

Journal of Mathematics Research

www.ccsenet.org/journal.html

Perfect Glued Graphs at Complete Clones

Chariya Uiyyasathian (Corresponding author) Faculty of Science, Chulalongkorn University Phyathai Rd., Patumwan, Bangkok 10330, Thailand Tel: 66-2-218-5159 E-mail: Chariya.U@Chula.ac.th

Supaporn Saduakdee Faculty of Science, Chulalongkorn University Phyathai Rd., Patumwan, Bangkok 10330, Thailand Tel: 66-84-848-8410 E-mail: aa_oo_rr@hotmail.com

Abstract

A graph G is called perfect if the chromatic number and the clique number have the same value for every of its induced subgraph. A glued graph results from combining two vertex-disjoint graphs by identifying connected isomorphic subgraphs of both graphs. Such subgraphs are referred to as the clones.

We study the perfection of glued graphs whose clones are complete graphs. Our result generalizes the simplicial elimination ordering which is a characterization of chordal graphs.

Keywords: Perfect graphs, Glued graphs

1. Introduction

Let G_1 and G_2 be any two graphs with disjoint vertex sets. Let $H_1 \subseteq G_1$ and $H_2 \subseteq G_2$ be connected graphs such that $H_1 \cong H_2$ with an isomorphism f. The glued graph of G_1 and G_2 at H_1 and H_2 with respect to f, denoted by $\underset{H_1\cong_fH_2}{G_1 \bullet G_2}$, is the graph that results from combining G_1 with G_2 by identifying H_1 and H_2 with respect to the isomorphism f between H_1 and H_2 . Let H be the copy of H_1 and H_2 in the glued graph. We refer to H, H_1 and H_2 as the clones of the glued graph, G_1 and G_2 , respectively, and refer to G_1 and G_2 as the original graphs. The glued graph of G_1 and G_2 at the clone H, written $\underset{H_1}{G_1 \bullet G_2}$, means that there exist subgraph H_1 of G_1 and subgraph H_2 of G_2 and isomorphism f between H_1 and H_2 such that $\underset{H_1}{G_1 \bullet G_2} = \underset{H_1\cong_fH_2}{G_1 \bullet G_2}$ and H is the copy of H_1 and H_2 in the resulting graph. We use $G_1 \bullet G_2$ to denote an arbitrary graph resulting from gluing graphs G_1 and G_2 at any isomorphic subgraph $H_1 \cong H_2$ with respect to any of their isomorphism.

A *k*-coloring of a graph *G* is a coloring $f : V(G) \to S$, where |S| = k. A *k*-coloring is *proper* if adjacent vertices have different colors. The *chromatic number* of graph *G*, written $\chi(G)$, is the minimum number *k* such that *G* has a proper *k*-coloring. A *clique* of a graph *G* is a complete subgraph of *G*. The *clique number* of a graph *G*, written $\omega(G)$, is the order of the largest clique of *G*. For any graph *G*, it is always true that $\chi(G) \ge \omega(G)$. A graph *G* is called *perfect* if $\chi(F) = \omega(F)$ for every induced subgraph *F* of *G*, and a graph is called *imperfect* if it is not perfect. An *odd hole* of *G* is an induced subgraph of *G* which is an odd cycle of length at least 5. An *odd antihole* of *G* is an induced subgraph of *G* whose complement is an odd hole in \overline{G} . A graph having no odd hole and no odd antihole is called a *Berge graph*.

In 1972, Lovász proved the *Perfect Graph Theorem*, asserts that a graph is perfect if and only if its complement is perfect (Lovász, 1972). In 1961, Berge conjectured that a graph is perfect if and only if it is a Berge graph (Berge, 1961), affirmation well-known under the name of the *Strong Perfect Graph Conjecture*, and has just become a theorem since 2006 by Chudnovsky et al. (Chudnovsky et al., 2006). However, the proof was very

long (179 pages), recently, Chudnovsky and Seymour replaced the final 55 pages with a new much shorter proof (Chudnovsky & Seymour, 2009). This new theorem helps us to verify the perfection of our glued graphs.

