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Abstract

In this paper we have considered a single server queue with customers or units arriving in groups or batches in a

system providing two types of general heterogeneous service. The server provides type 1 or type 2 services on a

first come first served basis. At the beginning of a service, a customer has the option to choose either type 1 or

type 2 service. Also we added the concept of balking and re-service in this study. Balking is a kind of customer

behavior. If a batch on arrival for service is reluctant or refuses to join the system for some reasons is said to

balk. Once a service is completed the customer may leave the system or he has the option to demand re-service

for the same service taken. Further as soon as service of any type gets completed, the server may take vacation

or continue staying at the system even if the system is empty. For this model we have derived the steady state

queue size distribution at random epoch and some particular cases have been developed and compared with known

results.

Keywords: batch arrivals, general heterogeneous service, balking, vacations, queue size distribution, waiting time

1. Introduction

Research studies on queues with batch arrival and vacations have been increased tremendously and still many re-

searchers have been developing on the theory of different aspects of queuing. Queuing is an important phenomenon

in the real life, be it human or virtual queues and eminent researchers have been developing theories on queuing

models since 1950. Research authors like Baba (1986), Lee et al. (1994; 1995), Doshi (1986) and Takagi (1990)

were the pioneers in this field. We can find vast literature on the extensive amount of studies been done on different

queuing models with server vacations, arrival pattern and customers behavior. Studies on queues with vacations

and breakdown had been done by authors like Borthakur and Choudhury (1997; 2000; 2004), Madan (1995; 2000;

2001), Madan and Dayyeh (2002), Choudhury and Madan (2007). Many of the authors here have studied single

server with different vacation policies. Queues with vacations and restricted admissibility of customers have been

studied by Choudhury (2007) and Madan (2000).

In our model we assume customers arriving in batches and the system is providing in parallel two types of general

heterogeneous service, the customer can choose any one type of service. We can find many real life applications

of this model. Such situations are mostly observed in fuel stations, banks, post offices etc. where the customer has

option of choosing any one kind of service.

The concept of balking was first studied by Haight in the year 1957, since then considerable attention has been

given on many queuing theories with customer impatience. In our model we assume that arrival units may refuse

to join the system (balks) by estimating the duration of waiting time for a service to get completed or by witnessing

the long length of the queue. In queuing literature, queues with vacations and behavior of impatient customers have

been studied by many for mainly single server but balking in case of two parallel servers for a general distribution

has still not been worked on.

Re-service is also an important factor in the theory of queuing system and have many applications in the real

world. There may be situations where re-service is desired, for instance while visiting a doctor, the patient may be
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recommended for some investigations, after which he may need to see the doctor again while in some situations

offering public service a customer may find his service unsatisfactory and consequently demand re-service. We

find many real life applications of queues with balking and re-service in sectors as telecommunication, computer

networking, call centers, inventory and production, maintenance and quality control in industrial organisations etc.

Though in the queuing literature we find limited studies on queuing system with re-service, we refer to some type

of queuing networks including cyclic queuing systems with feedback studied by authors like Glenbe and Pujolle

(1987) and Madan (1988). In fact, authors like Madan et al. (2004), Jeyakumar and Arumuganathan (2011) studied

queues with re-service. Here we have discussed the case of optional re-service. In this case a customer has the

choice of selecting any one of the two types of heterogeneous service, subsequently has the option to repeat the

service taken by him or depart from the system.

The mathematical model has been defined under the following assumptions.

2. Mathematical Model

Here we assume that customers (units) arrive in batches of variable size according following a compound Poisson

Process.

Let λcidt (i = 1, 2, 3, ...) be the first order probability of arrival of ‘i’ customers in batches in the system at a short

interval of time (t, t + dt] where 0 ≤ ci ≤ 1,
∑∞

i=1 ci = 1, λ > 0 is the mean arrival rate of batches.

We consider the case when there is a single server providing parallel service of two types on a first come first

served basis (FCFS). At the start of the service, each customer has the choice of choosing either first service with

probability ξ1 or can choose second service with probability ξ2 and ξ1 + ξ2 = 1.

We assume that the random variable of service time s j ( j = 1, 2) of the jth kind of service follows a general

probability law with distribution function Hj(s j), h j(s j) is the probability density function and E(sK
j ) is the kth

moment (k = 1, 2, ...) of service time, j = 1, 2.

Let μ j(x) be the conditional probability of type j service during the period (x, x + dx] given that elapsed time is x,

so that

μ j(x) =
h j(x)

1 − Hj(x)
, j = 1, 2 (1)

and

h j(x) = μ j(s j) exp

[
−

∫ s

0

μ j(x)dx
]
, j = 1, 2. (2)

Once the service of a customer is complete, the server may decide to take vacation with probability q or may

continue to serve the next customer with probability (1 − q) or may remain idle in the system even if there is no

customer requiring service.

