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Abstract

Let G be a finite directed graph, β(G) the minimum size of a subset X of edges such that the graph G′ =
(V, E � X) is directed acyclic and γ(G) the number of pairs of nonadjacent vertices in the undirected graph
obtained from G by replacing each directed edge with an undirected edge. Chudnovsky, Seymour and Sullivan
proved that if G is triangle-free, then β(G) ≤ γ(G). They conjectured a sharper bound (so called the “CSS
conjecture”) that β(G) ≤ γ(G)/2. Nathanson and Sullivan verified this conjecture for the directed Cayley
graph Cay(Z/NZ, EA) whose vertex set is the additive group Z/NZ and whose edge set EA is determined by
EA = {(x, x+ a) : x ∈ Z/NZ, a ∈ A} when N is prime and |A| ≤ (N − 1)/4 by introducing “height”. In this work,
we extend the definition of height and apply to answer the CSS conjecture for Cay(Z/NZ, EA) to any positive
integer N and |A| ≤ (N − 1)/4.

Keywords: Cayley graphs, CSS conjecture, Nathanson heights

1. Introduction

A finite directed graph G = (V, E) consists of two finite sets, the set V = V(G) of vertices of G and the set
E = E(G) ⊆ V × V of edges of G. Let v and v′ be distinct vertices of the finite directed graph G. A directed

path of length l in G from v to v′ is a sequence of l edges {(vi−1, vi)}li=1 such that v = v0 and v′ = vl. A directed

cycle of length l in G is a sequence of l edges {(vi−1, vi)}li=1 such that v0 = vl. A loop, a digon and a triangle

are directed cycle of length 1, 2 and 3, respectively. A triangle free graph is a graph with no loops, digons, or
triangles. A directed graph is called acyclic if it has no directed cycles.

Let β(G) be the minimum size of a subset X of edges such that the graph G′ = (V, E �X) is directed acyclic, and
let γ(G) be the number of pairs of nonadjacent vertices in the undirected graph obtained from G by replacing
each directed edge with an undirected edge. Chudnovsky, Seymour and Sullivan (Chudnovsky, M., 2007)
proved that if G is a triangle-free digraph, then β(G) ≤ γ(G). They conjectured a sharper bound (so called the
“CSS conjecture”) that if G is a triangle-free digraph, then β(G) ≤ γ(G)/2.

Let N be a positive integer and A a nonempty subset of Z/NZ � {0} of cardinality d ≤ N. Consider the directed
Cayley graph G = Cay(Z/NZ, EA) whose vertex set is the additive group Z/NZ and whose edge set EA is
determined by

EA = {(x, x + a) : x ∈ Z/NZ, a ∈ A}.

� www.ccsenet.org/jmr 3
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Assume that G is triangle free. Then G has neither loops nor digons, so the number of pairs of adjacent vertices
is the same as the number of directed edges, which is dN. Thus the number of pairs of nonadjacent vertices is

γ(G) =
(
N

2

)
− dN =

N(N − 1 − 2d)
2

. (1)

In this case, the inequality in the CSS conjecture becomes

β(G) ≤ γ(G)
2
=

N(N − 1 − 2d)
4

.

By introducing the term “height in finite projective space”, Nathanson and Sullivan verified this conjecture
when N is prime in (Nathanson, M. B., 2007) and d ≤ (N − 1)/4. Later, the height on the finite projective line
was studied extensively in (Batson, J., 2008).

Using the “height” idea together with some elementary number theory facts involving the unit group of Z/NZ
and its cardinality, we prove the CSS conjecture when N is any positive integer expanding Nathanson and
Sullivan’s results. The detail of our work is divided into two sections. Section 2 presents the definition and
bound of the height defined for Z/NZ. The final section talks about the CSS conjecture and shows how to relate
the height to it.

2. Heights

Let N and d be positive integers. We define an equivalence relation ∼ on the set of nonzero d-tuple (Z/NZ)d �
(0, . . . , 0) by

(a1, a2, . . . , ad) ∼ (b1, b2, . . . , bd) ⇔ (b1, b2, . . . , bd) = λ(a1, a2, . . . , ad)

for some λ ∈ (Z/NZ)×. Here (Z/NZ)× stands for the unit group of Z/NZ and we use (Z/NZ)∗ for the set of
nonzero element in Z/NZ. Observe that (Z/NZ)× = (Z/NZ)∗ if and only if N is a prime. Also, |(Z/NZ)×| =
φ(N), the Euler φ-function. Write (a mod N) for the least nonnegative integer in the congruence class a ∈
Z/NZ. We first compute

Lemma 1 For a ∈ (Z/NZ)∗, ∑
k∈(Z/NZ)×

(ka mod N) =
Nφ(N)

2
.

Proof. Let a ∈ (Z/NZ)∗. If N = 2, then (a mod 2) = 1 = 2φ(2)/2. Next we assume that N > 2. It is clear that
k ∈ (Z/NZ)× ⇔ N − k ∈ (Z/NZ)× for all k ∈ (Z/NZ)∗. Since N > 2, k � N − k for every k ∈ (Z/NZ)×. Then

(Z/NZ)× = {k,N − k : k ∈ (Z/NZ)× and k < N/2}
and so φ(N) is even. Note that

((N − k)a mod N) = ((Na − ka) mod N) = N − (ka mod N)

for all k ∈ (Z/NZ)×. Thus
∑

k∈(Z/NZ)×
(ka mod N) =

∑
k∈(Z/NZ)×,

k<N/2

[(ka mod N) + ((N − k)a mod N)]

=
∑

k∈(Z/NZ)×,
k<N/2

[(ka mod N) + (N − (ka mod N))]

=
∑

k∈(Z/NZ)×,
k<N/2

N =
Nφ(N)

2
.

Hence we have the lemma. �
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We denote the equivalence class of the point (a1, a2, . . . , ad) by 〈a1, a2, . . . , ad〉 and the set of all equivalence
classes by Pd−1(Z/NZ). The height of the class a = 〈a1, a2, . . . , ad〉 ∈ Pd−1(Z/NZ) is given by

hN(a) = min

⎧⎪⎪⎨⎪⎪⎩
d∑

i=1

(kai mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎬⎪⎪⎭ .

Since a � 0, there exists a j ∈ (Z/NZ)∗ such that (ka j mod N) > 0 for every k ∈ (Z/NZ)×, so hN :
Pd−1(Z/NZ) → Z+. We use d∗(a) to denote the number of nonzero components of a = 〈a1, . . . , ad〉 ∈
Pd−1(Z/NZ), that is, the number of ai � 0, and we define

d∗(A) = max{d∗(a) : a ∈ A}
for A ⊆ Pd−1(Z/NZ). Clearly, hN(a) ≤ d∗(a)(N − 1) for all a ∈ Pd−1(Z/NZ). For any nonempty finite subset A

of Z+ with |A| = m, we note that min A ≤ (1/m)
∑

a∈A a. By Lemma 1, we have

hN(a) = min

⎧⎪⎪⎨⎪⎪⎩
d∑

i=1

(kai mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎬⎪⎪⎭

≤ 1
φ(N)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k∈(Z/NZ)×

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

i=1

(kai mod N)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1
φ(N)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k∈(Z/NZ)×
(kai mod N)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1
φ(N)

(
d∗(a)

Nφ(N)
2

)
=

d∗(a)N
2
.

