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Abstract

The moving least-square technique is used to construct shape function in the Element Free Galerkin Method
at present, but sometimes the algebra equations system obtained from the moving least-square approximation
is ill-conditioned and the shape function needs large quantity of inverse operation. In this paper, the weighted
orthogonal functions are used as basis ones, the application in the calculation of plate bending shows that the
improved moving least-square approximation is effective and efficient.

Keywords: EFGM, Moving least-square approximation, The weighted orthogonal functions, Plate bending
1. Introduction

The finite element method (Long, 2001, pp. 135-167) has been the main calculation method in the area of
mechanics recently, but when it deals with the simulation of large distortion, the grid cells become distorted,
then we need to divide the grids again to make equilibriums. So it makes some difficulties. In views of this
situation, mesh-free method comes out. This is a new numerical analysis method. Because it need only the
information of nodes and thoroughly or partly cancelled the meshes, and also because it has the advantage
of excellent accuracy and rapid convergence, the mesh-free method rapidly developed in recent years. Doe
(Belytdchko, 1994, pp. 229-256. & Liu, 2005, 64-90) reported that Element Free Galerkin Method (EFGM)
is one of this methods. It bases on Moving least-square approximate (MLS) (Belyschko, 1996, pp. 3-47. &
Genki, 2000, pp. 1419-1433) approximation and its basic idea is to solve problems with some discrete nodes.

But in the practical calculations, to ever fixed node, the MLS degenerates the classical least-square approximate,
and we have to face the ill-conditioned function. This paper aims at the characteristic of MLS, to modify it
using the weighted orthogonal functions to be the basic functions. This method is applied to the plate bending
which has been studied previously (Fu, 2004, pp. 232-307), and the result shows that this method is effective
and efficient comparing with the former one.

2. Moving least-square approximation

EFGM is brought forward by Belytschko, the basic idea is in the domain Q bounded by I, u(x) is the field
function, where x is a point in the field. The local approximation of u(x) (Genki, Y., m., 2000) can be defined
as

W' (x) = Z Pj(x)aj(x) = p’ (Da(x), Vx € Q (1)
j=1

Where p’(x) is built utilizing Pascal’s triangle with complete basis polynomial of m-dimensional, and the
corresponding coefficient is a(x), which is determinated by MLS

J =3 wle—xple () = u el = ) wix = x)[p (xpatx) - u ()P @)
1 1
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Where x; is the node around x, which is in the domain of influence. w(x — x;) is the weight function We use
the weight function just as follows

Ti 2 iy

2 2
Tim; rs
—1 (1 - _t) r<r
= Py
a)l-(ri) = { rl.2+82r,2,,l. rﬁ,i ! i

(Nayroles, 1992, pp. 307-318), this function is simple in form than that brought forward by Belytschko. We
can easily get the parameter, Otherwise the approximation solution with either high rand can be got theorily.

Eq. (4) can be expressed as

J(x) = (pa — u)" w(x)(pa — u) (5a)
Where
pi(x)  pa(x1) - pm(x1)
pi(x2) p2(x2) 0 pm(x2)
p= . : : (5b)
P1(xn) pa(xn) -+ pm(xn)
w(x — x1) 0 “e 0
0 wlx—x1) - 0
w=| L : (50)
6 0 s w(x = x1)

Taking the extreme value of Eq. (5), choosing functions A(x), g(x) at random, sign them as follows:

n

(h, &)= ) wlx = x)h(x)g(xr) (©6)
=1
Then
ar(x)(pi, p1) + a2(X)(pi, p2) + - -+ + am(X)(pi, pm) = (pis up), i=1,2---, m (7a)
forming it as matrix
(p1. ) (p1,p2) -+ (p1, pm) || a1(®) (p1, ur)
(st.m) (Pz,. p2) (Pz,.Pm) Clz.(x) _| (p2, un) (7b)
(Pms PV (Pms P2) -+ (P> Pm) am(x) (Pm, ur)
One obtains a(x),
a=A"'"Bu (8a)
Where
A=Plwp B=plw (8b)
Taking the Eq. (8) into Eq. (1),
uh(x) = Z DO (x)uy (9a)
I=1
where o,
Ox) = ) pi)ATB)y (9b)
j=1

The virtue of Moving least-square approximation is obvious, but sometimes it may make the equation ill-
condition. Otherwise, because of large quantity of inverse operations, the calculation time increases. To solve
the problems, we bring forward the Moving least-square approximation.
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3. The modified Moving least-square approximation

The modified moving least-square approximation employs the weighted orthogonal functions to be basis ones,
and overcome the difficulties of MLS. Considering the Congregation of nodes {x;} and the weight {w;}(i =

1, 2, .-+, m), if a group of function ¢;(x), @,(x), -, @m(x) satisfies the situations just as follows:
k # ]
w#w—gmwmmmw{A Lo k=2 m) (10)
=
One calls ¢ (x), ¢2(x), -+, @m(x) the group of orthogonal functions which about Congregation of nodes {x;}
with the weight {w;}.
In the MLS, if the basic function p;(x), (i = 1, 2, ---, m) is the orthogonal one that about the {x;} with the
weight {w;}(i = 1, 2, --- , m), and the diagonal elements (p;, p;) = 0, (i # j) in the Eq. (7) can be reduced as
(p1, p1) 0 0 ai(x) (p1, u1)
0 (P2, p2) -+~ 0 az(x) (p2, u1)
. ) . ) ) = ) (11)
0 0 o (P> Pm) 11 am(X) (Pm» u1)

Then q;(i = 1, 2,---, m) are solved from Eq. (11).
It is easily to see that a;(x) = 2“2 take it to the Eq. (1),

(Pi, pi)’
n
Z w(x = xp)pi(xpu; 4
hm—Zm = =, ®iuy (124)
(pi» Pi) —
The shape function is
pi(x)p(xp)
O;(x) = w(x — xp)
! ! Z (Pz, pz)
So in the course of solving a;(i = 1, 2,--- , m), we avoid the inverse operations and the solution of ill-condition

equations (Cheng, 2003, pp. 181-186), and the definition and efficiency are all improved. It can be seen from
the above that once a group of basic function which composed by weighted orthogonal functions are obtained,
then we can get a;(i = 1, 2,--- , m), usually we can construct the orthogonal polynomial base using Schmidt
orthogonalization.