Further we assume that the vacation time random variable follow general probability law with distribution function

V(x), v(x)the probability density and E(VK) as the kth moment, k = 1, 2, ...

Let φ(x) be the conditional probability of a vacation period during the interval (x, x + dx] given elapsed time is x,

so that

φ(x) =
V(x)

1 − V(x)
(3)

and

v(y) = φ(y) exp

[
−

∫ v

0

φ(x)dx
]

(4)

Also we assume that (1 − a1) (0 ≤ a1 ≤ 1) is the probability that an arriving batch balks during the period when

the server is busy (available on the system) and (1 − a2) (0 ≤ a2 ≤ 1) is the probability that an arriving batch balks

during the period when server is on vacation.

As soon as service (of any one kind) is complete he has the option to leave the system or join the system for re-

service, if necessary. We assume that probability of repeating type j service as r j and leaving the system without

re-service as (1 − r j), j = 1, 2. We consider that either service maybe repeated only once.

3. Definitions and Notations

Assuming that steady state exists, we define
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Pn, j(x) = Probability that there are n(≥ 1) customers in the system including one customer in type j service, j = 1, 2
and elapsed service time is x.

Thus Pn, j =
∫ ∞

0
Pn, j(x)dx is the corresponding steady state probability irrespective of elapsed time x.

Rn, j(x) = Probability that there are n(≥ 1) customers in the system including one customer who is repeating type j
service, j = 1, 2 and elapsed service time is x.

Thus Rn, j =
∫ ∞

0
Rn, j(x)dx is the corresponding steady state probability irrespective of elapsed service time x.

Wn(x) = probability that there are n(≥ 0) customers in the queue and server is on vacation and elapsed vacation

time is x. Wn =
∫ ∞

0
Wn(x)dx is the corresponding steady state probability irrespective of elapsed vacation time x.

E = Steady state probability of the server is idle but available in the system and there is no customer requiring

service.

The Probability Generating Functions are defined as:

Pj(x, z) =

∞∑
n=1

znPn, j(x); Pj(z) =

∞∑
n=1

znPn, j, |z| ≤ 1; j = 1, 2 (5)

Rj(x, z) =

∞∑
n=1

znRn, j(x); Rj(z) =

∞∑
n=1

znRn, j; |z| ≤ 1; j = 1, 2 (6)

W(x, z) =

∞∑
n=0

znWn(x); W(z) =

∞∑
n=0

znWn; |z| ≤ 1 (7)

C(z) =

∞∑
i=1

zici; |z| ≤ 1 (8)

4. Equations Governing the System

Let us define the steady state equations for our model as

d
dx

Pn,1(x) + (λ + μ1(x))Pn,1(x) = λ(1 − a1)Pn,1(x) + a1λ

n∑
i=1

ciPn−i,1(x) (9)

d
dx

Pn,2(x) + (λ + μ2(x)) Pn,2(x) = λ(1 − a1)Pn,2(x) + a1λ

n∑
i=1

ciPn−i,2(x) (10)

d
dx

Rn,1(x) + (λ + μ1(x))Rn,1(x) = λ(1 − a1)Rn,1(x) + a1λ

∞∑
i=1

ciRn−i,1(x) (11)

d
dx

Rn,2(x) + (λ + μ2(x))Rn,2(x) = λ(1 − a1)Rn,2(x) + a1λ

∞∑
i−1

ciRn−i,2(x) (12)

d
dx

Wn(x) + (λ + φ(x)) Wn(x) = λ(1 − a2)Wn(x) + a2λ

n∑
i=1

CiWn−i(x) (13)

d
dx

W0(x) + (λ + φ(x))W0(x) = λ(1 − a2)W0(x) (14)

λE = λ(1 − a1)E + (1 − q)

[
(1 − r1)

∫ ∞

0

P1,1(x)μ1(x)dx + (1 − r2)

∫ ∞

0

P1,2(x)μ2(x)dx
]

+(1 − q)

[∫ ∞

0

R1,1(x)μ1(x)dx +
∫ ∞

0

R1,2(x)μ2(x)dx
]
+

∫ ∞

0

W0(x)φ(x)dx (15)

where P0, j(x) = 0, R0, j(x) = 0, j = 1, 2 for (9), (10), (11) and (12).