Since heights are positive integers, hN(a) ≤ �d∗(a)N/2
. Hence we get a better bound for hN(a). We summarize
the above computation with its corollary as follows.

Lemma 2 For a ∈ Pd−1(Z/NZ), hN(a) ≤ �d∗(a)N/2
.

Corollary 3 (i) For d ≥ 1 and a ∈ Pd−1(Z/2Z), h2(a) = d∗(a).
(ii) For N ≥ 2 and a = 〈a〉 ∈ P0(Z/NZ), hN(a) ≤ �N/2
. In particular, if a ∈ (Z/NZ)×, then

hN(a) = min{(ka mod N) : k ∈ (Z/NZ)×} = min{(k mod N) : k ∈ (Z/NZ)×} = 1.

3. The CSS Conjecture

In this section, we deal with the CSS conjecture for the Cayley graph G = Cay(Z/NZ, EA). Notice that if the
outdegree of every vertex in finite directed graph is at least one, then the graph contains a cycle. Thus every
finite directed acyclic graph contain at least one vertex with outdegree 0. Nathanson and Sullivan used this to
prove the following theorem and derived its consequence. Their proofs can be found in (Nathanson, M. B.,
2007). We recall this work in

Theorem 4 (Nathanson, M. B., 2007) Let V = {v0, v1, . . . , vN−1} be the vertex set of the directed graph G. Then

G is directed acyclic if and only if there is a permutation σ of {0, 1, . . . ,N − 1} such that r < s for every edge

(vσ(r), vσ(s)) of the graph G.

Corollary 5 (Nathanson, M. B., 2007) Let G = (V, E) be a directed graph with vertex set {v0, v1, . . . , vN−1} and

let Σ ⊆ S N be a set of permutations of {0, 1, . . . ,N − 1}. For σ ∈ Σ, let Bσ be the set of edges (vσ(r), vσ(s)) ∈ E

with r ≥ s. Then β(G) ≤ min{|Bσ| : σ ∈ Σ}.

This corollary yields an immediate result on our Cayley graph Cay(Z/NZ, EA), namely,

� www.ccsenet.org/jmr 5
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Lemma 6 Let N ≥ 2, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph

constructed from A. Let Σ be a set of permutations of Z/NZ and σ ∈ Σ. For i ∈ Z/NZ and j ∈ {1, . . . , d}, define

ti j ∈ Z/NZ by σ(i) + a j = σ(ti j). Then EA = {(σ(i), σ(ti j)) : i ∈ Z/NZ and j ∈ {1, . . . , d}}. Let

Bσ = {(σ(i), σ(ti j)) : (i mod N) > (ti j mod N) and j ∈ {1, . . . , d}}.
Then the graph G′ = (Z/NZ, EA � Bσ) is directed acyclic for every permutation σ ∈ Σ and β(G) ≤ min{|Bσ| :
σ ∈ Σ}.

For k ∈ (Z/NZ)×, define the permutation σk of Z/NZ by σk(i) = ki for all i ∈ Z/NZ. Let Σ = {σk : k ∈
(Z/NZ)×} be the set of φ(N) permutations of Z/NZ. Fix k ∈ (Z/NZ)×. For i ∈ Z/NZ and j ∈ {1, . . . , d}, define
ti j ∈ Z/NZ � {i} by σk(ti j) = σk(i) + a j. Since k ∈ (Z/NZ)×, there exists uk ∈ (Z/NZ)× such that kuk = 1. Let
r j = (uka j mod N). Then 1 ≤ r j ≤ N − 1 and a j = kr j. Thus

σk(ti j) = σk(i) + a j = ki + kr j = k(i + r j) = σk(i + r j),

so ti j = i+ r j. Since 1 ≤ r j ≤ N −1, (ti j mod N) = (i mod N)+ r j−N < (i mod N) if (i mod N)+ r j ≥ N.
Moreover, if (i mod N)+r j < N, then (ti j mod N) = (i mod N)+r j > (i mod N). Hence (i mod N) > (ti j

mod N) ⇔ N − r j ≤ (i mod N).

Let Bσk
= {(σk(i), σk(ti j)) : (i mod N) > (ti j mod N) and j ∈ {1, . . . , d}}. Then

|Bσk
| = |{(σk(i), σk(ti j)) : N − r j ≤ (i mod N) ≤ N − 1}| =

d∑
j=1

r j =

d∑
j=1

(uka j mod N).

Applying Lemma 6 and the fact that {uk : k ∈ (Z/NZ)×} = (Z/NZ)×, we get

β(G) ≤ min{|Bσk
| : k ∈ (Z/NZ)×}

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑

j=1

(uka j mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑

j=1

(ka j mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= hN(〈a1, . . . , ad〉).
Thus β(G) ≤ hN(〈a1, . . . , ad〉). Together with Lemma 2, we have

Lemma 7 Let N ≥ 2, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph

constructed from A. Then

β(G) ≤ hN(〈a1, . . . , ad〉) ≤ dN

2
.

This lemma gives

Theorem 8 Let N ≥ 5, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph

constructed from A which has no digons. If d ≤ (N − 1)/4, then β(G) ≤ γ(G)/2.

Proof. Assume that d ≤ (N − 1)/4. Then

dN

2
= dN − dN

2
≤ N(N − 1)

4
− dN

2
=

N(N − 1 − 2d)
4

.

By Lemma 7 and Eq. (1), we get

β(G) ≤ dN

2
≤ N(N − 1 − 2d)

4
=
γ(G)

2
as desired. �
Hamidoune proved the Caccetta-Häggkvist conjecture for Cayley graphs:

6 � www.ccsenet.org/jmr
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Theorem 9 (Hamidoune, Y. 0., 1981, p.349-355 or Nathanson, M. B., 2006) Let A ⊆ (Z/NZ)∗ and d = |A| ≥
N/k. Then the Cayley graph G = Cay(Z/NZ, EA) contains a cycle of length at most k. In particular, if G is

triangle-free, then d < N/3.

Back to the CSS conjecture. Since dN/2 ≤ N(N − 1 − 2d)/4 if and only if d ≤ (N − 1)/4, it follows that, for a
fixed N, we only need to consider sets A of cardinality d > N/4. Combined with Theorem 9, in order to prove
the CSS conjecture for the group Z/NZ, it remains to work only on the sets A of size d, where N/4 < d < N/3.
The following example shows that sometimes the height is greater than γ(G)/2, so we cannot conclude the CSS
conjecture without computing β(G) explicitly.

Example 10 Let N = 14 and A = {1, 2, 8, 9} ⊂ (Z/14Z)∗. Then N/4 < d < N/3. Since 0 is not in A, 2A

and 3A, G = Cay(Z/14Z, EA) is a triangle-free digraph. We have h14(〈1, 2, 8, 9〉) = 20 and γ(G) = 35. Thus

h14(〈1, 2, 8, 9〉) > γ(G)/2.
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Abstract

In this paper, we shall give a set R∗ and indicate its properties, and thus, some abnormal results, such as the
limit number may be successor, the natural number may be transfinite, the infinite set can not be equipotent to
its proper subset etc., will be obtained.

