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Abstract

Data envelopment analysis is a nonparametric technique checking efficiency of DMUs using math programming.

In conventional DEA, it has been assumed that the status of each measure is clearly known as either input or output.

However in some situations, a performance measure can play input role for some DMUs and output role for others.

There are different models for classifying inputs and outputs, but all of these models are with crisp data. In this

paper we want to classify inputs and outputs when all of the DMUs have symmetrical triangular fuzzy inputs and

outputs and flexible measures. The basic idea is to transform the fuzzy model into a crisp linear programming

problem by applying an α-cut approach.Finally, a numerical example is proposed to display the application of this

method.

Keywords: Data Envelopment Analysis, flexible measure, linear programming, possibilistic linear programming,

symmetrical triangular fuzzy number

1. Introduction

DEA is a powerful tool in estimating efficiency of decision making units with multiple inputs and outputs. Charnes,

Cooper and Rhodes (1978, p. 429-444) were the pioneers of the field that introduced their first model named

“CCR” in 1978. The assumption is that all the data have specific numerical values. In some application, however,

the data may be imprecise. DEA is an effective technique for measuring the relative efficiency of a set of homo-

geneous DMUs. In conventional DEA applications, it is assumed that the status of each measure is clearly known

that used as an input or output variable.

Cook and Zhu (2007, p. 692-699) considered variables whose status are flexible and proposed a different method

for classifying these variables by introducing a fractional programming problem to accommodate flexible mea-

sures. Amirteimoori and Emrouznejad (2011, p. 63-74) proposed a model in which flexible measures are axiomat-

ically imported in a mixed integer linear programming model. Amirteimoori and Khoshandam (2011, p. 267)

proposed a model in which each flexible measure is treated as either input or output to maximize the technical

efficiency of the DMU under evaluation. The assumption is that all the data have specific numerical value. In some

cases the data may be imprecise.

Only a few researches have utilized fuzzy set theory to measure and evaluate efficiency performance. Sengupta

(1992, p. 259-266) was the first to introduce a fuzzy mathematical programming approach where the constraints

and objective function are not satisfied crisply. Fuzzy DEA models can more realistically represent real world prob-

lems than the conventional DEA models. We can consider two approaches for solving fuzzy CCR. The first one

defuzzifies the fuzzy CCR model and changed it into the equivalent crisp model and the second one uses α-cuts

to create interval valued linear programming that solves the fuzzy DEA by parametric programming. Tananka,

Entani and Maeda (1998, p. 1067-1071), formulated two DEA models: one model that gives upper limit (best

case) efficiency and one model that gives lower limit (worse case) efficiency. With defuzzification approach we

first defuzzify the fuzzy inputs and outputs into crisp values, and then solve the resulting crisp model using an LP

solver. Guo and Tanaka (2011, p. 149-160) considered the data as symmetrical triangular fuzzy vectors in fuzzy

DEA model. In the most fuzzy CCR model after determining the α-cuts of objective function and constraints,

the fuzzy triangular numbers are converted to crisp intervals. In most of the existing methods for possibilistic

linear programming, where the α-cut is used, the solution is obtained by comparing the intervals in left and right

hand side of constraints Shaocheng (1994, p. 301-306), Tanaka, Ichihashi and Asai (1984, p. 186-194). Different
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methodologies have been suggested for comparison of the intervals. In some of these methods simply the end point

of the interval are considered for justification that makes the model very simple and hence a lot of information might

have been lost. Saati and Memariani and Jahanshahloo (2002, p. 255-267), their method is to find a point in each

interval, satisfying the set of constraints and at the same time maximizing the objective function. This is defined

as a variable in the suggested method. In this paper we want to classify the inputs and outputs with fuzzy data and

evaluate the efficiency of DMUs with fuzzy inputs and outputs and fuzzy flexible measures. We convert the fuzzy

linear programming to interval linear programming by α-cut method.

2. Fuzzy Model

Assume that there are n decision-making units (DMUs) to be evaluated, each DMU with m inputs and s outputs and

t flexible measures. We denote the inputs and outputs and flexible measure of DMU j : j = 1, . . . , n respectively

with xi j : i = 1, . . . ,m and yr j : r = 1, . . . , s and zk j : k = 1, . . . , t .These flexible measure status are unknown, some

DMUs may use this measures as inputs and other DMUs may use them as outputs.The model which proposed by

Amirteimoori is shown as follows:

Min
m∑

i=1

si +

s∑

r=1

dr +

t∑

k=1

gk

n∑

j=1

λ j xi j + si = xio, i = 1, . . . ,m

n∑

j=1

λ jyr j − dr = yro, r = 1, . . . , s

n∑

j=1

λ jzk j − gk = zko, k = 1, . . . , s

si, dr, λ j ≥ 0, ∀ i, r, j, gk is f ree (1)