The above equations is to be solved subject to the boundary conditions given below at x = 0:

Pn,1(0) = (1 − q)ξ1

[
(1 − r1)

∫ ∞

0

Pn+1,1(x)μ1(x)dx + (1 − r2)

∫ ∞

0

Pn+1,2(x)μ2(x)dx
]
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+(1 − q)ξ1

[∫ ∞

0

Rn+1,1(x)μ1(x)dx +
∫ ∞

0

Rn+1,2(x)μ2(x)dx
]
+ ξ1

∫ ∞

0

Wn(x)φ(x)dx + λa1ξ1cnE, n ≥ 1 (16)

Pn,2(0) = (1 − q)ξ2

[
(1 − r1)

∫ ∞

0

Pn+1,1(x)μ1(x)dx + (1 − r2)

∫ ∞

0

Pn+1,2(x)μ2(x)dx
]

+(1 − q)ξ2

[∫ ∞

0

Rn+1,1(x)μ1(x)dx +
∫ ∞

0

Rn+1,2(x)μ2(x)dx
]
+ ξ2

∫ ∞

0

Wn(x)φ(x)dx + λa1ξ2cnE, n ≥ 1 (17)

Rn,1(0) = r1

∫ ∞

0

Pn,1(x)μ1(x)dx (18)

Rn,2(0) = r2

∫ ∞

0

Pn,2(x)μ2(x)dx (19)

Wn(0) = q
[
(1 − r1)

∫ ∞

0

Pn+1,1(x)μ1(x)dx + (1 − r2)

∫ ∞

0

Pn+1,2(x)μ2(x)dx
]

(20)

and the normalizing condition

E +
2∑

j=1

∞∑
n=1

∫ ∞

0

Pn, j(x)dx +
2∑

j=1

∞∑
n=1

∫ ∞

0

Rn, j(x)dx +
∞∑

n=0

∫ ∞

0

Wn(x)dx = 1 (21)

5. Queue Size Distribution at Random Epoch

Now let us multiply Equations (9)-(13) by zn, and taking summations over all possible values of n and simplifying

we get
d
dx

P1(x, z) + {a1(λ − λC(z)) + μ1(x)}P1(x, z) = 0 (22)

d
dx

P2(x, z) + {a1(λ − λC(z)) + μ2(x)}P2(x, z) = 0 (23)

d
dx

R1(x, z) + {a1(λ − λC(z)) + μ1(x)}R1(x, z) = 0 (24)

d
dx

R2(x, z) + {a1(λ − λC(z)) + μ2(x)}R2(x, z) = 0 (25)

d
dx

W(x, z) + {a2(λ − λC(z)) + φ(x)}W(x, z) = 0 (26)

We now integrate Equations (22)-(26) between limits 0 and x and obtain

P1(x, z) = P1(0, z)e−a1λ(1−C(z))−∫ x
0
μ1(t)dt (27)

P2(x, z) = P2(0, z)e−a1λ(1−C(z))−∫ x
0
μ2(t)dt (28)

R1(x, z) = R1(0, z)e−a1λ(1−C(z))−∫ x
0
μ1(t)dt (29)

R2(x, z) = R2(0, z)e−a1λ(1−C(z))−∫ x
0
μ2(t)dt (30)

W(x, z) = W(0, z)e−a2λ(1−C(z))−∫ x
0
φ(t)dt, λ > 0 (31)

Next we multiply Equation (16) with appropriate powers of z, take summation over all possible values of n and

using relations (15) and (27), after simplifying we obtain

z P 1 (0, z) = (1 − q) ξ 1

[
(1 − r1)

∫ ∞
0

P1(x, z) μ 1(x) dx + (1 − r2)
∫ ∞

0
P2(x, z) μ2(x, z) dx

]

+(1 − q) ξ1
[∫ ∞

0
R1(x, z) μ1(x) dx +

∫ ∞
0

R 2(x, z) μ2(x) dx
]

+ zξ1
∫ ∞

0
W(x, z) φ(x) dx + z a1 ξ1 λ ( C(z) − 1 )E

(32)
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We perform the same operations on Equations (17)-(20) and thus obtain

zP2(0, z) = (1 − q)ξ2
[
(1 − r1)

∫ ∞
0

P1(x, z)μ1(x)dx + (1 − r2)
∫ ∞

0
P2(x, z)μ2(x, z)dx

]

+(1 − q) ξ2
[∫ ∞

0
R1(x, z)μ1(x)dx +

∫ ∞
0

R2(x, z)μ2(x)dx
]

+ z ξ2
∫ ∞

0
W(x, z) φ (x) dx + z a1 ξ2λ ( C(z) − 1 ) E

(33)

Rn,1(0) = r1

∫ ∞

0

P1(x, z)μ1(x)dx (34)

Rn,2(0) = r2

∫ ∞

0

P2(x, z)μ2(x)dx (35)

z W(0, z) = q
[
(1 − r1)