Keywords: Remainder matrix, Axis number, Double-direction induction

1. On R(n)

Assume the ordered set formed by front (n+1) prime numbers on the number axis (We refer only to the non-
negative integers on right of number axis) in accordance with natural order be

Dn = {d0, d1, d2, · · · , dn}
make product

Zn =

n∏
i=0

di

, and denote the directed and closed segment from 0 to Zn on the axis by

Mn = [0 − Zn]

The (Zn + 1) integers in the Mn form an ordered set, in symbols

Zn = {0, 1, 2, · · · , Zn}
For any m ∈ Zn, dividing the m successively by every prime in Dn, assume the remainders be respectively

rm0, rm1, · · · , rmn

and rewrite them as a single column matrix

R(n)(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rm0
rm1
...

rmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Obviously, for any one of numbers in Zn there is a definite matrix of single column corresponding with it. We
arrange all these column matrices in natural order, such that they form a n-degree matrix of remainders

R(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00 r10 · · · rZn0
r01 r11 · · · rZn1
...

...
. . .

...

r0n r1n · · · rZnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8 � www.ccsenet.org/jmr



Journal of Mathematics Research March, 2009

So the integral points in Mn, the integers in Zn and the columns in R(n) (respectively rejecting their last element)
naturally form one-to-one correspondences (refer following 1.1, 1.2), each of them may therefore be replaced
by the other.

The R(n) has following properties:

1.1 Any two different numbers in Zn except Zn(R(n)(Zn) ≡ R(n)(0)) correspond to two different columns in R(n)

(Two columns are called the same or equal when only when their corresponding elements at the same rows are
all equal, in sign ”≡”).

Proof: Assume that there were integers i, j ∈ [0, Zn) and i < j, such that R(n)(i) ≡ R(n)( j), then by congruence
property (Hua, 1964, P. 3, P. 22.), the difference ( j − i) can be integrally divided by each of all primes in Dn,
therefore by Zn also. This is contrary to known that ( j − i) < Zn.

1.2 The all different columns in R(n) (Both the same first and last columns termed 0-columns which are com-
posed all by zeros may disregard the last one) include all possible combinations taking respectively one remain-
der of each primes in Dn.

Proof: Assume di ∈ Dn, the all possible remainders of di are

P(di) = {0, 1, 2, · · · , di − 1}

Taking ri ∈ P(di)(i = 0, 1, 2, · · · , n), we obtain a combination of remainders as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
r1
...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Evidently, the number

of all possible such combinations is

C1
d0
•C1

d1
• · · · •C1

dn
= d0d1 · · · dn = Zn

By 1.1, there exactly are Zn different columns in R(n), and thus the 1.2 has been proved.

We may separate all the columns in R(n) into two classes: A column which does not contain the element zero
is called a column of first class, otherwise a column of second class. The integral points in Mn (or numbers in
Zn) corresponding with the columns of first class are termed residual points (or residual numbers) of degree n,
easily known

1.3 The number (total) of all columns of first class in R(n) is

Z′n =
n∏

i=0

(di − 1)

. By 1.2, we only except the element zero from P(di)(i = 0, 1, 2, · · · , n), then get the combinations so done.
Denote the ordered set (in natural order) of all residual numbers in Zn by

�(n) = {δ(n)
0 , δ

(n)
1 , · · · , δ(n)

Z′n−1}

easily known, δ(n)
0 = 1, whereas the δ(n)

1 must be the next prime d(n+1). Obviously, the primes are infinite.

Calling the column R(n)( 1
2Zn) (the element at the first row is 1, and the others all 0) the mid-column of R(n), we

have

1.4 The two classes of columns in R(n) are all symmetrically distributive with reference to the mid-column. The
mutually symmetric columns R(n)(m) and R(n)(Zn − m)(m ∈ Zn) satisfy

rmi + r(Zn−m)i ≡ 0 mod(di) (i = 0, 1, 2, · · · , n)

We call R(n)(m) and R(n)(Zn −m) the mutually conjugate columns, in symbols, R(n)(m) = R(n)(Zn −m), and also
so do for two relative points or numbers.

� www.ccsenet.org/jmr 9
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Two columns in R(n) are called mutually independent columns when only their corresponding elements of all
the same rows are different, otherwise, mutually dependent columns. And so call the relative points or numbers.

1.5 For any integer i ∈ Zn, when the i is an odd the column R(n)(i) does not have any independent column of
first class; When the i is an even, then the R(n)(i) has such columns so many that the number q satisfies

Z”
n ≤ q ≤ Z′n whereZ”

n =

n∏
i=1

(di − 2)

1.6 For any even h ∈ Zn, assume that its independent points of first class (i.e. independent residual points)
laying within the interval [h, Zn] have number q′, then in Mn the number of all pairs of residual points being h

apart (i.e. the distance between them is h length units) is necessarily the q′, and the converse is also true.

Proof: Assume that δ ∈ [h, Zn] is a residual number independent of h, then the R(n)(δ − h) must be a column
of first class (i.e. the (δ − h) is also a residual number). If not, the element in R(n)(δ) that corresponds with the
element zero of R(n)(δ− h) is necessarily equal to the relative element of R(n)(h). This contradicts that the h and
δ are mutually independent. Conversely, assume δ1 and δ2 be two residual numbers in Mn and δ2 − δ1 = h, then
δ2 ∈ [h, Zn], above all, the Z2 must be independent of h. Because if not, for both R(n)(δ2) and R(n)(h), say, their
elements of i-th row were equal, then the element of i-th row in R(n)(δ1) must be zero. This contradicts that the
δ1 is a residual number.

Particularly, in the Mn, the number of all twin residual numbers is (Z”
n − 1) pairs.

2. On R

According to congruence properties, the whole semi-axis of numbers forms infinitely many periodic segments:
[0, Zn], [Zn, 2Zn], [2Zn, 3Zn], · · · . Each of them corresponds to the same R(n).

Adding the next prime dn+1 into the Dn, we obtain relatively Dn+1, Zn+1, Zn+1, Mn+1 and R(n+1). Obviously, the
R(n+1) involves dn+1 ones of the same R(n) ranging periodically, but because of increasing a row of new elements
at last (ranging the P(dn+1) periodically to Zn times), among the old columns of first class in R(n+1) there now
are Z′n ones to have translated into second class. Evidently, the columns of first class decrease relatively. For the
sake of convenience, the process of translating from R(n) to R(n+1) through increasing the next prime is called
regular evolution. Clearly, under the regular evolution, the properties stated before remain unchanged always.

Let R(n) by the order of natural numbers regularly evolves on infinitely (i.e. n → ∞ ), then

Dn → D = {d0, d1, · · · , dn, · · · }

Zn → Z =

∞∏
i=0

di

Mn → M = [0 − Z]

Zn → Z = {0, 1, 2, · · · , Zn, · · · , Z}

R(n) → R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00 r10 · · · rZn0 · · · rZ0
r01 r11 · · · rZn1 · · · rZ1
...

... · · · ... · · · ...

r0n r1n · · · rZnn · · · rZn

...
... · · · ... · · · ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The R still preserves similar properties about mentioned before, above all

2.1 The R also possesses the last column R(Z) which is identical with the first column R(0), both are composed
by infinitely many zeros. Clearly, the proper factors of Z involve every prime in D, and thus Z ≡ 0 mod(di)(i =
0, 1, 2, · · · ). Again, the index of each prime factor of Z is degree 1, hence the Z is the minimal number by all
primes as factors.