Note that for vertex-disjoint graphs G_1 and G_2 , $G_1 + G_2$ stands for the disjoint union of G_1 and G_2 . The *join* of G_1 and G_2 , written $G_1 \vee G_2$, is the graph obtained from the disjoint union $G_1 + G_2$ by adding the edge set $\{uv : u \in V(G_1), v \in V(G_2)\}$.

It is possible that a glued graph of imperfect graphs is perfect and it is also possible that a glued graph of perfect graphs is imperfect, see Examples A and B.

Example A Perfect glued graphs of imperfect graphs:

Let $G_1 = \overline{C_{2n+1}}$, $G_2 = K_1 \vee C_{2n-3}$ where $n \ge 4$ and $H = K_{1,2n-3}$. Both G_1 and G_2 are not Berge graphs, hence they are imperfect by the Strong Perfect Graph Theorem. Observe that $\overline{G_1 \bigoplus_{H}^{\Phi} G_2} \cong P_6 + \overline{K_{2n-5}}$ which is perfect. By the Perfect Graph Theorem, we have that $G_1 \bigoplus_{H}^{\Phi} G_2$ is perfect. If n = 4, then G_1 and G_2 are illustrated in Figure .

Note from Figure 1 that it is possible that a glued graph of simple graphs has multiple edges. However, multiple edges of a graph do not affect its the chromatic number and the clique number. Hence, we allow our glued graphs to have multiple edges.

Example B Imperfect glued graphs of perfect graphs:

Let $G_1 = C_{2n}$, $G_2 = K_1 \vee P_{2n-2}$ where $n \ge 3$ and $H = P_{2n-2}$. Both G_1 and G_2 are Berge graphs. Observe that $G_1 \overset{\bullet}{} G_2$ contains C_5 , so it is not a Berge graph. By the Strong Perfect Graph Theorem, G_1 and G_2 are perfect but $G_1 \overset{\bullet}{} G_2$ is imperfect. If n = 3, then G_1 and G_2 are illustrated in Figure .

In this paper, we study the perfection of glued graphs of perfect graphs. Example B shows that a glued graph of perfect graphs may not be perfect. A condition is required to guarantee the perfection of a glued graph when the original graphs are perfect. Our main results reveal that the clone of the glued graph must be a complete graph in order to get the desired result.

Throughout the paper, G_1 and G_2 are graphs with disjoint vertex sets and the clone H is a connected graph. We use symbol $G(u_1, u_2, ..., u_n)$ for a graph G on the vertex set $\{u_1, u_2, ..., u_n\}$, and $\overline{G}(u_1, u_2, ..., u_n)$ for the complement of $G(u_1, u_2, ..., u_n)$. We use symbol $K_n(u_1, u_2, ..., u_n)$ for a complete graph on the vertex set $\{u_1, u_2, ..., u_n\}$, and $P_n(u_1, u_2, ..., u_n)$ and $C_n(u_1, u_2, ..., u_n)$ for a path and a cycle on the vertex set $\{u_1, u_2, ..., u_n\}$ and the edge set $\{u_1u_2, u_2u_3, ..., u_{n-1}u_n\}$ and $\{u_1u_2, u_2u_3, ..., u_{n-1}u_n\}$ and $\{u_1u_2, u_2u_3, ..., u_{n-1}u_n, u_nu_1\}$, respectively. Other standard notations we follow West (West, 2001).

2. Main Results

When the clone *H* is an induced subgraph of both G_1 and G_2 , it follows that G_1 and G_2 are induced subgraphs of the glued graph $G_1 \overset{\bullet}{} G_2$. If $G_1 \overset{\bullet}{} G_2$ is perfect, then both G_1 and G_2 must be perfect. This can be concluded here:

Proposition 2.1 Let G_1 and G_2 be graphs containing H as an induced subgraph. If $G_1 \underset{H}{\bullet} G_2$ is a perfect graph, then both G_1 and G_2 are perfect.