∫ ∞

0

P1(x, z)μ1(x)dx + (1 − r2)

∫ ∞

0

P2(x, z)μ2(x)dx
]

(36)

We now multiply Equations (27) and (29) by μ1(x) and Equations (28) and (30) by μ2(x), integrate by parts w.r.t.

x, use Equation (2) to obtain

∫ ∞

0

P1(x, z)μ1(x)dx = P1(0, z)H∗1(a1(λ − λC(z))) (37)

∫ ∞

0

P2(x, z)μ2(x)dx = P2(0, z) H∗2(a1(λ − λC(z))) (38)

∫ ∞

0

R1(x, z)μ1(x)dx = R1(0, z)H∗1(a1(λ − λC(z))) (39)

∫ ∞

0

R2(x, z)μ2(x)dx = R2(0, z)H∗2(a1(λ − λC(z))) (40)

Similarly multiplying Equation (31) by φ(x)and applying the same operations as above, we get

∫ ∞

0

W(x, z)φ(x)dx = W(0, z)V∗(a2(λ − λC(z))) (41)

where H∗j (a1(λ − λC(z))) =
∫ ∞

0
e−a1(λ−λC(z)dHj(x) is the Laplace-Transform of jth type of service, j = 1, 2 and

V∗(a2(λ − λC(z))) =
∫ ∞

0
e−a2(λ−λC(z))dV(x) is the Laplace-Transform of vacation time.

Let us substitute relations (37)-(41) in Equations (32) and (33), thus we get

z P1(0, z) = (1 − q) ξ1
[
(1 − r1)P1(0, z)H∗1(a1(λ − λC(z)) ) + (1 − r2)P2(0, z)H∗2(a1(λ − λC(z)) )

]
+

+(1 − q) ξ1
[
R1(0, z)H∗1(a1(λ − λC(z)) ) + R2(0, z)H∗2(a1(λ − λC(z) ) )

]
+ zξ1 W(0, z) V∗ (a2 (λ − λC(z)) )

+z λ a1 ξ1 ( C(z) − 1) ) E

or

z P1(0, z) = (1 − q) ξ 1

[
(1 − r1)P1(0, z)H∗1(a1(λ − λC(z)) ) + (1 − r2) P2(0, z)H∗2(a1(λ − λC(z) ) )

]

+ (1 − q) ξ1
[
P1(0, z) (H∗1(a1(λ − λC(z)) )2 + P2(0, z) (H∗2(a1 (λ − λC(z)) )2

]
+

z ξ1 q
[ (

1 − r1) P1(0, z) H∗1 (a1(λ − λC(z)) ) + (1 − r2) P2(0, z) H∗2(a1 (λ − λC(z) ) )
)]

V∗(a2 (λ − λC(z) ) )

+z λ a1 ξ1 (C(z) − 1 ) E
(42)
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Similarly

zP2(0, z) = (1 − q)ξ2
[
(1 − r1)P1(0, z)H∗1(a1(λ − λC(z)) ) + (1 − r2)P2(0, z)H∗2(a1(λ − λC(z)) )

]

+(1 − q)ξ2
[
P1(0, z)(H∗1(a1(λ − λC(z)))2 + P2(0, z)(H∗2(a1(λ − λC(z)))2

]
+

z ξ2
[
(1 − r1) P1(0, z) H∗1(a1(λ − λC(z))) + (1 − r2)P2(0, z)H∗2(a1(λ − λC(z)))

]
V∗(a2(λ − λC(z)))

+z λa1ξ2(C(z) − 1)E

(43)

R1(0, z) = r1P1 (0, z) H∗1(a1(λ − λC(z))) (44)

R2(0, z) = r2P1(0, z)H∗2(a1(λ − λC(z))) (45)

zW(0, z) = q[P1(0, z)H∗1(a1(λ − λC(z))) + P2(0, z)H∗2(a1(λ − λC(z)))] (46)

Now solving (42) and (43) we get the following

P1(0, z) =
zλa1ξ1(1 −C(z))E

D(z)
(47)

P2(0, z) =
zλa1ξ2(1 −C(z))E

D(z)
(48)

R1(0, z) =
zλa1r1ξ1(1 −C(z))H∗1(a1(λ − λC(z)))E

D(z)
(49)

R2(0, z) =
zλa1r2ξ2(1 −C(z))H∗2(a1(λ − λC(z)E

D(z)
(50)

W(0, z) =
qλa1

[
(1 − r1)ξ1H∗1(a1(λ − λC(z))) + (1 − r2)ξ2H∗2(a1(λ − λC(z)))