The dual formulation of (1) is as follows:

Max
s∑

r=1

uryro −
m∑

i=1

vixio −
t∑

k=1

μkzko

s∑

r=1

uryr j −
m∑

i=1

vixi j −
t∑

k=1

μkzk j ≤ 0, j = 1, . . . , n,

ur ≥ 1, r = 1, . . . , s, vi ≥ 1, i = 1, . . . ,m
μk = 1, k = 1, . . . , t (2)

In model (1) gk is unrestricted in sign. When gk > 0 this means that zko is considered as input and in opposite side,

if gk < 0 this means that zko is considered as output. gk = 0 means that zko can play input or output role.

Now we consider that all of the inputs and outputs and flexible measures of DMUs are triangular fuzzy numbers.

Let x̃i j = (xm
i j, x

l
i j, x

u
i j) and ỹr j = (ym

r j, y
l
r j, y

u
r j) and z̃k j = (zm

k j, z
l
k j, z

u
k j). which (·l) and (·u) respectively indicates the

lower bound and upper bound of fuzzy numbers. Therefore, (2) can be written as follows:

Max
s∑

r=1

ur(ym
ro, y

l
ro, y

u
ro) −

m∑

i=1

vi(xm
io, x

l
io, x

u
io) −

t∑

k=1

μk(zm
ko, z

l
ko, z

u
ko)

s∑

r=1

ur(ym
r j, y

l
r j, y

u
r j) −

m∑

i=1

(xm
i j, x

l
i j, x

u
i j) −

t∑

k=1

μk(zm
k j, z

l
k j, z

u
k j) ≤ 0, j = 1, . . . , n,

ur ≥ 1, r = 1, . . . , s, vi ≥ 1, i = 1, . . . , n,
μk = 1, k = 1, . . . , t (3)

Model (3) is a possibilistic linear programming. By using different α-cuts the model is transformed to interval-

programming problem. There are many methods for solving interval-programming problem but we use Saati

and memariani method, which instead of comparing the intervals, they define variables in the intervals such that

they satisfy the set of constraints and at the same time the objective function is maximized to solve the problem.

Considering different α-cuts we can suppose:

xL
i j(α) = αxm

i j + (1 − α)xl
i j, j = 1, . . . , n, i = 1, . . . ,m
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xU
i j (α) = αxm

i j + (1 − α)xu
i j,∀i, j

yL
r j(α) = αym

r j + (1 − α)yl
r j, r = 1, . . . , s, j = 1, . . . , n

yU
r j(α) = αym

r j + (1 − α)yu
r j,∀r, j

zL
k j(α) = αzm

ko + (1 − α)zl
ko, k = 1, . . . , t, j = 1, . . . , n

zU
k j(α) = αzm

ko + (1 − α)zu
ko,∀k, j

By the above assumption, the following model is obtained:

Max
s∑

r=1

ur(yL
ro(α), yU

ro(α)) −
m∑

i=1

vi(xL
io(α), xU

io(α)) −
t∑

k=1

μk(zL
ko(α), zU

ko(α))

s∑

r=1

ur(yL
r j(α), yU

r j(α)) −
m∑

i=1

vi(xL
i j(α), xU

i j (α)) −
t∑

k=1

μk(zL
k j(α), zU

k j(α)) ≤ 0, j = 1, . . . , n

ur ≥ 1, r = 1, . . . , s, vi ≥ 1, i = 1, . . . ,m, μk = 1, k = 1, . . . , t. (4)

Model (4) is an interval programming problem. We suppose the following variables:

x̃i j ∈ [xL
i j(α), xU

i j (α)], i = 1, . . . ,m, j = 1, . . . , n

ỹr j ∈ [yL
r j(α), yU

r j(α)], r = 1, . . . , s, j = 1, . . . , n

z̃k j ∈ [zL
k j(α), zU

k j(α)], k = 1, . . . , t, j = 1, . . . , n

By substituting the new variables, (4) can be written as follows:

Max
s∑

r=1

urỹro −
m∑

i=1

vi x̃io −
t∑

k=1

μkz̃ko

s.t.
s∑

r=1

urỹr j −
m∑

i=1

vi x̃i j −
t∑

k=1

μkz̃k j ≤ 0, j = 1, . . . , n,

xL
i j(α) ≤ x̃i j ≤ xU

i j (α),∀i, j,
yL

r j(α) ≤ ỹr j ≤ yU
r j(α),∀r, j,

zL
k j(α) ≤ z̃k j ≤ zU

k j(α),∀k, j
ur ≤ 1, r = 1, . . . , s, vi ≤ 1, i = 1, . . . ,m, μk = 1, k = 1, . . . , t. (5)