Similarly, the R possesses the mid-column R( 1
2Z), its element at the first row is 1, and the others are all zeros.
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2.2 In R, the first column R(0) possesses the successor R(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...

1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, the last column R(Z) possesses the

predecessor R(Z−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 − 1
d1 − 1
...

dn − 1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(the (Z−1) is therefore of definite meaning, and the Z is a successor number),

and the others possess both predecessor and successor. For this sake, we require only to subtract together 1 from
every element of given column (if its some element, say one at mark i row, is zero, then do after replacing it by
corresponding prime di ), or to add together 1 to every element of the column (if the element at mark i row plus
1 is equal to di, then transform into zero).

Let X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
r1
...

rn

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ri ∈ P(di), i = 0, 1, 2, · · · ), Xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
r1
...

rk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and Rk be the submatrix formed by the front (k+1)

rows of R (the Rk is composed only by the R(k) and its periodic segments), then.

2.3 Any X is necessarily a column of R and any column of R must be some X.

Proof: Assume that there were an X being not a column of R, then there necessarily exists a certain k ∈ ω0 (the
ω0 is ordered set of natural numbers), such that the Xk � Rk, and therefore Xk � R(k) as well as any periodic
segment of R(k). This obviously contradicts the 1.2. Similarly, any column of R can only be some X.

2.4 In R, any two columns but the R(Z) are mutually unlike.

Proof: (a) It may be alleged that, in R, there is no any other 0-column (its elements are all zeros) to be between
the R(0) and R(Z). Otherwise, if there were α(0 < α < Z) such that R(α) could be a 0-column, then α ≡
0mod(di)(i = 0, 1, 2, · · · ), thus every prime in D would be proper factor of the α, and so, α ≥ Z (see 2.1), this
is contrary to the assumption. (b) In R, there are no any two non-zero columns to be the same. Otherwise, if
there were non-zero columns R(α) and R(β)(α, β ∈ Z, andα < β), such that R(α) ≡ R(β), then by R0−α denote
the submatrix composed by all the columns from R(0) to R(α) in R, and on the R parallely translate it to right,
so that to coincide with R0−β up to their last column, thus the two submatrixes, because their last columns
are identical, by the double-direction induction (see late 3.2) easily known, the column (denoted by R(β − α))
coinciding with the first column of R0−α must be a 0-column. By (a), this is impossible.

Denote the matrix obtained after to reject the last column R(Z) off the R by R∗, and conceive the R∗ as an ordered
set of its columns in natural order, then the R∗ has minimal and maximal elements R∗(0) and R∗(Z − 1) (called
two extreme columns). Assume X be a non-extreme column of R∗, then clearly, the X has both immediate
predecessor and successor. Therefore, the R∗ is a discrete set without any ”limit (or inaccessible) element”.

As R(n), the R∗ contains the columns of first class (e.g. in the column X let rn = n + 1(n ∈ ω0) we get one), and
in the R∗, each column has its conjugate one (the R∗(0) and R∗( 1

2Z) are self-conjugate).

2.5 The potency (cardinal) of R∗ is equal to the potency of the Continuum (Xie, 1979, P. 2.): R∗ = c. Proof:
Denote the Continuum [0, 1] by C, and let any infinite decimal 0.m1m2 · · ·mn · · · (0 ≤ mi ≤ 9, i = 1, 2, · · · ) in
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C correspond to the element

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

m1
m2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

of R∗, we find that C = c ≤ R∗. Next denote the set of all denumerable

sequences consisting of non-negative integers by S, no doubt S = c, and R∗ ⊂ S when each column of R∗ is

naturally conceived as such a sequence, and so R∗ ≤ S = c. Thus, R∗ = c (here followed the old view of
cardinals and only make reference).

Use the R(n)∗ to express the ordered set of all columns of R(n) but the last one R(n)(Zn), in definition, always
Zn = R(n)∗ for any n ∈ ω0, again when n → ∞,

Zn&R(n)∗ → Z&R∗

then Z = R∗ and thus Z = c.

3. On R∗

Since the columns in R∗ and the integral points on number axis M (except the end point Z) form a one-to-one
correspondence, thus we can directly use the columns of R∗ to label the integral numbers on M in the relation
of correspondence (the end number Z is labeled by R∗ itself). Obviously, these numbers not only include all
natural numbers, but exceed them by far (e.g. the all residual numbers but the R∗(1), the conjugate numbers of
the natural numbers but zero etc. are all transfinite). Above all, in R∗ except R∗(0), the all other numbers are
successor ones, and any two consecutive numbers correspond to two points spaced out 1 apart on M, and thus
the R∗ (as well as the Z) may be regarded as extension of natural number set (such numbers as well as their
points are still called integral ones).

Similarly to R(n), in R∗ the amount of all columns of first class is Z′ =
∞∏

i=0
(di − 1). These numbers expressed by

such columns except the R∗(1) may be called generalized primes (or transfinite primes). Easily known, in R∗

the twin generalized primes are infinitely many pairs, their number is (Z” − 1) pairs, where Z” =
∞∏

i=1
(di − 2). Of

course, for any number in R∗, if its element of the first row is 0, it is called an even; if 1, an odd. In order to be
clear about the orderity and connectivity of R∗, we have:

Axiom 1: The distribution of all integral points on M possesses: 1) equidistant property (all points are every-
where equispaced out by 1 length unit and, the extreme points have one-side consecutive points, the others
have two-side ones); 2) increasing property (from left to right monotonically increasing); 3) completeness
(single-linearly marked the all integers from 0 to Z ). Such arrangement is termed the number axis order.

Axiom 2: Assume α, β(α < β) being two integral points on M, by R∗α−β denote the subset of a segment from
R∗(α) to R∗(β) in R∗, let U and V be two nonempty and mutually complementary subsets of R∗α−β(for any
R∗(x) ∈ R∗α−β, either R∗(x) ∈ U or R∗(x) ∈ V), then there exist R∗(x1) ∈ U and R∗(x2) ∈ V , such that the R∗(x1)
and R∗(x2) are consecutive.

3.1 No doubt, the R∗ is an ordered set (with the number axis order).

Note that, taking R∗(α) ∈ R∗, the subset formed by all front columns of the R∗(α) is denoted by A = {R∗(0), R∗(1),
· · · ,R∗(α − 1)} (when α = 0, A = Ø), particularly the A is called the pre-part of R∗(α) and signed as R∗0−(α−1);
the subset formed by all back columns of the R∗(α) by B = {R∗(α + 1), R∗(α + 2), · · · ,R∗(Z − 1)} (when
α = Z − 1, B = Ø), then for any R∗(x) ∈ R∗, perhaps R∗(x) ≡ R∗(α), or R∗(x) ∈ A (i.e. R∗(x) < R∗(α)), or
R∗(x) ∈ B (i.e. R∗(x) > R∗(α)). Obviously, it is impossible that R∗(x) ∈ A and R∗(x) ∈ B too (otherwise, there
will be two identical columns in R∗).