]
E

D(z)
(51)

where D(z) is given by the following relation

D(z) =
[
{(1 − q) + qV∗(a2(λ − λC(z)))}{(1 − r1)ξ1H∗

1(a1(λ − λC(z))) + (1 − r2)ξ2H∗
2(a1(λ − λC(z)))}

]

+(1 − q)
{
r1ξ1(H∗1(a1(λ − λC(z)))2 + r2ξ2(H∗2(a2(λ − λC(z)))2

}
− z

Further we integrate Equations (27)-(31) w.r.t x and use Equation (2) to obtain

P1(z) =
zξ1[1 − H∗1(a1(λ − λC(z)))]E

D(z)
(52)

P2(z) =
zξ2[1 − H∗2(a1(λ − λC(z)))]E

D(z)
(53)

R1(z) =
zr1ξ1H∗1(a1(λ − λC(z))[1 − H∗1(a1(λ − λC(z))]E

D(z)
(54)

R2(z) =
zr2ξ2H∗2(a1(λ − λC(z))[1 − H∗2(a1(λ − λC(z))]E

D(z)
(55)

W(z) =
q a1

a2
[1 − V∗(a2(λ − λC(z))][(1 − r1)ξ1H∗1(a1(λ − λC(z)) + (1 − r2)ξ2H∗2(a1(λ − λC(z))]E

D(z)
(56)

Let us now define PQ(z) as the probability generating function of the queue size irrespective of the type of service

the server is providing, such that adding Equations (52)-(56) we get

PQ(z) = P1(z) + P2(z) + R1(z) + R2(z) +W(z) (57)
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We determine the unknown probability E by using the relation of the normalizing condition

E + P1(1) + P2(1) + R1(1) + R2(1) +W(1) = 1

We now use L’Hopital’s Rule as the Equations (52)-(56) is indeterminate of the zero/zero form at z = 1 and

simplifying we obtain

P1(1) = lim
z→1

P1( z)

=
ξ1 a1 λ E(I)E(S 1)E

1 − a1λE(I){(1 − r1)ξ1E(S 1) + (1 − r2)ξ2E(S 2)} + qa2 λ E(I)E(V) {(1 − r1) ξ1 + (1 − r2) ξ2}
−2 (1 − q) a1 λ E(I){ r1 ξ1 E(S 1) + r2 ξ2 E (S 2)}

(58)

P2(1) = lim
z→1

P2(z)

=
ξ2 a1λ E(I) E(S 2) E

1 − a1λE(I){(1 − r1)ξ1E(S 1) + (1 − r2)ξ2E(S 2)} + q a2λ E(I) E(V) {(1 − r1) ξ1 + (1 − r2) ξ2}
− 2 (1 − q) a1 λ E(I) { r1 ξ1 E(S 1) + r2 ξ2 E(S 2) }

(59)

R1(1) = lim
z→1

R1(z)

=
r1 ξ1 a1λ E(I) E(S 1) E

1 − a1λE(I){(1 − r1)ξ1E(S 1) + (1 − r2)ξ2E(S 2)} + qa2 λ E(I) E(V) {(1 − r1) ξ1 + (1 − r2) ξ2}
− 2 (1 − q) a1 λ E(I) { r1 ξ1 E(S 1) + r2 ξ2 E(S 2) }

(60)

R2(1) = lim
z→1

R2(z)

=
r2 ξ2 a1λ E(I) E(S 2) E

1 − a1λE(I){(1 − r1)ξ1E(S 1) + (1 − r2)ξ2E(S 2)} + qa2 λ E(I)E(V) {(1 − r1) ξ1 + (1 − r2) ξ2}
− 2 (1 − q) a1 λ E(I) {r1 ξ1 E(S 1) + r2ξ2 E(S 2) }

(61)

W(1) = lim
z→1

W(z)

=
q a1 λ E(I) E(V) { (1 − r1) ξ1 + (1 − r2) ξ2 }E

1 − a1λ E(I) (1 − r1) ξ1E(S 1) + (1 − r2) ξ2E(S 2) } + qa2 λ E(I) E(V)
{

(1 − r1) ξ1 + (1 − r2) ξ2
}

−2 (1 − q) a1λ E(I){ r1 ξ1E(S 1) + r2 ξ2 E(S 2)}
(62)

where E(I) is the mean size of batch of arriving customers , E(S1), E(S2) are the mean service times of type 1 and

type 2 server respectively, E(V) is the mean of vacation time and H∗(0) = 1, V∗(0) = 1.

The RHS of the results (58)-(62) respectively give the steady state probability that the server is busy providing type

1 service, type 2 services, repeating service of type 1, repeating type 2 service and server being on vacation.