The inverse of Proposition 2.1 is not true. Namely, if *H* is not a complete graph, one can find perfect graphs G_1 and G_2 containing *H* as an induced subgraph while $G_1 \underset{H}{\bullet} G_2$ is not perfect.

Theorem 2.2 Let *H* be a connected incomplete graph. If *H* is a perfect graph, then there exist perfect graphs G_1 and G_2 containing *H* as an induced subgraph such that $G_1 \bigoplus_{H}^{\bullet} G_2$ is not perfect.

Proof. Assume that *H* is a perfect graph. Let |V(H)| = r. Let $H_1(u_1, u_2, ..., u_r)$ and $H_2(v_1, v_2, ..., v_r)$ be the copies of *H* with an isomorphism $f : V(H_1) \to V(H_2)$ which is defined by $f(u_i) = v_i$ for all $i \in \{1, 2, ..., r\}$. Let $P_l(u_1, u_2, ..., u_l)$ and $P_l(v_1, v_2, ..., v_l)$ be the longest induced paths of H_1 and H_2 , respectively. Since H_1 and H_2 are not complete graphs, $l \ge 3$. Choose $G_1 = H_1 \lor K_1(z)$; a join graph between H_1 and a new vertex z, and choose $G_2 = (H_2 \lor K_2(x, y)) - \{xv_l, yv_l\}$. Then G_1 and G_2 are perfect. Consider $\begin{array}{c} G_1 \bullet G_2 \\ H_1 \cong_f H_2 \end{array}$, we see that the corresponding vertices of v_1, x, y, v_l, z in $\begin{array}{c} G_1 \bullet G_2 \\ H_1 \cong_f H_2 \end{array}$ form C_5 . By the Strong Perfect Graph Theorem, $\begin{array}{c} G_1 \bullet G_2 \\ H_1 \cong_f H_2 \end{array}$ is not perfect.

The clone of a glued graph is called a *complete clone* if it is a complete graph.

The graph gluing at a complete clone preserves the perfection. Theorem 2.8 illustrates this fact and it is yielded by Lemmas 2.4 and 2.5.

Remark 2.3 For graphs G_1 and G_2 , we have

- 1. $\chi(G_1 G_2) \ge \max{\chi(G_1), \chi(G_2)}$ and
- 2. $\omega(G_1 \diamond G_2) \ge \max\{\omega(G_1), \omega(G_2)\}.$

In general, $\chi(G_1 \bullet G_2) \leq \chi(G_1)\chi(G_2)$ (Promsakon & Uiyyasathian, 2006). When the clone is a complete graph, the chromatic numbers of glued graphs do not exceed the chromatic numbers of their original graphs, see Lemma 2.4.

For a positive integer r, a glued graph at a complete clone, $G_1 \underset{K_r}{\bullet} G_2$, denotes an arbitrary glued graph between graphs G_1 and G_2 at any clone which is isomorphic to K_r . For convenience, K_r in our proofs always means the clone of the glued graph $G_1 \underset{K_r}{\bullet} G_2$, not arbitrary subgraph K_r in the glued graph .

Lemma 2.4 For graphs G_1 and G_2 , $\chi(\overset{G_1 \bullet G_2}{K_r}) = \max\{\chi(G_1), \chi(G_2)\}.$

Proof. Let $\chi(G_1) = m$ and $\chi(G_2) = n$. Assume $m \ge n$. By Remark 2.3(1), it suffices to show that $\chi(G_1 \bigoplus G_2) \le m$. Let $a_1, a_2, ..., a_m$ be colors labeling vertices of G_1 by f and $b_1, b_2, ..., b_n$ colors labeling vertices of G_2 by g. Note that any pair of vertices in K_r must have different colors. Without loss of generality, for $i \in \{1, 2, ..., r\}$, let a_i and b_i be colors of the corresponding vertices of K_r in G_1 and G_2 , respectively. Let $h : V(G_1 \bigoplus G_2) \to \{a_1, a_2, ..., a_m\}$ defined by

$$h(v) = \begin{cases} f(v) &, \text{ if } v \in V(G_1); \\ a_i &, \text{ if } v \in V(G_2) - V(K_r) \text{ and } g(v) = b_i. \end{cases}$$