3.2 Double-direction induction (DDI): By R∗α−β denote the subset of a segment (R∗(α) < R∗(β)) in R∗, there is
R∗(ξ) ∈ R∗α−β which possesses property Q, ”for any column R∗(x) of R∗α−β, assume the R∗(x) possess the Q, then
its consecutive columns (R∗(x − 1) and R∗(x + 1)) also possess the Q”, so every column of R∗α−β possesses the
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Q.

Proof: Assume some columns of R∗α−β do not possess the Q, and all such columns form a set as U, its comple-
mentary set be V, then by axiom 2, in R∗α−β there exist consecutive columns R∗(x1) ∈ U and R∗(x2) ∈ V , because
the R∗(x2) has possessed the Q, from assumption, the R∗(x1) possesses also the Q, this is a contradiction.

3.3 The R∗ is not a well ordered set (see late 3.5). And thus, the Z has been not an ordinal number (Thomas,
1978, P. 24-31.) in traditional meaning. Now define the numbers in R∗ and the R∗ itself (expressing the number
Z) as axis numbers, then for each integral point on M there is a certain axis number corresponding with it. For
consistence with Z = R∗ as ever, every axis number, as R∗(α) ∈ R∗, may be defined as its pre-part, namely
R∗(α) = R∗0−(α−1) (when α = 0, its pre-part being Ø).

This paper doesn’t stipulate operations on axis numbers, only affirms the determinacy of predecessor and suc-
cessor for given axis number. The Z is an end number no its successor, so the (Z+ 1) has not been axis number.
As to Z′ and Z”, since all greater than 0 and smaller than Z, they must be axis numbers.

3.4 Each axis number (but zero) regarded as a set is not equipotent to its proper subset (PS).

Proof: Obviously, in R∗ any nonzero natural number has possessed such property. For convenience, assume that
nonempty-subset R∗0−α of R∗ is not equipotent to its any PS, we prove that R∗0−α1

(α1 = α − 1) and R∗0−α2
(α2 =

α + 1) are also not equipotent to their PS. 1). Suppose that the R∗0−α1
were equipotent to its PS W, then add the

element R∗(α) respectively to R∗0−α1
and W, and make it correspond to itself, so we find that the R∗0−α and its PS

W ∪ {R∗(α)} are equipotent, this is contrary to assumption. 2) Suppose that the R∗0−α2
were equipotent to its PS

E, then a) If R∗(α2) � E, and R∗(α2) corresponds to R∗(x) of E, then reject both R∗(α2) and R∗(x) off R∗0−α2
and

E respectively, clearly R∗(x) ∈ R∗0−α, and so the R∗0−α would be equipotent to its PS (E rejected the R∗(x)), being
contrary to assumption. b) If R∗(α2) ∈ E, then in the corresponding relation of R∗0−α2

and E, either R∗(α2) is
oneself correspondence, in this case, reject the R∗(α2) off R∗0−α2

and E, at once we find R∗0−α being equipotent
to its PS E∗(E rejected the R∗(α2)), this is similar contradiction; or each R∗(α2) corresponds to other element,
to say, R∗(x1) ∈ E and R∗(x2) ∈ R∗0−α2

are the maps of R∗(α2) from its set onto the opposite respectively, then
reject the R∗(α2) off each set, and make R∗(x2) correspond to R∗(x1), so we still find the R∗0−α being equipotent
to its PS E∗, and also obtain a contradiction to assumption. By DDI, the 3.4 has been proved. So the axis
number is also cardinal like natural number.

3.5 Traditionally, the ordinal number ω0 defined by the ordered set of natural numbers is a ”minimal transfinite
number”. In fact, the axis number system has shown that, between the finite and infinite there is no certain
boundary and unbridgeable gulf. And so, so-called ”minimal transfinite number” does not exist. Relatively,
the ”minimal transfinite cardinal number” does not exist too (old conclusion of infinite cardinals have been not
enough to regard as criterion).

Usually, one stipulates the ”natural numbers” being all finite. However, since each natural number itself also
expresses the ”number” of natural numbers (concretely, of all ones smaller than it), hence, if natural numbers are
infinite many, then necessarily there will be some ”infinite natural number” (generalized natural number). Since
restricting of the decimal notation, when the order of units in a numeral changes into infinite, the traditional
notation has had no method to express and to judge it, and so one counts it being no existing. However, when
one has some new number scale and expressing means, the condition will be quite another.
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Abstract

In this paper, we derive the correlation between variate-values and ranks in a sample from the Complete Fourth
Power Exponential (CFPE) distribution. A sample from the CFPE distribution could be misclassified as if
it is drawn from the normal distribution due to some similarities between the two distributions. In practice,
ranks are used instead of real values (variate-values) when there is hardly any knowledge about the underlying
distribution. This may lead to loss of some of the information contained in the actual values. In this paper
we found that the amount of information loss, by using ranks instead of real data, is larger when the sample is
from the CFPE distribution than if it is from the normal distribution. However, there is still a relatively high
correlation between variate-values and the corresponding ranks. Comparisons between the correlation between
variate-values and ranks for the CFPE distribution and some other distributions are provided.

Keywords: Complete Fourth Power Exponential Distribution, Variate-values, Normal distribution, Correlation
coefficient, Ranks

1. Introduction

Statistical methods based on ranks have been heavily studied in the literature, specifically when there is hardly
any knowledge of the underlying distribution of the data at hand. Such methods fall under the nonparametric
techniques umbrella. However, ignoring the underlying distribution may lead to loss of some of the information
contained in the data. And, in some circumstances, when there is a lack of information with regards to the
underling distribution, nonparametric techniques – including the methods based on ranks – could be useful and
lead to robust inferences. For more details on these methods, we refer the reader to Lehmann and D’Abrera
(1976).

It can be difficult to discriminate between the Complete Fourth Power Exponential (CFPE) distribution and the
normal distribution due to some similarities between these distributions, e.g. their shapes and other properties.
Some people, especially non-statisticians, may mistakenly assume their dataset comes from a normal distribu-
tion, when in fact the data may actually come from the CFPE distribution, since it has properties similar to a
normal distribution.

Amira and Mazloum (1993) studied in detail the CFPE distribution and focused on the geometric and statis-
tical properties of this distribution and compared it to the normal distribution. Unfortunately, this distribution
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has limited application at the moment with possible future works. We briefly give an overview of the CFPE
distribution and some of its properties in the next section.

The misclassification of the dataset from the CFPE distribution as a normal distribution was studied in an
unpublished MSc thesis entitled “Study on the Error in Random Samples Classification between the Normal
Distribution and the Complete Fourth Power Exponential” by Baeshen (2000), King Abdulaziz University,
Jeddah, Saudi Arabia.

In practice, the ranks of data are used instead of the original data to make an inference. Additionally, to find how
much information we may lose by this action, Stuart (1954) derived the formula to calculate the relationship
(correlation) between variate-values and their ranks. It showed that for some distributions we did not lose
much information when the original data is replaced by their corresponding ranks. Moreover, Stuart (1955)
considered the situation when the variance of a specific distribution does not exist and it showed that for a
continuous distribution with no moments which is eventually monotone, the correlation between variate-values
and their ranks is zero.