Now adding Equations (58)-(62) we get

PQ(1) =

[
a1 λ E(I) { (1 + r1) ξ1 E(S 1) + (1 + r2) ξ2 E(S 2)} + q a1 λ E(I) E(V) { (1 − r1) ξ1 + (1 − r2) ξ2 } ] E

1 − a1λ E(I) {(1 − r1) ξ1E(S 1) + (1 − r2) ξ2E(S 2) } + qa2 λ E(I) E(V)
{

(1 − r1) ξ1 + (1 − r2) ξ2
}

−2 (1 − q) a1λ E(I){ r1 ξ1E(S 1) + r2 ξ2 E(S 2)}
(63)

which gives the steady state probability that the server is busy, irrespective of whether it is providing type 1 or type

2 service and server being on vacation.

Let us simplify the normalizing condition E + PQ(1) = 1 to get E and thus we have

E =

1 − a1 λ E(I){ (1 − r1) ξ1E(S 1) + (1 − r2) ξ2E(S 2) } − qa2 λE(I) E(V) {(1 − r1)ξ1 + (1 − r2) ξ2}
−2 (1 − q) a1 λ E(I){r1 ξ1 E(S 1) + r2 ξ2 E(S 2)}

1 + qa1λ E(I)E(V) {(1 − r1) ξ1 + (1 − r2) ξ2} − q a2 λE(I)E(V) {(1 − r1)ξ1 + (1 − r2) ξ2}
−2(1 − q)a1λE(I){ r1ξ1 E(S 1) + r2 ξ2E(S 2) }

(64)

Also from (64) we obtain ρ as the utilization factor of the system as ρ = 1 − E.
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Now let PS (z) denote the probability generating function of the system size irrespective of the state of the system

PS (z) = P1(z) + P2(z) + R1(z) + R2(z) +W(z) + E

Thus

PS (z) =

E
[ {(1 − q) + qV∗(a2(λ − λC(z) ) + q a1

a2
[1 − V∗(a2(λ − λC(z)) ] − z}{(1 − r1) ξ1H∗1(a1(λ − λC(z)) )+

(1 − r2) ξ2H∗2(a1(λ − λC(z)) )}+{(1 − q) − z}{ r1 ξ1(H∗1(a1(λ − λC(z)) )2 + r2ξ2(H∗2(a1(λ − λC(z)) )2}
]

[{(1 − q) + q V∗(a2(λ − λC(z))} { (1 − r1) ξ1H∗1(a1(λ − λC(z)) + (1 − r2) ξ2H∗2(a1(λ − λC(z))}
+ (1 − q) { r1 ξ1(H∗1(a1(λ − λC(z)))2 + r2 ξ2(H∗2(a1(λ − λC(z)) )2 } ] − z

(65)

6. The Average Queue Size

Let Lq denote the mean queue size at random epoch. Then

Lq = lim
z→1

d
dz

PQ(z)

Since this formula is also of zero/zero form, we use L’Hopital’s Rule twice and obtain

LS = lim
z→1

D
′
(z)N

′′
(z) − N

′
(z)D

′′
(z)

2(D′
(z))2

(66)

where primes and double primes in (66) denote first and second derivatives at z =1 respectively.

N
′
(1) = −E0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 λ E(I) { (1 + r1) ξ1 E(S

1
) + (1 + r2) ξ2E(S 2)}

−q a1 λE(I) E(V) {(1 − r1) ξ1 + (1 − r2 ) ξ2}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

N
′′
(1) = −E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[2 a1 λ E(I){
(
1 − r1)ξ1E(S 1) + (1 − r2) ξ2 E(S 2) } + a1λ E(I/I − 1){ ξ1 E(S 1) + ξ2E(S 2)}

)

+ a1 λ E(I) { r1 ξ1 E(S 1) + r2ξ2E(S 2) } + 2(a1 λ E(I) )2 { r1 ξ1 E(S 2
1) + r2 ξ2 E(S 2

2) }

+(a1 λ E(I/I − 1) ) { r1 ξ1 E(S 1) + r2 ξ2 E(S 2) } − (a1 λ E(I) )2{ r1 ξ1 ( E(S 1) )2 + r2 ξ2 ( E(S 2) )2 }

+2q (a λ E(I) )2 E(V) { (1 − r1)ξ1 E(S 1) + (1 − r2) ξ2 E(S 2)}

+{ q ( a1 λ E(I) )2 E(V2) + a1 λ E(I/I − 1 ) E(V) } { (1 − r1) ξ1 + (1 − r2) ξ2 }

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D
′
(1) = a1 λ E(I)

[
(1 − r1) ξ1 E(S 1) + (1 − r2) ξ2 E(S 2)

