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Abstract

In this paper, a class of nonlinear delay functional differential equations with variable coefficients is linearized,

and through analogizing the oscillation theory of linear functional differential equation, we obtain many oscil-

lation criteria of this class of equation by using the Schauder fixed point theorem.
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1. Introduction

There are many researchers about the oscillation of the linear delay functional differential equation with con-

stant coefficients and the linear delay functional differential equation with variable coefficients, and a series

of conclusions has been acquired. However, the literatures about the nonlinear delay functional differential

equation with variable coefficients are very few. In the following study, we suppose the functional differential

equation accords with the whole existence of solution, and we will use the Schauder fixed point theorem when

proving the existence of positive solution.

Consider the nonlinear delay functional differential equation with variable coefficients

x′(t) +
n∑

i=1

Qi(t) f (x(t − τi)) = 0 (1)

and the linear delay functional differential equation with constant coefficients

x′(t) +
n∑

i=1

qix(t − τi) = 0 (2)

where, f ∈ C[R,R], qi ∈ [0,+∞), τi ∈ [0,+∞), Qi ∈ C
[
[t0,+∞),R+

]
(i = 1, 2 · · · n).

Replace the variable coefficients in the equation (1) by the constant qi, we can obtain the equation

x′(t) +
n∑

i=1

qi f (x(t − τi)) = 0 (3)

Gyori’s article (Gyori, 1991) studied the oscillation of equation (3) and proved that if the following conditions

(H1) lim
u→0

f (u)
u = 1

(H2) When u � 0, u f (u) > 0

(H3) σ > 0 exists and makes when u ∈ [0, σ), f (u) � u, and when u ∈ (−σ, 0], f (u) � u comes into exis-

tence, so the sufficient and necessary condition of the oscillation of differential equation (3) is the equation (2)

is oscillatory.
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In the article, we will discuss the oscillation of the equation (1) which is more common than the equation (3),

and the result will extend the conclusion in Gyori’s article. To prove the main result, we first introduce the

following lemma.

Lemma 1.1: For the delay differential inequation x′(t) + qx(t − τ) � 0, where, q ∈ R+, and x(t) is its final

positive solution, so the inequation x(t − τ) �
⎧⎩ 2

qτ

⎫⎭2
x(t) comes into existence finally.

Prove: Suppose when t � t0 − τ, x(t) > 0, x(t) fulfills the delay differential inequation x′(t) + qx(t − τ) � 0.

Make integral to the above inequation from s to s + τ
2
, we can obtain

x(s +
τ

2
) − x(s) +

∫ s+ τ2

s
qx(s − τ)ds � 0, s > t0 + τ (4)

Because x′(t) � −qx(t − τ), so x(t) doesn’t increase monotonically, so

qτ
2

x(s − τ
2

) � x(s) (5)

Take t = s + τ
2
, from (5), we can obtain

qτ
2

x(t − τ) � x(t − τ
2

), t � t0 +
3τ

2
(6)

Change s in (5) by t, and from (6), we can obtain x(t − τ) �
⎧⎩ 2

qτ

⎫⎭2
x(t).

Lemma 1.2: Suppose u(t) ∈ C1[[t0,∞),R+
]
, and when t is enough big, the following inequation comes into

existence.

u′(t) � 0, u(t − α) < Au(t) (7)

Where, α, A ∈ R+, suppose Ω = {λ � 0 : u′(t) + λu(t) � 0 comes into existence finally}, so when A > 1, λ0 =
lnA
α � Ω exists.

Prove: Suppose λ0 =
lnA
α ∈ Ω, so u′(t) + λ0u(t) � 0, i.e. d

dt [e
λ0tu(t)] � 0, that indicates eλ0tu(t) is final un-

increasing, so for the enough big t,
eλ0(t−α)u(t − a) � eλ0tu(t) (8)

u(t − α) � eλ0αu(t) = Au(t)

So, (7) is contrary with (8), which indicates the suppose doesn’t come into existence, and the theorem is proved.

Lemma 1.3 (Gyori, 1991): The sufficient and necessary condition of the oscillation of the differential equation

(2) is the characteristic equation λ +
n∑

i=1
qie−τiλ = 0 has no real root.

Lemma 1.4 (Zhang, 1987) (Schauder fixed point theory): Suppose M is the closed convex subset in the Banach

space X, T : M → M is continuous, and is the relative compact subset of X, so T must have a fixed point x ∈ M
to make T x = x.

2. Main results and proofs

For the need of following proofs, we give following conditions after (H1), (H2) and (H3).

(H4) lim
t→∞ Qi(t) = qi (i = 1, 2 · · · n)

(H5) Qi(t) � qi (i = 1, 2 · · · n)

(H6)
n∑

i=1
qi > 0

Theorem 2.1: Suppose conditions (H2) and (H6) come into existence, and if x(t) is the non-oscillatory solution

of the equation (1), so x(t) is finally monotonically, and lim
x→∞ x(t) = 0.
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Prove: Suppose x(t) is the non-oscillatory solution and the finally positive solution of the equation (1), and for

the situation of finally negative solution, we can prove it analogously. From the equation (1), we can obtain

x′(t) = −
n∑

i=1

Qi(t) f (x(t − τi)) < 0 (9)

So x(t) is finally monotonically decreasing function, and suppose lim
t→∞ x(t) = l, so l = 0, or else, l > 0, from the

equation (1), we can obtain

lim
x→∞ x′(t) = −

n∑
i=1

qi f (l) < 0 (10)

The above equation indicates lim
t→∞ x(t) = −∞, that is contrary with the condition that x(t) is the finally positive

solution. So the theorem is proved.