Later, O’Brien (1982) estimated via simulation the average correlation between variate-values and their ranks
for small size samples from different distributions. The term “the degree of distortion or error” is used to
indicate the loss of information by replacing the variate-values by their ranks. O’Brien found that these corre-
lations are generally high, and when the sample size increase they reach the limiting values presented by Stuart
(1954, 1955) . This finding supports the idea of using the ranks instead of variate-values with a small degree of
distortion or error even for small samples.

In Section 2, we will overview the CFPE distribution and some of its properties. In Section 3, we use Stuart’s
formula to derive the correlation between variate-values and ranks in samples from the CFPE Distribution.
Finally, we provide the exact and the approximation correlations between variate-values and ranks from some
distributions in Section 4.

2. The Complete Fourth Power Exponential (CFPE) Distribution

In this section we overview briefly the CFPE distribution and some of its summaries that are needed in this
paper. For more details we refer to Amira and Mazloum (1993).

Let X be a random variable from the CFPE distribution with the density function given by

f (x ;α, β) =
2

β Γ( 1
4 )

exp{− (x − α)4/β4} ,−∞ < x < ∞, −∞ < α < ∞, β > 0 (1)

where α is the location parameter and β is the scale parameter. The characteristic function of this distribution is

φX(t) =
∞∑

m=0

[m
2
]∑

j=0

Cm
2 j α

(m−2 j)β2 j
Γ
(2 j+1

4

)
Γ
(

1
4

) (it)m

m!

where [m/2] is the greatest integer number less than m/2. Then, from this characteristic function, we can obtain
the central and non-central moments as follows:

μ′1 = μ = E(X) = α , μ′2 = E(X2) = α2 + β2Γ(
3
4 )

Γ( 1
4 )
, μ′3 = E(X3) = α3 + 3β2α

Γ( 3
4 )

Γ( 1
4 )
,

μ′4 = E(X4) = α4 + 6β2α2Γ(
3
4 )

Γ( 1
4 )
+

1
4
β4 , μ2 = σ

2 = β2

√
2 π[

Γ( 1
4 )
]

2
, μ3 = 0 and μ4 =

1
4
β4

For simplicity and easy notation, we work on the special case of the CFPE distribution when α = 0, since it is
easy to centralize the data around the mean. Therefore

f (x ; β) =
2

β Γ( 1
4 )

exp{− (x/β)4} ,−∞ < x < ∞, β > 0
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and μ = α = 0 , V(X) = σ2 = β2
√

2 π

[Γ( 1
4 )]2
.

3. The correlation between variate-values and ranks in samples from the CFPE Distribution

In this section, we use Stuart‘s formula (1954) to derive the correlation between variate-values and the ranks
in sample from the CFPE distribution. From Stuart (1954), the correlation between variate-values Xi and their
ranks Ri, ρ(Xi,Ri), is given by

ρ(Xi,Ri) =
[∫ ∞

−∞
xF(x)dF(x) − 1

2
μ

] [
12(n − 1)
(n + 1)σ2

] 1
2

(2)

where n is the sample size. The second factor on the right side in (2) tends to 2
√

3/σ as n tends to infinity. In
the following theorem, we use (2) to derive the correlation between variate-values and ranks in a sample from
the CFPE distribution.

Theorem:

The correlation between variate-values and ranks in a sample from the CFPE distribution when α = 0 is given
by

ρ = ρ(Xi,Ri) =

√
3

2 4√2

√
n − 1
n + 1

and as n → ∞ , ρ→
√

3

2 4√2
= 0.728 (3)

Proof:

For ease notation, we consider the centered CFPE distribution, i.e. when α = 0, therefore

f (x ; β) =
2

β Γ( 1
4 )

exp{− (x/β)4} ,−∞ < x < ∞, β > 0

and μ = α = 0 , V(X) = σ2 = β2
√

2 π

[Γ( 1
4 )]2

then

E[XF(X)] =
∫ ∞

−∞
{ x F(x)} f (x) dx =

4
β2[Γ( 1

4 )]2

∫ ∞

−∞

∫ x

−∞
x e

− 1
β4

(t4+x4)
dt dx

Let x2

β2 = r cos θ ⇒ x = β r
1
2 cos

1
2 θ and t2

β2 = r sin θ ⇒ t = β r
1
2 sin

1
2 θ.

The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣
1
2β r−

1
2 cos

1
2 θ −1

2β r
1
2 cos−

1
2 θ sin θ

1
2β r−

1
2 sin

1
2 θ 1

2β r
1
2 sin−

1
2 θ cos θ

∣∣∣∣∣∣∣∣ =
1
4β

2
{

sin−
1
2 θ cos

3
2 θ + cos−

1
2 θ sin

3
2 θ

}

= 1
4β

2 sin−
1
2 θ cos−

1
2 θ

then

E[XF(X)] =
8

β2[Γ( 1
4 )]2

∫ ∞

0

∫ π
4

0
(β r

1
2 cos

1
2 θ) e−{r

2 cos2 θ+r2 sin2 θ}
(
1
4
β2 sin−

1
2 θ cos−

1
2 θ

)
dr dθ

=
2β

[Γ( 1
4 )]2

∫ ∞

0

∫ π
4

0
r

1
2 e−r2

sin−
1
2 θdr dθ

Let z = r2 ⇒ 1
2 z− 1

2 dz = dr, then

E[XF(X)] =
2β

[Γ( 1
4 )]2

(
1
2

∫ ∞

0
z−

1
4 e−zdz

) ⎛⎜⎜⎜⎜⎜⎜⎝
∫ π

4

0
sin−

1
2 θ dθ

⎞⎟⎟⎟⎟⎟⎟⎠
=

2β
[Γ( 1

4 )]2

{
1
2
Γ( 3

4 )
}{

1
4

B( 1
4 ,

1
2 )
}
=
βΓ( 1

2 )

4Γ( 1
4 )
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where Γ( 1
2 ) =

√
π. Now by using (2) we have

ρ(Xi,Ri) =

⎡⎢⎢⎢⎢⎢⎣12(n − 1)[Γ( 1
4 )]2

(n + 1)β2
√

2 π

⎤⎥⎥⎥⎥⎥⎦
1
2 β Γ( 1

2 )

4Γ( 1
4 )
=

√
3

2 4√2

√
n − 1
n + 1

and as n → ∞ , ρ→
√

3
2 4√2
= 0.728.

4. Comparisons results

Stuart (1954) provided, using the formula in (2), the correlation between variate-values and the ranks in samples
from Uniform (0, 1), Exponential (λ = 1), and Normal (0, 1) distributions. From (3), we have the correlation
between variate-values and the ranks in the sample from the CFPE distribution (0, b), which is equal to 0.728
when n is significantly large, see Table 1.

Moreover, by using the simulation technique to estimate the quantity E[XF(X)] in (2), we obtained the approx-
imation results for the correlation between variate-values and the ranks in samples from the other distributions
which did not have explicit formula. These approximation results are given in Table 2. We can point out that the
corresponding correlation for the Log-normal distribution (0, 1) is closer to (less than) the CFPE distribution
compared to other distributions.