]
+ q a2 λ E(I) E(V) { (1 − r1) ξ1 + (1 − r2) ξ2}

+2 (1 − q) a1 λ E(I) { r1 ξ1 E(S 1) + r2 ξ2 E(S 2)} − 1

D
′′
(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{ (a1 λ E(I) )2{ (1 − r1) ξ1 E(S 2
1) + (1 − r2) ξ2 E(S 2

2)]

a1 λ E(I/I − 1) } (1 − r1) ξ1E(S 1) + (1 − r2) ξ2E(S 2) } + a1 a2 ( λ E(I) )2 { (1 − r1) ξ1E(S 1) + (1 − r2) ξ2E(S 2)}

+ q ( a2 λ E(I) )2 E(V2) { (1 − r1) ξ1 + (1 − r2) ξ2} + 2 (1 − q) [(a1 λ E(I))2{ r1 ξ 1E(S 2
1) + r2 ξ2 E(S 2

2)

+a1λ E(I/I − 1){ r1 ξ1E(S 1) + r2 ξ2E(S 2)} + (a1λ E(I))2{ r1 ξ1(E(S 1))2 + r2 ξ2(E(S 2))2 } ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where E(S 2

1), E(S 2
2), E(V2) are the second moments of service times of type 1, type 2 and vacation time re-

spectively. E(I/I − 1) is the second factorial moment of the batch of arriving customers, H∗1(0) = 1,H∗2(0) = 1,

V∗(0) = 1 and E has been obtained in (64).

We can also obtain L = Lq + ρ by using the above relations, which gives the steady-state average size of the queue

system.
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7. Particular Cases

Case 1. Re-service in a Vacation queue with Batch arrival and Two types of General Heterogeneous Service. Here

we consider the situation when there is no balking i.e. all customers join the system, and in that case, we take

a1 = a2 = 1; thus Equation (65) becomes

P S (z) =

E (1 − z ) { ( 1 − r1 ) ξ1H∗
1
(λ − λC(z) ) + ( 1 − r2 ) ξ2 H∗

2
(λ − λC(z) )}

+{ (1 − q) − z} { r1 ξ1 (H∗1(λ − λC(z) ) )2 + r2 ξ2 ( H∗2(λ − λC(z) ) )2}
{ (1 − q) + q V∗(λ − λC(z) )} { (1 − r1) ξ1H∗1(λ − λC(z)) + (1 − r2) ξ2 H∗2(λ − λC(z)) }

+ (1 − q) { r1ξ1 ( H∗1(λ − λC(z)))2 + r2 ξ2 ( H∗2(λ − λC(z)) )2}
(67)

is the queue size distribution of a batch arrival queuing system with two types of general heterogeneous service

with vacation and optional re-service where idle time E

E =

1 − λ E(I) { ξ1E(S 1) + ξ2E(S 2)} − λ E(I) { r1ξ1 E(S 1) + r2 ξ2 E(S 2)}
−qλ E(I) E(V) {(1 − r1)ξ1 + (1 − r2) ξ2} + 2q λ E(I) {r1 ξ1E(S 1) + r2 ξ2E(S 2)}

1 − 2(1 − q) λ E(I) { r1ξ1 E(S 1) + r2 ξ2 E(S 2)}
Case 2. Balking and Re-service with Batch arrival with and two types of general Heterogeneous Service. Here we

assume that the server does not take vacation, i.e. q = 0; and obtain

PS (z) =

E (1 − z)

⎡⎢⎢⎢⎢⎢⎣
{

(1 − r1) ξ1H∗1 (a1(λ − λC(z)) ) + (1 − r2) ξ2 H∗2(a1(λ − λC(z)) )
}

+
{

r1 ξ1 ( H∗
1
(a1(λ − λC(z)) )2 + r2 ξ2( H∗

2
(a1(λ − λC(z)) )2

}
⎤⎥⎥⎥⎥⎥⎦

{
(1 − r1) ξ1 H∗1(a1(λ − λC(z)) ) + (1 − r2) ξ2 H∗2 (a1(λ − λC(z)) )

}
+

{
r1ξ1 ( H∗1(a1(λ − λC(z)) )2 + r2 ξ2 (H∗2(a1(λ − λC(z)) )2

}
− z

(68)

is the queue size distribution of Batch arrival queuing system with two types of general heterogeneous service with

balking and optional re-service and

E =
1 − a1 λ E(I) { ξ1 E(S 1) + ξ2 E(S 2)} − a1 λ E(I)

{
r1ξ1 E(S 1) + r2ξ2E(S 2)