Theorem 2.2: Under the condition of (H6), if the equation (2) is oscillatory, so one j0 exists at least and makes

q j0 > 0 and τ j0 > 0.

Prove: Because the equation (2) is oscillatory, from Lemma 1.3 (Gyori, 1991), we know the characteristic

equation

F(λ) = λ +

n∑
i=1

qie−τiλ = 0 (11)

has no real root. And because F(∞) > 0, F(0) =
n∑

i=1
qi > 0, so one j0 exists at least to make q j0 > 0 and

τ j0 > 0, or else, τi = 0 (i = 1, 2 · · · n), λ = − n∑
i=1

qi < 0 is one negative real root of the characteristic equation

λ +
n∑

i=1
qie−τiλ = 0, but that is impossible. The theorem is proved.

Theorem 2.3: Suppose (H1) and (H4) are fulfilled, and if the equation (1) has finally positive solution x(t), for

the enough big T0 � t0, make the set Λ = {λ � 0 : x′(t)+ λx(t− τ j0 ) � 0, t � T0}, so the set ∧ is nonempty and

bounded.

Prove: Because x(t) is the finally positive solution, according to the conditions of (H1), (H4) and Theorem 2.1,

we can obtain

lim
t→∞ Qi(t)

f (x(t − τi))
x(t − τi) = qi (i = 1, 2, · · · n) (12)

So, to any appointed positive number ε ∈ (0, 1), enough big T0 � t0 exists, and when t � T0, the following

inequation exists.

Qi(t)
f (x(t − τi))

x(t − τi) � qi − ε (i = 1, 2, · · · n) (13)

From the equation (1) and (13), for j0, the following differential inequation exists.

x′(t) +
1

θ
(q j0 − ε)x(t − τ j0 ) � 0 (14)

For the set Λ = {λ � 0 : x′(t) + λx(t − τ j0 ) � 0, t � T0}, from (6) and Lemma 1.1 and Lemma 1.2, we can

obtain A = 4θ2

(q j0−ε)2τ2j0
> 1, λ0 =

ln A
τ j0
� Λ (where θ � 1 is certain number appointed). So the set Λ is nonempty

and bounded.

Theorem 2.4: Suppose (H1), (H2), (H4) and (H6) are fulfilled, and if the equation (2) is oscillatory, so the

equation (1) is oscillatory.

Prove: Otherwise, the equation(1) has the non-oscillatory solution x(t). Suppose x(t) is the finally positive

solution, we can analogously prove the situation of finally negative solution. From the theorem 2.3, the set

Λ ≡ {λ � 0 : x′(t) + λx(t − τ j0 ) � 0, t � T0 } is nonempty and bounded.
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Because the equation (2) is oscillatory, from Lemma 1.3, we can obtain the characteristic equation

F(λ) = λ +

n∑
i=1

qie−τiλ = 0 (15)

has not real root. Suppose K = min
λ∈R

F(λ), so the inequation exists.

λ +

n∑
i=1

qie−τiλ � K (16)

Because the set Λ is nonempty, and suppose λ0 ∈ Λ and φ(t) = eλ0t x(t), we can obtain
dφ(t)

dt � 0. Same to the

deduction in the proof of Theorem 2.3, we can prove (13) and (16), and from (14) and (16), we can obtain

x′(t) + (λ0 +
k
2

)x(t) = −
n∑

i=1

Q(t)i f (x(t − τi)) + (λ0 +
k
2

)x(t)

� −
n∑

i=1

(qi − ε)x(t − τi) + (λ0 +
k
2

)x(t)

� φ(t)e−λ0t[ −
n∑

i=1

(qi − ε)eλ0τi + (λ0 +
k
2

)
]

� φ(t)e−λ0t[ − λ0 − k + ε
n∑

i=1

eλ0τi + λ0 +
k
2

]

� φ(t)e−λ0t[ε
n∑

i=0

eλ0τi − k
2

]
(17)

When any positive number ε � k
2
(

n∑
i=1

eλ0τi)−1, x′(t)+ (λ0+
k
2
) � 0 exists. So, λ0+

k
2
∈ Λ, and from the induction,

we can deduce that when n is the enough big positive number, λ0+
K
2

n ∈ Λ exists, so the set Λ is the unbounded

set, which is contrary the the condition that the set Λ is bounded. So the theorem is proved.

Theorem 2.5: Suppose (H1), (H2), (H3), (H4), (H5) and (H6) are fulfilled, and if the equation (1) is oscillatory,

so the equation (2) is oscillatory.