5. Conclusion

In this paper, we derived the correlation between variate-values and ranks in a sample from the Complete Fourth
Power Exponential (CFPE) distribution. We found that we lost more information when the data set came from
the CFPE distribution than when the data came from normal distribution, when we used ranks instead of variate-
values. This finding emphasizes the importance of distinguishing between these distributions. However, the
correlation between variate-values and ranks in samples from the CFPE is still relatively high, which allowed
us to use ranks instead of variate-values without losing a lot of information.
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Table 1. The Exact correlation between variate-values and ranks for some distributions

Distribution μ σ2 E [ X F(x) ] ρ n → ∞
Uniform (0,1) 1/2 1/12 1/3

√
n−1
n+1 1

Exponential λ = 1 1 1 3/4
√

3
2

√
n−1
n+1

√
3

2 ≈ .866

Normal (0,1) 0 1 1
2
√
π

√
3
π

√
n−1
n+1

√
3
π ≈ .977

Logistic (0,1) 0 π2

3 1/2 3
π

√
n−1
n+1

3
π ≈ .955

CFPE (0,b) 0 β2
√

2 π

[Γ( 1
4 )]2

βΓ( 1
2 )

4Γ( 1
4 )

√
3

2 4√2

√
n−1
n+1

√
3

2 4√2
≈ .728

The exact results of Uniform, Exponential and Normal are reported by Stuart (1954) while the logistic result
presented in O’Brien (1982)

Table 2. The approximation correlation between variate-values and ranks for some distributions

Distribution μ σ2 E [ X F(x) ] ρ

Student’s T (5 df) 0 1.667 0.346 0.928
Chi-square (5 df) 5 10 3.347 0.928
Gamma (5, 1) 5 5 3.117 0.956
F (4, 10) 1.250 1.563 0.909 0.787
Beta (1, 2) 0.333 0.056 0.233 0.973
Lognormal (0, 1) 1.649 4.671 1.253 0.687
Weibull (5, 1) 0.918 0.044 0.518 0.974

The approximation results obtained from 100 000 simulation samples of size 100 (n =100)
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Abstract

The moving least-square technique is used to construct shape function in the Element Free Galerkin Method
at present, but sometimes the algebra equations system obtained from the moving least-square approximation
is ill-conditioned and the shape function needs large quantity of inverse operation. In this paper, the weighted
orthogonal functions are used as basis ones, the application in the calculation of plate bending shows that the
improved moving least-square approximation is effective and efficient.

Keywords: EFGM, Moving least-square approximation, The weighted orthogonal functions, Plate bending

1. Introduction

The finite element method (Long, 2001, pp. 135-167) has been the main calculation method in the area of
mechanics recently, but when it deals with the simulation of large distortion, the grid cells become distorted,
then we need to divide the grids again to make equilibriums. So it makes some difficulties. In views of this
situation, mesh-free method comes out. This is a new numerical analysis method. Because it need only the
information of nodes and thoroughly or partly cancelled the meshes, and also because it has the advantage
of excellent accuracy and rapid convergence, the mesh-free method rapidly developed in recent years. Doe
(Belytdchko, 1994, pp. 229-256. & Liu, 2005, 64-90) reported that Element Free Galerkin Method (EFGM)
is one of this methods. It bases on Moving least-square approximate (MLS) (Belyschko, 1996, pp. 3-47. &
Genki, 2000, pp. 1419-1433) approximation and its basic idea is to solve problems with some discrete nodes.

But in the practical calculations, to ever fixed node, the MLS degenerates the classical least-square approximate,
and we have to face the ill-conditioned function. This paper aims at the characteristic of MLS, to modify it
using the weighted orthogonal functions to be the basic functions. This method is applied to the plate bending
which has been studied previously (Fu, 2004, pp. 232-307), and the result shows that this method is effective
and efficient comparing with the former one.

2. Moving least-square approximation

EFGM is brought forward by Belytschko, the basic idea is in the domain Ω bounded by Γ, u(x) is the field
function, where x is a point in the field. The local approximation of u(x) (Genki, Y., m., 2000) can be defined
as

uh(x) =
m∑

j=1

P j(x)a j(x) = pT (x)a(x), ∀x ∈ Ω (1)

Where pT (x) is built utilizing Pascal’s triangle with complete basis polynomial of m-dimensional, and the
corresponding coefficient is a(x), which is determinated by MLS

J =

n∑
I

w(x − xI)[uh(x) − u∗(xI)]2 =

n∑
I

w(x − xI)[pT (xI)a(x) − u∗(xI)]2 (2)
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Where x1 is the node around x, which is in the domain of influence. w(x − x1) is the weight function We use
the weight function just as follows

ωi(ri) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2

mi

r2
i
+ε2r2

mi

(1 − r2
i

r2
mi

) ri ≤ rmi

0 ri ≥ rmi

(Nayroles, 1992, pp. 307-318), this function is simple in form than that brought forward by Belytschko. We
can easily get the parameter, Otherwise the approximation solution with either high rand can be got theorily.

Eq. (4) can be expressed as
J(x) = (pa − u)Tω(x)(pa − u) (5a)

Where

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(x) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...

p1(xn) p2(xn) · · · pm(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5b)

ω(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω(x − x1) 0 · · · 0
0 ω(x − x1) · · · 0
...

...
. . .

...

0 0 · · · ω(x − x1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5c)

Taking the extreme value of Eq. (5), choosing functions h(x), g(x) at random, sign them as follows:

(h, g) =
n∑

I=1

ω(x − x1)h(xI)g(xI) (6)

Then
a1(x)(pi, p1) + a2(x)(pi, p2) + · · · + am(x)(pi, pm) = (pi, uI), i = 1, 2 · · · , m (7a)

forming it as matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, p1) (p1, p2) · · · (p1, pm)
(p2, p1) (p2, p2) · · · (p2, pm)
...

...
. . .

...

(pm, p1) (pm, p2) · · · (pm, pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(x)
a2(x)
...

am(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, u1)
(p2, u1)

(pm, u1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7b)

One obtains a(x),
a = A−1Bu (8a)

Where
A = PTωp, B = pTω (8b)

Taking the Eq. (8) into Eq. (1),

uh(x) =
n∑

I=1

ΦI(x)uI (9a)

where

Φ(x) =
m∑

j=1

p j(x)(A−1B) jI (9b)

The virtue of Moving least-square approximation is obvious, but sometimes it may make the equation ill-
condition. Otherwise, because of large quantity of inverse operations, the calculation time increases. To solve
the problems, we bring forward the Moving least-square approximation.
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3. The modified Moving least-square approximation

The modified moving least-square approximation employs the weighted orthogonal functions to be basis ones,
and overcome the difficulties of MLS. Considering the Congregation of nodes {xi} and the weight {ωi}(i =
1, 2, · · · , m), if a group of function ϕ1(x), ϕm(x), · · · , ϕm(x) satisfies the situations just as follows:

(ϕk, ϕ j) =
n∑

i=1

wiϕk(xi)ϕ j(xi) =
{

0 k � j

Ak k = j
(k, j = 1, 2, · · · , m) (10)

One calls ϕ1(x), ϕ2(x), · · · , ϕm(x) the group of orthogonal functions which about Congregation of nodes {xi}
with the weight {ωi}.
In the MLS, if the basic function pi(x), (i = 1, 2, · · · , m) is the orthogonal one that about the {xi} with the
weight {ωi}(i = 1, 2, · · · , m), and the diagonal elements (pi, p j) = 0, (i � j) in the Eq. (7) can be reduced as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, p1) 0 · · · 0
0 (p2, p2) · · · 0
...