Model (5) is a nonlinear programming problem. In order to linearize this model, following substitutions are

performed:

x̄i j = vi x̃i j, i = 1, . . . ,m, j = 1, . . . , n

ȳr j = urỹr j, r = 1, . . . , s, j = 1, . . . , n

z̄k j = μkz̃k j, k = 1, . . . , t, j = 1, . . . , n

By these substitutions, (5) will become a linear problem as follows:

Max
s∑

r=1

ȳro −
m∑

i=1

x̄io −
t∑

k=1

z̄ko

s∑

r=1

ȳr j −
m∑

i=1

x̄i j −
t∑

k=1

z̄k j0, j = 1, . . . , n,

vixL
i j(α) ≤ x̄i j ≤ vixU

i j (α)∀i, j,
uryL

r j(α) ≤ ȳr j ≤ uryU
r j(α)∀r, j,

μkzL
k j(α) ≤ z̄k j ≤ μkzU

k j(α)∀k, j
ur ≥ 1, r = 1, . . . , s
vi ≥ 1, i = 1, . . . ,m
μk = 1, k = 1, . . . , t (6)

This model is equivalent to a parametric programming, while α ∈ (0, 1] is a parameter. Thus, the fuzzy linear

programming problem given by (3) can be equivalent to a crisp parametric linear programming problem.
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3. Numerical Example

In this section we want to illustrate the proposed model in assessing UK higher education institution. Two factors

are considered as inputs that are triangular fuzzy numbers: general expenditure (x̃1) and equipment expenditure

(x̃2), and three factors as outputs with triangular fuzzy numbers: undergraduate students (ỹ1), postgraduate research

(ỹ2) and postgraduate teaching (ỹ3), the flexible measure here is research income (z̃1) that is triangular fuzzy

numbers. The status of research income for each university will be determined by the model. The data set consists

of 10 universities as shown below.

Table 1. Data set for higher education institutions

DMU G. exp E.exp UG PG PG Research

student student teaching income

1 (528,450,606) (64,32,96) (145,78,212) (26,21,31) (0,0,0) (254,71,437)

2 (2605,441,4769) (301,236,366) (381,131,631) (70,21,119) (16,9,23) (1485,1091,1879)

3 (304,119,489) (23,19,27) (44,35,53) (6,2,10) (3,1,5) (45,10,80)

4 (1620,339,2901) (485,67,903) (287,201,373) (48,5,91) (0,0,0) (940,770,1110)

5 (490,63,917) (90,61,119) (91,45,137) (30,13,47) (8,2,14) (106,43,169)

6 (2675,769,4581) (467,284,1250) (352,60,644) (170,39,301) (4,2,6) (2967,2004,3930)

7 (422,337,507) (0,0,0) (70,43,97) (31,23,39) (12,11,13) (298,38,558)

8 (986,184,1788) (126,105,147) (203,33,373) (32,12,52) (0,0,0) (776,358,1194)

9 (523,68,978) (32,8,56) (60,30,90) (17,0,34) (0,0,0) (39,22,56)

10 (585,65,1105) (87,68,106) (80,52,108) (44,40,48) (17,2,32) (353,118,588)

Application of model (6) for the data shown in Table (1) at the different α-cut such as α = 0.9, 1 are shown in Table

(2). The optimal values to g1 indicate that either research income was considered as an input or output variable in

the assessment model.

Table 2. Data set for higher education institutions

α- cut DMU 1 2 3 4 5 6 7 8 9 10

α = 0.9 Effeciency 0 1152.182 0 989.452 0 0 0 378.085 25.537 0

g1 0 732.7889 0 340.991 0 0 0 301.402 -131.855 0

α = 1 Effeciency 0 1931.593 73.15 1373.96 0 3038.09 0 708 161.962 168.801

g1 0 813.091 -32.92 437.25 0 2116.81 0 420.4 -97.605 116.017

4. Conclusion

In DEA models it is assumed that the status of each measure is clearly stated as an input or an output. However

in some situations a performance measure can play input role for some DMUs and output role for others. In this

paper we developed a fuzzy DEA model to calculate the relative efficiency of DMUs with flexible measures and

evaluated that the flexible measure can use as an input or output. Using fuzzy data, the model is converted to a

possibilistic programming problem. We use Saati and memariani method for converting this problem into a crisp

linear programming based on α-cut. In the Saati and memariani model they define suitable variables to solve. The

substitutions of these variables make the model non-linear. By further suitable substitutions the model is linearized.

Hence, by solving a linear programming problem for a given α-cut, it is possible to generate a reliable and robust

solution for possibilistic mathematical programming problems.
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