Since the clone is a complete graph, *h* is well-defined. To show that *h* is proper, let *u* and *v* be vertices in $G_1 \underset{K_r}{\bullet} G_2$ such that *u* and *v* are adjacent. If $u, v \in V(G_1)$, then $h(u) = f(u) \neq f(v) = h(v)$. If $u, v \in V(G_2)$, then $g(u) = b_i$ and $g(v) = b_j$ for some $i \neq j$, so $h(u) = a_i \neq a_j = h(v)$. Besides, vertices in $V(G_1) - V(K_r)$ and $V(G_2) - V(K_r)$ are not adjacent. Hence, *h* is proper. That is, $G_1 \underset{K_r}{\bullet} G_2$ has a proper *m*-coloring. Therefore, $\chi(G_1 \underset{K_r}{\bullet} G_2) \leq m$. \Box

Unlike the chromatic number, we have not had an upper bound of the clique numbers of glued graphs in terms of the clique numbers of their original graphs. Promsakon conjectured that $\omega(G_1 \diamond G_2) \leq \omega(G_1)\omega(G_2)$ (Promsakon, 2006).

In general, the graph gluing can join two non-adjacent vertices in the clone of an original graph, Consider graphs G_1 , G_2 and $G_1 \underset{H}{\bullet} G_2$ whose clone H is shown as bold edges in Figure . We see that b and d are non-adjacent vertices in G_1 but the corresponding vertices of b and d in the glued graph are adjacent.

Since any pair of vertices in the complete clone are adjacent, there is no new edge created from the graph gluing. Thus all cliques in a glued graph at a complete clone are cliques in original graphs, so $\omega(G_1 \diamond G_2) \leq \omega(G_i)$ for i = 1, 2. The following lemma is concluded.

Lemma 2.5 For graphs G_1 and G_2 , $\omega({}^{G_1 \bigstar G_2}_{K_r}) = \max\{\omega(G_1), \omega(G_2)\}.$

The condition in Lemmas 2.4 and 2.5 that the clone must be a complete graph is necessary. Theorem 2.7 confirms.

Theorem 2.6 (Brooks, 1941) If *G* is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$ where $\Delta(G)$ denotes the maximum degree of *G*.

Theorem 2.7 Let *H* be a connected graph. If *H* is not a complete graph, then there exist G_1 and G_2 such that $\chi({}^{G_1 \bigoplus G_2}_H) > \max\{\chi(G_1), \chi(G_2)\}$ and $\omega({}^{G_1 \bigoplus G_2}_H) > \max\{\omega(G_1), \omega(G_2)\}$.

Proof. Assume that *H* is not a complete graph. Let |V(H)| = r, so $r \ge 3$. Choose $G_1 \cong K_r$ and choose $G_2 \cong H \lor K_1$. Then $G_1 \bigoplus_{H} G_2 \cong K_{r+1}$. If *H* is an odd cycle of length at least 5, $\chi(H) = 3 < r - 1$. Otherwise, *H*

is not an odd cycle of length at least 5, by Theorem 2.6, $\chi(H) \leq \Delta(H) \leq r - 1$. Now, we have $\chi(H) \leq r - 1$, so $\chi(G_2) = \chi(H \lor K_1) \leq (r - 1) + 1 = r$. Hence, $\chi(\overset{G_1 \oplus G_2}{H}) = r + 1 > r = \max\{\chi(G_1), \chi(G_2)\}$. Since *H* is not a complete graph and |V(H)| = r, we get $\omega(H) \leq r - 1$. So, $\omega(G_2) = \omega(H \lor K_1) \leq (r - 1) + 1 = r$. Therefore, $\omega(\overset{G_1 \oplus G_2}{H}) = r + 1 > r = \max\{\omega(G_1), \omega(G_2)\}$.

