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Abstract

In this paper, we have suggested and analyzed a new two-step type iterative methods for solving nonlinear equations

of the type. We show that this new two-step method is cubic convergence method. It is proved that this method

is better than the Newton method and all results in (Soheili et al., 2008). Several examples are given to illustrate

the efficiency of this new method and its comparison with other methods. This method can se considered as a

significant improvement of the Newton method and its variant forms.
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1. Introduction

Iterative methods for finding the roots of nonlinear equations f (x) = 0 are common yet important problem in

science and engineering. Analytical methods for solving such equations are difficult or almost non-existent. It has

been shown in (Noor, 2006b) that these quadrature formulas can be used to develop some iterative methods for

solving nonlinear equations, we have suggested and analyzed new iterative method by using the Newton and the

Halley (Noor & Inayat Noor, 2007) methods and some newly developed method by (Noor, 2006a; Noor & Inayat

Noor, 2007; Noor & Ahmad, 2006a) as predictor method and then use this new method as a corrector method. We

prove that this new method has a cubic convergence. Several examples are given to illustrate the efficiency and

performance of this new method and its comparison with other methods. All test problems reveals a good accuracy

and fast convergence of the new method.

2. Iterative Method and Convergence

Consider the nonlinear equation of the type f (x) = 0. For simplicity, assume that r is a simple root zero and γ is

an initial guess sufficiently close to r. Using the Taylor’s series expansion of the function f (x), we have

f (γ) + (x − γ) f ′(γ) +
(x − γ)2

2
f ′′(γ) = 0

from which we have

x = γ − f (γ)

f ′(γ)
− (x − γ)2 f ′′(γ)

2 f ′(γ)
This formulation allows us to suggest the following iterative methods for solving the nonlinear equations.

Algorithm 2.1 For a given x0 find the approximate solution xn+1 by the iterative scheme

xn+1 = xn − f (xn)

f ′(xn)
− (xn+1 − xn)2 f ′′(xn)

2 f ′(xn)
,

which is an implicit method, since xn+1 occurs on both sides of the equation, which it itself a difficult problem. We

remark that f ′′(xn) = 0 , then algorithm 2.1 reduces to the well known Newton Method, that is.

Algorithm 2.2 For a given x0, find the approximate solution xn+1 by the iterative scheme

xn+1 = xn − f (xn)

f ′(xn)
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It is well known that algorithm 2.2 has a quadratic convergence, see (Burden & Douglas Faires, 2001). Using this

algorithm as a predictor, in (Noor, 2006a) has suggested and analyzed the following two-step iterative method.

Algorithm 2.3 For a given x0, find the approximate solution xn+1 by the iterative schemes

yn = xn − f (xn)

f ′(xn)

xn+1 = xn − f (xn)

f ′(xn)
− (yn − xn)2 f ′′(xn)

2 f ′(xn)

It has been shown (Noor, 2006a) that algorithm has a cubic convergence and is called the two-step iterative method.

Now using algorithm 2.3 to suggest and analyze a new two-step iterative method for solving the nonlinear equation,

which is the tain motivation of this paper. We use in the following algorithms as predictor in (Nooc & Inayat Noor,

2007).

Algorithm 2.4 For a given x0, find the approximate solution xn+1 by the iterative schemes

yn = xn − 2 f (xn) f ′(xn)

2( f ′(xn))2 − f (xn) f ′′(xn)
, n = 0, 1, 2, ...

xn+1 = xn − f (xn)

f ′(xn)
− (yn − xn)2 f ′′(xn)

2 f ′(xn)

We point out that algorithm 2.4 can be written in the following equivalent form.

Algorithm 2.5 For a given x0 find the approximate solution xn+1 by the iterative scheme

xn+1 = xn − f (xn)

f ′(xn)
− 2 f 2(xn) f ′(xn) f ′′(xn)

[2( f ′(xn))2 − f (xn) f ′′(xn)]2

Algorithm 2.6 For a given x0 find the approximate solution xn+1 by the iterative scheme

yn = xn − 2 f (xn) f ′(xn)

2( f ′(xn))2 − f (xn) f ′′(xn)

xn+1 = yn − (yn − xn)2 f ′′(xn)

2 f ′(xn)

We now study the convergence of algorithm 2.4. In similar way, one can prove the convergence of other two-step

algorithm 2.6.

Theorem 1 Let r ∈ I be a simple zero of sufficiently differentiable function f : ⊆ R→ R for an open interval I. If
x0 is sufficiently close to r, then the two-step method defined by the algorithm 2.4 has third-order convergence.

