy’s theorem
in the variable L as follows.

We choose a1 to be arbitrarily close to 0 (with arg(a1) > 0), and consider∫
Ig1 ,g2

ζ(1/2 − iα, L)(L − a1)−(1−η)dL +
∫
Γg1+Rg1

ζ(1/2 − iα, z)(z − a1)−(1−η)dz = 0,

or ∫
Ig1 ,g2

ζ(1/2 − iα, L)(L − a1)−(1−η)dL = −
∫
Γg1+Rg1

ζ(1/2 − iα, z)(z − a1)−(1−η)dz, (30)

where
Ig1,g2 := [−1 + g1,−g2] ∪ Rg2 ∪ [g2, 1];

here, Γg1 is the incomplete semicircle

Γg1 := {z : z = eit, 0 < t < π − g1}, g1 > 0 is arbitrarily small,

and Rg1 ,Rg2 are any path from the point z = ei(π−g1) to z = −1 + g1 and from z = −g2 to z = g2, respectively, such
that the contour Ig1,g2 ∪ Γg1 ∪ Rg1 does not contain the point z = −1 and z = a1. The analyticity of ζ(1 − δ − iα, L)
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with respect to the variable L and with Re(δ) < 1 on the given contour (necessary in using Cauchy’s theorem)
follows from ∑

m≥1

(m + a)−s = s
∫ ∞

1
⌊t⌋(t + a)−s−1dt

= s
∫ ∞

1
(t + a)−sdt + O(s

∫ ∞

1
(t + a)−s−1dt)

=
s(1 + a)−s+1

s − 1
+ O(s

∫ ∞

1
(t + a)−s−1dt),

which is shown with integration by parts in the sense of Riemann-Stieltjes integration.

By the uniform convergence of the integral∫ 1

−1
ζ(1/2 − iα, z)(z − a1)−(1−η)dz

throughout a1 in any neighborhood of a1 = 0 and

lim
g2,a1→0

∫
Rg2

ζ(1/2 − α, z)(z − a1)−(1−η)dz = 0, (31)

we have

lim
g1,g2,a1→0

∫
[−1+g1,−g2]∪[g2,1]

ζ(1/2 − α, z)(z − a1)−(1−η)dz = lim
a1→0

∫ 1

−1
ζ(1/2 − α, z)(z − a1)−(1−η)dz. (32)

Now, if we let g1 → 0+ in (30), then integrals with diverging integrands on the right side are bounded by, using
arg(1 + L) > 0, ∫

Γg1

(1 + L)−1/2+iα(L − a1)−(1−η)dL ≪
∫
Γ0

|1 + L|−1/2|L − a1|−(1−η)dL, as α→ ∞ (33)

and ∫
Rg1

(1 + L)−1/2+iα(L − a1)−(1−η)dL ≪
∫

Rg1

|1 + L|−1/2|L − a1|−(1−η)dL→ 0. (34)

Next, we shall estimate the remaining integrals with analytic integrands on the right side of (30), namely,∫
S
ζ(1/2 − iα, L + 1)(L − a1)−(1−η)dL, S = Γg1 ,Rg1

as follows. A difficulty at this step is to give an estimate for∑
m≥2

1
(m + eit)1−δ−iα , 0 ≤ t ≤ π.

That is, one might like to obtain a bound for this function which is valid for any closed segment t ∈ [π − h, π] (or
t ∈ [0, h]) with h > 0 arbitrarily small and fixed, while (25) alone is not sufficient for this purpose. (For instance,
when a→ −1 in (25), we need to handle the singularity (L − a)−1−ϵ inside the integral

∫ 1
−1.)

In order to resolve the issue, we consider another contour Kh such that

Kh = [−1,−1 + h] ∪ (sh = {eit : π − h ≤ t ≤ π}) ∪ lh,

where lh is any small segment which goes from z = −1 + h to z = ei(π−h), and directly calculate the part

lim
a1→0

∫
sh

ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz.
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With the contour Kh, we have∫
sh

ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz = −
(∫

[−1,−1+h]
+

∫
lh

)
ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz. (35)

Inserting each l ∈ lh (so that l = −1 + µ with µ , 0 and µ > 0 as l → −1 + h) for a in (25), and choosing ϵ = 1/2,
δ = 1, we get, as α→ ∞,

ζ(1/2 − iα, l)α1/2 ≪
∫ 1

−1
|ζ(−iα, L)|dL +

∫ 1

0
|ζ(−iα, r)|dr, (36)

where we used
(L − l)−3/2, F∗3/2(u, l) ≪ 1.

Applying
ζ(s, a) − (1 + a)−s = ζ(s, a + 1)

and (5) to the first and second integrals on the right side of (36), respectively, we get for all l ∈ lh,

ζ(1/2 − iα, l) ≪ logα. (37)

Besides, with integration by parts and (5), we have∫ −1+h

−1
ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz = [ζ(−1/2 + iα, z + 1)(1/2 + iα)−1(z − a1)−(1−η)]−1+h

−1

+ (1 − η)
∫ −1+h

−1
ζ(−1/2 + iα, z + 1)(1/2 + iα)−1(z − a1)−2+ηdz

≪ logα.