For graphs G_1 and G_2 , $G_1 \cap G_2$ denotes the graph on the vertex set $V(G_1) \cap V(G_2)$ and the edge set $E(G_1) \cap E(G_2)$. **Theorem 2.8** For graphs G_1 and G_2 ,

Furthermore, $\chi(\underset{K_r}{G_1 \Leftrightarrow G_2}) = \omega(\underset{K_r}{G_1 \Leftrightarrow G_2}) = \max\{\omega(G_1), \omega(G_2)\}.$

Proof. Necessity follows from Proposition 2.1. For sufficiency, assume that G_1 and G_2 are perfect graphs. We will show that $\chi(F) = \omega(F)$ for every induced subgraph F of $G_1 \bigoplus G_2$. Let F be an induced subgraph of $G_1 \bigoplus G_2$. If F is disconnected, we consider the perfection of each component of F. We may assume that F is connected. If F has no vertex in K_r , then F is an induced subgraph of either G_1 or G_2 , so $\chi(F) = \omega(F)$. Assume that F has at least one vertex in K_r . Let $F_1 = F \cap G_1$ and $F_2 = F \cap G_2$. Since F_1 is an induced subgraph of a perfect graph G_1 , we get $\chi(F_1) = \omega(F_1)$. Similarly, $\chi(F_2) = \omega(F_2)$. Now, let $F_r = F \cap K_r$. Then F_r is a complete graph. We have that $F = F_1 \bigoplus F_2$. By Lemmas 2.4 and 2.5, $\chi(F) = \max\{\chi(F_1), \chi(F_2)\}$ and $\omega(F) = \max\{\omega(F_1), \omega(F_2)\}$, respectively. Hence, $\chi(F) = \omega(F)$. Therefore, $G_1 \bigoplus G_2$ is perfect. Furthermore, $\chi(G_1 \bigoplus G_2) = \omega(G_1 \bigoplus G_2) = \max\{\omega(G_1), \omega(G_2)\}$.

If the clone is not a complete graph, it fails to be concluded the perfection of glued graphs of perfect graphs. It is illustrated by Theorems 2.9 and 2.10.

Theorem 2.9 Let *H* be a connected graph. If *H* is not a complete graph, then there exist a perfect graph G_1 and an imperfect graph G_2 such that $G_1 \overset{\bullet}{} G_2$ is perfect.

Proof. Assume that *H* is not a complete graph. Let |V(H)| = r, so $r \ge 3$. Let $H_1(u_1, u_2, ..., u_r)$ and $H_2(v_1, v_2, ..., v_r)$ be the copies of *H* with an isomorphism $f : V(H_1) \to V(H_2)$ which is defined by $f(u_i) = v_i$ for all $i \in \{1, 2, ..., r\}$. Since H_2 is not a complete graph, there are at least 2 non-adjacent vertices , say v_1 and v_r . Choose $G_1 = K_r(u_1, u_2, ..., u_r)$ and choose $G_2 = \overline{C_{2r-1}}(v_1, x_1, ..., v_{r-1}, x_{r-1}, v_r)$. Then G_1 is perfect but G_2 is not perfect. Since H_1 and H_2 are not complete graphs, $H_1 \subseteq K_r(u_1, u_2, ..., u_r)$ and $H_2 \subseteq K_r(v_1, v_2, ..., v_r) - v_1v_r \subseteq \overline{C_{2r-1}}(v_1, x_1, ..., v_{r-1}, x_{r-1}, v_r)$. We can verify that $G_1 \overset{\bullet}{\Phi} G_2 \cong G_1 \overset{\bullet}{\Phi} G_2 \cong \overline{C_{2r-1}}(v_1, x_1, ..., v_{r-1}, x_{r-1}, v_r) + v_1v_r$, consequently, $\overline{G_1} \overset{\bullet}{\Phi} G_2 \cong P_{2r-1}$. Since P_{2r-1} is perfect, by the Perfect Graph Theorem, $G_1 \overset{\bullet}{\Phi} G_2$ is perfect. \Box **Theorem 2.10** Let *H* be a connected graph. If *H* is not a complete graph, then there exist perfect graphs G_1 and G_2 such that $G_1 \overset{\bullet}{\Phi} G_2$ is not perfect.