Proof. Consider to

yn = xn − 2 f (xn) f ′(xn)

2( f ′(xn))2 − f (xn) f ′′(xn)
(1)

xn+1 = xn − f (xn)

f ′(xn)
− (yn − xn)2 f ′′(xn)

2 f ′(xn)
(2)

Let r be a simple zero of f . Since f is sufficiently differentiable, by expanding f (xn) and f ′(xn) about r, I can get

f (xn) = f (r) + (xn − r) f ′(r) +
(xn − r)2

2!
f (2)(r) +

(xn − r)3

3!
f (3)(r) +

(xn − r)4

4!
f (4)(r) + ...

f (xn) = f ′(r)(en + c2e2
n + c3e3

n + c4e4
n + ...) (3)

f ′(xn) = f ′(r)(1 + 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + ...) (4)

f ′′(xn) = f ′(r)(2c2 + 6c3en + 12c4e2
n + 20c5e3

n + 30c6e4
n + ...) (5)
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where ck =
1
k!

f (k)(r)

f ′(r)
, k = 1, 2, 3, ..., and en = xn − r Now from (4) and (5), we have

f (xn)

f ′(xn)
= en − c2e2

n + 2(c2
2 − c3)e3

n + (7c2c3 − 4c3
2 − 3c4)e4

n + ... (6)

Using (3), (4) and (5) in (1) we have:

yn = r + (c2
2 − c3)e3

n + (−3c3
2 + 6c2c3 − 3c4)e4

n + (148c3c2
2 + 5c4

2 + 12c2c4 + 6c2
3)e5

n + ... (7)

From (4), (5) and (7) I can get

(yn − xn)2 f ′′(xn)

2 f ′(xn)
= c2e2 − (2c2

2 − 3c3)e3 + (2c3
2 − 37c2c3 + 6c4)e4 + ... (8)

Using (6) and (8) in (2), we have:

xn+1 = xn−(en−c2e2
n+2(c2

2−c3)e3
n+(7c2c3−4c3

2−3c4)e4
n+...)−(c2e2

n−(2c2
2−3c3)e3

n+(37c2c3+2c3
2+6c4)e4

n+...) (9)

From (9), en+1 = xn+1 − r and en = xn − r we have

en+1 = en− (en−c2e2
n+2(c2

2−c3)e3
n+ (7c2c3−4c3

2−3c4)e4
n+ ...)− (c2e2

n− (2c2
2−3c3)e3

n+ (−37c2c3+2c3
2+6c4)e4

n+ ...)

en+1 = −c3e3
n + O(e4)

Which shows that the algorithm 2.4 has third-order convergence. Since asymptotic convergence of Newton method

is c2 and from Theorem 1, We deduced that the convergence rate of algorithm 2.4 is better than the Newton method

and the method of Soheili (SM) (Soheili et al., 2008). We know that the cubic convergent method is vastly superior

to the linear and the quadratically convergent methods.

3. Numerical Results

We present some examples to illustrate the efficiency of the new developed two-step methods, compare the Newton

method (NM), the method of Soheili (SM), and the methods (BM), introduced in this present paper (algorithms

2.4 and 2.6). We take ε = 10−15 as tolerance. The following criteria is used for estimating the zero:

(i) |xn+1 − xn| < ε,
(ii) | f (xn+1)| < ε.
Table 1 presents iteration number comparison of algorithms 2.4, and 2.6 with (NM) and (SM), in given precision.

In Table 2, the CPU time (per second) of the new algorithms, (NM) and (SM) are compared. The numerical

computations listed in tables are performed using Fortran programs with double precision.

4. Conclusions

The present two-step methods is generalized and applied for solving the nonlinear algebraic equations. The nu-

merical results in the tables 1,2 show that the new method is very effective and provide highly accurate results in a

less number of iterations as compared with Newton method (NM) and (SM) .
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Table 1. Examples and comparison between other methods

Equation x0 Other methods Present method (BM) xn

(NM) (SM) Algorithm 2.4 Algorithm 2.6

ex2+7x−30 − 1 = 0 4 20 13 6 8 3.000000000000000

x3 − 10 = 0 1.5 7 5 4 4 2.154434690031884

x2 − ex − 3x + 2 = 0 2 6 4 3 4 0.257530285439861

sin2(x) − x2 + 1 = 0 -1 7 5 3 4 -1.404491648215341

x10 − 1 = 0 1.5 10 7 4 5 1.000000000000000

11x11 − 1 = 0 0.7 8 6 4 5 0.804133097503664

sin(1/x) − x = 0 2 6 4 4 4 0.897539461280487

Table 2. The CPU time (per second) of aliorgthms

Equation Other methods Present method (BM)

(NM) (SM) Algorithm 2.4 Algorithm 2.6

ex2+7x−30 − 1 = 0 0.171875 0.109375 0.052594 0.062500

x3 − 10 = 0 0.078125 0.031250 0.025000 0.025000

x2 − ex − 3x + 2 = 0 0.046875 0.031250 0.023438 0.025000

sin2(x) − x2 + 1 = 0 0.046875 0.046875 0.023438 0.025000

x10 − 1 = 0 0.078125 0.046875 0.025000 0.039062

11x11 − 1 = 0 0.062500 0.031250 0.025000 0.039062

sin(1/x) − x = 0 0.046875 0.031250 0.025000 0.025000
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