}
1 − 2a1 λ E(I) { r1 ξ1E(S 1) + r2 ξ2 E(S 2)}

Case 3. Balking in a Vacation queue with batch arrival and two types of Heterogeneous service. Here we assume
that there is no re-service, then r1 = r2 = 0, our queue size distribution reduces to

PS (z) =
E

[ {
(1 − q) + q V∗(a2(λ − λC(z)) ) + q a1

a2
[1 − V∗(a2(λ − λC(z)))] − z

}{
ξ1 H∗1(a1(λ − λC(z)) ) + ξ2 H∗2(a1(λ − λC(z)) )

} ]
[
{(1 − q) + q V∗(a2(λ − λC(z)))}{ξ1H∗1(a1(λ − λC(z)) ) + ξ2 H∗2(a1(λ − λC(z)) ) }

]
− z

(69)

E =
1 − a1 λ E(I) {ξ1 E(S 1) + ξ2E(S 2) } − qa2 λ E(I) E(V)

1 + qa1 λ E(I) E(V) − qa2 λ E(I) E(V)
.

Case 4. If we assume that there is two types of heterogeneous service, optional re-service, no vacation, no balking,

then q = 0; a1 = a2 = 1, the PGF in (65) reduces to

PS (z) =

E
[ {1 − z}{(1 − r1)ξ1H∗1(λ − λC(z)) + (1 − r2)ξ2H∗2(λ − λC(z))}
+(1 − z){r1 ξ1(H∗

1
(λ − λC(z)))2 + r 2ξ2(H∗

2
(λ − λC(z)) )2}

]
[ {(1 − r1)ξ1H∗

1
(λ − λC(z) ) + (1 − r2)ξ2H∗

2
(λ − λC(z) )}

{r1 ξ1(H∗1(λ − λC(z)) )2 + r2ξ2(H∗2(λ − λC(z)) )2

]
− z

(70)

E = 1 − λ E(I) {(1 + r1)ξ1 E(S 1) + (1 + r2)ξ2E(S 2))}
Which tallies with the result obtained by Madan et al. (2004) for a MX/

(
G1

G2

)
1 queue with optional re-service.

Case 5. Again if we consider the situation when there is no case of optional re-service and no balking (i.e.

all arriving batches join the system) with two types of heterogeneous service and vacation then , r1 = r2 = 0;

a1 = a2 = 1, then (65) becomes

PS (z) =
E

[
(1 − z){ξ1H∗1(λ − λC(z)) + ξ2H∗2(λ − λC(z))}

]
[
{(1 − q) + qV∗(λ − λC(z)}{ξ1H∗1(λ − λC(z) + ξ2H∗2(λ − λC(z)}

]
− z

(71)

122



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 4; 2012

E = 1 − λE(I) { ξ1E(S 1) + ξ2E(S 2)} − q λ E(I) E(V)

Thus our result (71) is equivalent to the result obtained by Madan et al. (2005) for the PGF of a queue size

distribution at random epoch of MX/

(
G1

G2

)
/1/G(BS )/VS with batch arrivals, two kinds of general heterogeneous

service and general vacation time with Bernoulli Schedules.

Case 6. Now further we assume that in addition to the particular cases in (5), if we take ξ2 = 0; i.e. ξ1 = 1, which

means the server is providing only one type of service and without re-service and balking, we obtain

PS (z) =
E(1 − z)H∗1(λ − λC(z))

{ (1 − q) + q V ∗ (λ − λC(z) )} H∗
1

(λ − λC(z) ) − z
(72)

E = 1 − λE(I) ξ1 E(S 1) − q λ E(I) E(V)

Thus the result (72) reduces to the probability generating function (PGF) of a queue size distribution at a random

epoch for MX/G/1/G(BS )/VS queue with batch arrivals, general service and general vacation first studied by

Madan (2004) who considered first service general and second service exponential.

Case 7. Now if we consider a system with two types of general heterogeneous service but no optional re-service,

no vacation and no balking, i.e. r1 = r2 = 0, q = 0, a1 = a2 = 1, then we obtain the queue size

PS (z) =
E(1 − z){ξ1H∗1(λ − λC(z)) + ξ2H∗2(λ − λC(z))}
{ξ1H∗

1
(λ − λC(z) + ξ2H∗

2
(λ − λC(z))} − z

(73)

E = 1 − λE(I)ξ1E(S 1) − λE(I)ξ2E(S 2)

Case 8. Again in addition to particular cases in (73), if we assume that there is only one type of service then

PS (z) =
E(1 − z)H∗1(λ − λC(z))

H∗
1
(λ − λC(z)) − z

(74)

E = 1 − λE(I) ξ1E(S 1)

is the queue size distribution of a MX/G/1 batch arrival providing single service follows the result obtained by

Gaver (1959).
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