Proof. Assume that *H* is not a complete graph. Let |V(H)| = r, so $r \ge 3$. Let $H_1(u_1, u_2, ..., u_r)$ and $H_2(v_1, v_2, ..., v_r)$ be the copies of *H* with an isomorphism $f : V(H_1) \rightarrow V(H_2)$ which is defined by $f(u_i) = v_i$ for all $i \in \{1, 2, ..., r\}$. Since H_2 is not a complete graph, there are at least 2 non-adjacent vertices, say v_1 and v_2 . Choose $G_1 = K_r(u_1, u_2, ..., u_r)$ and choose $G_2 = \overline{C_{2r+1}}(v_1, x_1, ..., v_r, x_r, x_{r+1}) - v_1v_2$. Then G_1 and G_2 are perfect. Since H_1 and H_2 are not complete graphs, $H_1 \subseteq K_r(u_1, u_2, ..., u_r)$ and $H_2 \subseteq K_r(v_1, v_2, ..., v_r) - v_1v_2 \subseteq \overline{C_{2r+1}}(v_1, x_1, ..., v_r, x_r, x_{r+1}) - v_1v_2$. We can verify that $G_1 \overset{\bullet}{\to} G_2 \cong G_1 \overset{\bullet}{\to} G_2 \cong \overline{C_{2r+1}}$. Thus, $G_1 \overset{\bullet}{\to} G_2$ is not a Berge graph. By the Strong Perfect Graph Theorem, $G_1 \overset{\bullet}{\to} G_2$ is not perfect. \Box

For a subset S of V(G), a *neighborhood* of S in G, written $N_G(S)$ or N(S), is the set of vertices in V(G) - S which are adjacent to vertices in S. We use G[S] and G - S for the induced subgraph of G on the vertex set S and V(G) - S, respectively.

We now extend the *simplicial (perfect) elimination ordering* to a new definition as follows:

Definition 2.11 A subset V_i of V(G) is **simplicial** if its *neighborhood* in *G* forms a clique. A **simplicial** set elimination ordering is an ordering $V_1, ..., V_k$ for deletion of nonempty vertex subsets so that each V_i is a simplicial vertex subset of the remaining graph induced by $\bigcup_{t=i}^k V_t$ with $|V_i| = 1$ or $|V_i| = 2$ for all $i \in \{1, 2, ..., k\}$, and $V_1, ..., V_k$ partitions V(G).

Note that a simplicial elimination ordering of a graph *G* is a simplicial set elimination ordering of *G* with $|V_i| = 1$ for all $i \in \{1, 2, ..., n(G)\}$.

Remark 2.12 For any nontrivial graph *G*, let $V_1, ..., V_k$ be a partition of V(G). Let $G_1 = G$, and for each $i \in \{2, 3, ..., k\}$, let $G_i = G - \bigcup_{t=1}^{i-1} V_t$. If $V_1, ..., V_k$ is a simplicial set elimination ordering of *G*, then for each $i \in \{1, 2, ..., k-1\}$, G_i is a glued graph between $G_i[V_i \cup N(V_i)]$ and G_{i+1} at a complete clone $G_i[N(V_i)]$.

Theorem 2.13 For a simple graph G, if G has a simplicial set elimination ordering, then G is a perfect graph.