Prove: Otherwise, the equation (2) is non-oscillatory. From Lemma 1.3, we know the characteristic equation

F(λ) ≡ λ + n∑
i=1

qie−τiλ = 0 has real root u, and u < 0. If τ = max
1�i�n

{τi}, X is the Banach space which is

composed by the collectivity of bounded continuous function with supremum norm in [t0 − τ,∞], M in X is the

set composed by the function x(t) which could fulfill following characters.

(1) When t � t0, x(t) is non-increasing, and when t ∈ [t0 − τ, t0], x(t) = x0 exp(u(t − t0)).

(2) When t � t0, x0 exp(u(t − t0)) � x(t) � x0 � σ exp(uτ).

(3) When t � to, x(t − τ j) � x(t) exp(−uτ j) ( j = 1, 2 · · · n).

Define the mapping (T x)(t) in M as follows.

(T x)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 exp(u(t − t0)), t ∈ [t0 − τ, t0]

x0 exp(− n∑
i=1

∫ t
to

Qi(s) f (x(s−τi))
x(s)

ds), t ∈ [t0,∞).

Next, we will use Lemma 1.4 (Schauder fixed point theorem) to prove that the fixed point exists in T on M.

Obviously, (T x)(t)is the continuously monotonically decreasing function, and (T x)(t) � x0.

When t � t0, we can obtain the following inequations.
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(T x)(t) = x0 exp(−
n∑

i=1

∫ t

t0

Qi(s) f (x(s − τi))
x(s)

ds)

� x0 exp
( −

n∑
i=1

qi

∫ t

t0

f (x(s − τi))
x(s − τi)

x(s − τi)
x(s)

ds
)

� x0 exp
( −

n∑
i=1

qi

∫ t

t0

x(s − τi)
x(s)

ds
)

� x0 exp
( −

n∑
i=1

qi exp(−uτi)
∫ t

t0
ds
)

� x0 exp(−(t − t0)

n∑
i=1

qi exp(−uτi))

= x0 exp(u(t − t0)) (18)

(T x)(t − τ j) = x0 exp(−
n∑

i=1

∫ t−τ j

t0

Qi(s) f (x(s − τi))
x(s)

ds)

= (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

f (x(s − τi))
x(s − τi)

x(s − τi)
x(s)

ds
)

� (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

x(s − τi)
x(s)

ds
)

� (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

exp(−uτi)ds
)

� (T x)(t) exp
(
τ j

n∑
i=1

qi exp(−uτi)
)

= (T x)(t) exp(−uτ j) (19)

From (18) and (19), we can obtain (T x)(t) ∈ M, and the set M is the closed convex nonempty set. Next, we

prove the M is relatively compact subset of X, and we only need to prove (T x)(t) is equicontinuous, i.e. d(T x)(t)
dt

is uniformly bounded. In fact,

∣∣∣d(T x)(t)
dt

∣∣∣ � x0

n∑
i=1

Qi(t) f (x(t − τi))
x(t)

� x0

n∑
i=1

qi
x(t − τi)

x(t)
� x0

n∑
i=1

qi exp(−uτi) = −x0u

So, d(T x)(t)
dt is uniformly bounded.

From above proofs, we can see that the mapping (T x)(t) from M to M fulfills the condition of Schauder fixed

point theorem, so the fixed point x(t) exists and (T x)(t) = x(t), and x(t) > 0 fulfills the equation (1), i.e. the

equation (1) has finally positive solution, which is contrary with the condition that the equation (1) is oscillatory.

The theorem is proved. From Theorem 2.4 and Theorem 2.5, we can obtain following deductions.

Deduction 2.1: Under the conditions of (H1), (H2), (H3),(H4), (H5) and (H6), the sufficient and necessary

condition that the differential equation (1) is oscillatory is the differential equation (2) is oscillatory.

Example: We know the nonlinear functional differential equation

x′(t) + Q1(t) f (x(t − π
4

)) + Q2(t) f (x(t − 3π

4
)) = 0 (20)

Where, Q1(t) = t2√
2t2+1

e− π4 ,Q2 =
t2+

√
2t√

2t2+t+1
e− 3π

4 , f (u) = arctan u, so the equation (20) is oscillatory.
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Prove: It is easily to prove the function f (u) fulfills the conditions of (H1), (H2) and (H3),

q1 = lim
t→∞ Q1(t) =

1√
2

e−
π
4 , q2 = lim

t→∞ Q2(t) =
1√
2

e−
3π
4

Q1(t) � 1√
2

e−
π
4 ,Q2(t) � 1√

2
e−

3π
4

i.e. (H4), (H5) and (H6) are fulfilled, and the corresponding linear delay functional differential equation with

constant coefficient is

x′(t) +
1√
2

e−
π
4 x(t − π

4
) +

1√
2

e−
3π
4 x(t − 3π

4
) = 0 (21)

Through computation, we can obtain

2∑
i=1

qiτi =
1√
2

e−
π
4 × π

4
+

1√
2

e−
3π
4 × 3π

4
= 0.411 >

1

e
(22)

So the equation (21) is oscillatory, and from the deduction 2.1, we can obtain the equation (20) is oscillatory.
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