4. Basic formulas

According to the Mindlin plate theory (Wang, 1996, pp. 154-167), the displacement and corner of a point
are the independent field functions, the approximation corner.deflection of this point can be imitate from the
relational data in the domain, supposing that the nodes in the domain is n, and the array of the nodes of corner
and deflection are

=[uy uy--- u ]’ (13a)
Where

* * *
u; = lw; by

0,17, (1,2, - . n) (13b)

According to MLS, the field function
u=[w 6, 6, =ou (14a)

Where
=gl ¢l Pul] (14b)

is the shape function, and I is 3 * 3 unit matrix and n is the number of nodes in the field. The generalized strain
of the plate is

k=[- 222 (E ) e (15a)
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Where 6,, 6, are the rotation whose direction agree with %‘:, %’ and B is the strain array.

_¢1,x 0 o -- _¢n,x 0 0
B=| 0 —¢1, O -~ 0 —¢,, O (15b)
_¢1,y _¢1,x 0o - _¢n,y _¢n,x 0

The generalized relation between stress and strain is

M=[M, M, M,|"=DK (16a)

Where D is the elastic matrix, to the isotropic material

£ I w O 1 w O
D= w1 0 |=pyfpu 1 0 (16b)
=91 0 0 L 00 Lt

Where Dy is the stiffness matrix of the plate and is the Poission ratio.

In order to easily solve the problem of the curving plate at any condition, penalty function is imposed on the
essential boundary in the programming of this paper. To the elastic plate of isotropy, considering the functional
of shearing deformed Mindlin plate theory,

1
= —fkTDde—qudQ+al[f(a—w—Hx)2d9+f(a—w—€y)2d§2]
2 Q Q Q O0x Q ay

+an f [0 = 6,)* + (85 — B,)*1ds + a3 f (w - @)*ds - f Guwdss + f (M0, + M, 65)ds — (17)
S1 S1+52 s3 S1+52

In the above equation,  is the penalty factor of the shearing deformation in the functional, @y = Gt/2k , G is
the shearing mold, t is the thickness of the plate, & is the regulated coefficient which considering the shearing
deforming non-proportionate distributed along the orientation of thickness. Take k = 6/5, a», @3 is the penalty
function which fulfill the essential conditions (physical significance and expression of the other signs can be
found in the document (Genki, 2000, pp. 1419-1443). The numberical result shows that, when one takes
@ = a3 = (10° = 10°E (E is the elastic mold ), the definition of the result is fairly good, it shows that the
essential boundary conditions which caused by this method, make the coefficient matrix symmetry and positive,
easily solved.

5. Numerical example

A rectangular plate sustaining even load, one of its subtense (x=0 and x=a )are freely-supported, the third is free,
the forth is built-in (y=0)(as fig. 1). The load ¢ = 2.2 x 10*N/m?, the length of side are a = 10.0m, b = 5.5m,
the thickness ¢ = 0.1m, Young’s modulus E = 2.0 x 10'! pa, Poission ratio u = 0.3. In this paper, we layout
16 x 9 even distribution nodes to get 15 X 8 integral sub-domains, and the Gaussian integration is 4 X 4. The
deflection of the plate center on the cross-section is as Tab.1, it shows that the solution of this paper is near to
the solution obtained by ANSYS. The deflection along the center Line being parallel to x and y axis of the Plate
are as Fig.1 and Fig.2.

6. Conclusions

This paper, which aims at the shortcoming of the MLS being easily forming the ill-condition function; the
weighted orthogonal functions are used as basis functions to revise the MLS. Compared with the original, it
breaks away from the inverse operation, and the amount of calculation is small. The result of the calculation of
plate bending shows that the improved MLS is effective and efficient comparing with the result which obtained
by the ANSYS software.
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Table.l The deflection ofthe plate center onthe crosz-zection @ (] o L]

x/a x/B
relative ANSYS thiz paper’s ANEYS thisz paper’s
distance zolution solution solution zolution
0 0.000 0.000 0.000 0.000
0.1 1432 1432 2256 21236
02 3134 3179 4221 43325
0.3 4788 4812 3675 3600
04 3979 6032 6.487 63571
0.3 7036 7078 T.065 7078
06 7430 7324 6487 6371
0.7 2243 2267 3675 3690
0.8 2207 231 4221 4325
09 0434 0346 2256 21236
1.0 10.60 10.72 0.000 0.000
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Figure 1. A loaded rectangular plate With complex edges conditions
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:15'3 the deflection along the center line of the plate

nar .

04} :

o2 1

DU 01 02 03 04 05 06 07 08 085 1

the relatiwve distance of along the center
line being parllel to x aix of the plate

the deflection of sepatate node on the cross—section

Figure 2. The deflection along the center Line being parallel to x axis of the Plate

x 10" the deflection along the center line of the plate
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Figure 3. The deflection along the center Line being parallel to y axis of the Plate
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