Proof. Assume that *G* has a simplicial set elimination ordering $V_1, ..., V_k$. Let $G_1 = G$, and for each $i \in \{2, 3, ..., k\}$, let $G_i = G - \bigcup_{t=1}^{i-1} V_t$. Since $|V_k| = 1$ or 2, $G_k \cong K_1$ or K_2 , so G_k is perfect. By Remark 2.12, G_i is a glued graph between $G_i[V_i \cup N(V_i)]$ and G_{i+1} at a complete clone $G_i[N(V_i)]$, it is enough to claim that $G_i[V_i \cup N(V_i)]$ is perfect for all $i \in \{1, 2, ..., k-1\}$. Let $i \in \{1, 2, ..., k-1\}$. Let *C* be an induced cycle in $G_i[V_i \cup N(V_i)]$. Since $N_{G_i}(V_i)$ forms a clique, at most 2 vertices in $N_{G_i}(V_i)$ can be in *C*. Together with vertices in V_i, C has length at most 4. Again, since $N_{G_i}(V_i)$ forms a clique, 2 vertices in $N_{G_i}(V_i)$ cannot be adjacent in the complement of $G_i[V_i \cup N(V_i)]$. Besides, each vertex in $N_{G_i}(V_i)$ must be adjacent to at least one vertex in V_i , so it can be adjacent to at most one vertex of V_i in the complement of $G_i[V_i \cup N(V_i)]$. Thus, there is no cycle in the complement of $G_i[V_i \cup N(V_i)]$. Hence, $G_i[V_i \cup N(V_i)]$ contains no odd hole and no odd antihole. By the Strong Perfect Graph Theorem, we get $G_i[V_i \cup N(V_i)]$ is perfect. By Theorem 2.8, G_i is perfect for all $i \in \{1, 2, ..., k-1\}$.

The inverse of the theorem is not true, for instance, C_{2n} , where $n \ge 3$, is perfect while it has no simplicial set elimination ordering. It is well-known that the simplicial elimination ordering characterizes a subclass of perfect graphs, namely the chordal graphs. It would be interesting if one could characterize a subclass of perfect graphs by the simplicial set elimination ordering.

Acknowledgment

The authors would like to thank the anonymous referee for helpful suggestions.

References

Berge C. (1961). Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin Luther Univ. Halle-Wittenberg Math.-Natur. Reihe, 10, 114-115.

Brooks R. L. (1941). On coloring the nodes of a network. Proc. Cambridge Phil.Soc., 37, 194-197.

Chudnovsky M., Robertson N., Seymour P. & Thomas R. (2006). The strong perfect graph theorem. *Ann. of Math.*, 164, 51-229.

Chudnovsky M. & Seymour P. (2009). Even pairs in Berge graphs. J. Combin. Theory Ser. B, 99, 370-377.

Promsakon C. (2006). Colorability of Glued Graphs. Master Degree Thesis, Chulalongkorn University.

Promsakon C. & Uiyyasathian C. (2006). Chromatic numbers of glued graphs. Thai J. Math., 4, No.3, 75-81.

Lovász L. (1972). A characterization of perfect graphs. J. Combin. Theory Ser. B, 13, 95-98.

West D.B. (2001). Introduction to Graph Theory. (2nd ed.). New Jersey: Prentice Hall.

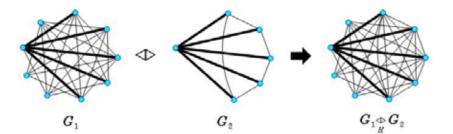


Figure 1. A perfect glued graph of imperfect graphs

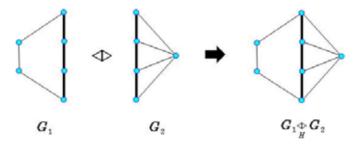


Figure 2. An imperfect glued graph of perfect graphs

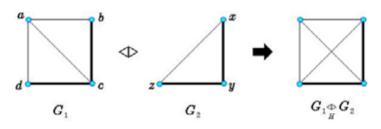


Figure 3. A glued graph containing a new edge