(38)

Thus, substituting (37) and (38) in (35), we obtain as a1 → 0 and α→ ∞,

lim
a1→0

∫
sh

ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz ≪ logα. (39)

Similar arguments are applied to estimation of another integral

lim
a1→0

∫
wh

ζ(1/2 − iα, z + 1)(z − a)−(1−η)dz, wh := {eit : 0 ≤ t ≤ h},

which is bounded by

lim
a1→0

∫
wh

ζ(1/2 − iα, z + 1)(z − a)−(1−η)dz ≪ logα. (40)

The other part of the integral
∫
Γ0

, namely
∫
Γ0−sh−wh

, is estimated more easily, since in this case, we could obtain
bounds for ζ(1/2 − iα, 1 + eit) almost directly from (25); we get

ζ(1/2 − iα, 1 + eit) ≪ logα, h ≤ t ≤ π − h.

Hence, it is easy to see that

lim
a1→0

∫
Γ0−sh−wh

ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz ≪ logα. (41)

In total, by (30), (32), (33), (34), (39), (40), and (41), we have

lim
a1→0

∫ 1

−1
ζ(1/2 − iα, z)(z − a1)−(1−η)dz = − lim

g1,a1→0

∫
Γg1+Rg1

ζ(1/2 − iα, z)(z − a1)−(1−η)dz

= − lim
a1→0

(∫
Γ0−sh−wh

+

∫
sh+wh

)
ζ(1/2 − iα, z + 1)(z − a1)−(1−η)dz + O(1)

≪ logα.

(42)
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With (27), (28), and (42), (26) is reduced to

Z1−η(1/2 − η − iα, 0)(−1/2 + η + iα)−1 ≍ ζ(1/2 − η − iα)α−η ≪ logα,

or
ζ(1/2 − η − iα) ≪ αη logα, η > 0. (43)

Finally, by the Phragmen-Lindelöf principle on the growth rate of ζ(σ + it) (Ivic, 1985), (43) implies the Lindelöf
hypothesis.

This completes the proof of the Lindelöf hypothesis.

3. Results

We presented Theorem 1, which may be useful for other fields in mathematics, not restricted to the theory of the
Riemann zeta-function.

To summarize our arguments for Theorem 2 and the Lindelöf hypothesis given above, using Theorem 1, we first
broke the series Fs(z, a) into the product of z−δ−it, the sum

∑
m∈Z[−2(m + a)ω1]−(1−δ+ϵ)+it, and the function γ. Then

by Fourier transform, we reproduced the latter product in terms of an integral involving the series Fs(z, a). With
the 2ω1-periodicity of Fs(z, a), we could relate this integral to the Hurwitz zeta-function, and Theorem 2 was
established.

In order to prove the Lindelöf hypothesis, we needed to handle several singularities arising as a approaches 0 in
Theorem 2. In resolving this difficulty, we rewrote Theorem 2 in a suitable form, and used Cauchy’s theorem in
the theory of residues.
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The Erratum to “On a Formula of Mellin and Its Application to
the Study of the Riemann zeta-function”

Throughout this discussion, theoriginal article refers to one as in the title of this note. It appeared on Vol. 4, No.
6 of this journal (Shinya, 2012).

First, as a minor mistypo, the definition ofZϵ(1− δ + ϵ + iα, z) should have been written as

Zϵ(1− δ + ϵ + iα,a) :=
∑
m≥1

[−(m+ a)]−(1−δ+ϵ)−iαγ(ϵ, δ, α);

the sign attached toiα on the right is− (the same withE(1− δ + ϵ + iα,a)).

Next, a more important correction is that the whole of the subsection 2.2 should be forgotten (or needs a significant
revision). Although we could find many mistakes there, one of the most fatal is described as follows.

From the equation (30) of the original article onwards, we tried to replace the integral∫ 1

−1
ζ(1/2− iα, z)(z− a1)−(1−η)dz

by

lim
g1→0

∫
Γg1

ζ(1/2− iα, z)(z− a1)−(1−η)dz

using Cauchy’s residue theorem. However, the expressionz− a1 actually passes the negative real axis asz moves
overΓg1 for smallg1. If we recall how the complex logarithm is handled, then it is easy to see that the function
(z− a1)−(1−η) is not even continuous onΓg1.

This is fatal in our argument, because in this case, Cauchy’s theorem is not applicable.

References

Shinya, H. (2012). On a Formula of Mellin and Its Application to the Study of the Riemann zeta-function.Journal
of Mathematics Research, 4(6), 12-21. doi:http://dx.doi.org/10.5539/jmr.v4n6p12