...
. . .

...

0 0 · · · (pm, pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(x)
a2(x)
...

am(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, u1)
(p2, u1)
...

(pm, u1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Then ai(i = 1, 2, · · · , m) are solved from Eq. (11).

It is easily to see that ai(x) = (pi, uI )
(pi, pi)

, take it to the Eq. (1),

uh(x) =
m∑

i=1

pi(x)

n∑
I=1
ω(x − xI)pi(xI)uI

(pi, pi)
=

n∑
I=1

ΦI(x)uI (12a)

The shape function is

ΦI(x) = ω(x − xI)
m∑

i=1

pi(x)p(xI)
(pi, pi)

So in the course of solving ai(i = 1, 2, · · · , m), we avoid the inverse operations and the solution of ill-condition
equations (Cheng, 2003, pp. 181-186), and the definition and efficiency are all improved. It can be seen from
the above that once a group of basic function which composed by weighted orthogonal functions are obtained,
then we can get ai(i = 1, 2, · · · , m), usually we can construct the orthogonal polynomial base using Schmidt
orthogonalization.

4. Basic formulas

According to the Mindlin plate theory (Wang, 1996, pp. 154-167), the displacement and corner of a point
are the independent field functions, the approximation corner.deflection of this point can be imitate from the
relational data in the domain, supposing that the nodes in the domain is n, and the array of the nodes of corner
and deflection are

u∗ = [u∗1 u∗2 · · · u∗n]T (13a)

Where
u∗i = [ω∗i θ∗xi

θ∗yi
]T , (1, 2, · · · , n) (13b)

According to MLS, the field function
u = [ω θx θy]T = Φu∗ (14a)

Where
Φ = [φ1I φ2I · · · φnI] (14b)

is the shape function, and I is 3 ∗ 3 unit matrix and n is the number of nodes in the field. The generalized strain
of the plate is

k =
[
− ∂θx
∂x

− ∂θy
∂y

− (
∂θx
∂y
+
∂θy

∂x
)
]T
= Bu∗ (15a)
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Where θx, θy are the rotation whose direction agree with ∂ω∂x , ∂ω∂y and B is the strain array.

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−φ1, x 0 0 · · · −φn, x 0 0

0 −φ1, y 0 · · · 0 −φn, y 0
−φ1, y −φ1, x 0 · · · −φn, y −φn, x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15b)

The generalized relation between stress and strain is

M =
[
Mx My Mxy

]T
= DK (16a)

Where D is the elastic matrix, to the isotropic material

D =
Et3

12(1 − μ2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 μ 0
μ 1 0
0 0 1−μ

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = D0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 μ 0
μ 1 0
0 0 1−μ

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16b)

Where D0 is the stiffness matrix of the plate and is the Poission ratio.

In order to easily solve the problem of the curving plate at any condition, penalty function is imposed on the
essential boundary in the programming of this paper. To the elastic plate of isotropy, considering the functional
of shearing deformed Mindlin plate theory,

Π =
1
2

∫
Ω

kT DkdΩ −
∫
Ω

qωdΩ + α1[
∫
Ω

(
∂ω

∂x
− θx)2dΩ +

∫
Ω

(
∂ω

∂y
− θy)2dΩ]

+α2

∫
s1

[(θn − θn)2 + (θs − θs)2]ds + α3

∫
s1+s2

(ω − ω)2ds −
∫

s3

θnωds +

∫
s1+s2

(Mnθn + M−
n θs)ds (17)

In the above equation, α1 is the penalty factor of the shearing deformation in the functional, α1 = Gt/2k , G is
the shearing mold, t is the thickness of the plate, k is the regulated coefficient which considering the shearing
deforming non-proportionate distributed along the orientation of thickness. Take k = 6/5, α2, α3 is the penalty
function which fulfill the essential conditions (physical significance and expression of the other signs can be
found in the document (Genki, 2000, pp. 1419-1443). The numberical result shows that, when one takes
α2 = α3 = (103 − 106)E ( E is the elastic mold ), the definition of the result is fairly good, it shows that the
essential boundary conditions which caused by this method, make the coefficient matrix symmetry and positive,
easily solved.

5. Numerical example

A rectangular plate sustaining even load, one of its subtense (x=0 and x=a )are freely-supported, the third is free,
the forth is built-in (y=0)(as fig. 1). The load q = 2.2 × 104N/m2, the length of side are a = 10.0m, b = 5.5m,
the thickness t = 0.1m, Young’s modulus E = 2.0 × 1011 pa, Poission ratio μ = 0.3. In this paper, we layout
16 × 9 even distribution nodes to get 15 × 8 integral sub-domains, and the Gaussian integration is 4 × 4. The
deflection of the plate center on the cross-section is as Tab.1, it shows that the solution of this paper is near to
the solution obtained by ANSYS. The deflection along the center Line being parallel to x and y axis of the Plate
are as Fig.1 and Fig.2.

6. Conclusions

This paper, which aims at the shortcoming of the MLS being easily forming the ill-condition function; the
weighted orthogonal functions are used as basis functions to revise the MLS. Compared with the original, it
breaks away from the inverse operation, and the amount of calculation is small. The result of the calculation of
plate bending shows that the improved MLS is effective and efficient comparing with the result which obtained
by the ANSYS software.
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Figure 1. A loaded rectangular plate With complex edges conditions
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Figure 2. The deflection along the center Line being parallel to x axis of the Plate

Figure 3. The deflection along the center Line being parallel to y axis of the Plate
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Abstract

A graph G is called perfect if the chromatic number and the clique number have the same value for every of its
induced subgraph. A glued graph results from combining two vertex-disjoint graphs by identifying connected
isomorphic subgraphs of both graphs. Such subgraphs are referred to as the clones.

We study the perfection of glued graphs whose clones are complete graphs. Our result generalizes the simplicial
elimination ordering which is a characterization of chordal graphs.

Keywords: Perfect graphs, Glued graphs

1. Introduction

Let G1 and G2 be any two graphs with disjoint vertex sets. Let H1 ⊆ G1 and H2 ⊆ G2 be connected graphs such
that H1 � H2 with an isomorphism f . The glued graph of G1 and G2 at H1 and H2 with respect to f , denoted
by G1��G2

H1� f H2
, is the graph that results from combining G1 with G2 by identifying H1 and H2 with respect to the

isomorphism f between H1 and H2. Let H be the copy of H1 and H2 in the glued graph. We refer to H, H1
and H2 as the clones of the glued graph, G1 and G2, respectively, and refer to G1 and G2 as the original graphs.
The glued graph of G1 and G2 at the clone H, written G1��G2

H
, means that there exist subgraph H1 of G1 and

subgraph H2 of G2 and isomorphism f between H1 and H2 such that G1��G2
H

= G1��G2
H1� f H2

and H is the copy of
H1 and H2 in the resulting graph. We use G1��G2 to denote an arbitrary graph resulting from gluing graphs G1
and G2 at any isomorphic subgraph H1 � H2 with respect to any of their isomorphism.

A k-coloring of a graph G is a coloring f : V(G) → S , where |S | = k. A k-coloring is proper if adjacent vertices
have different colors. The chromatic number of graph G, written χ(G), is the minimum number k such that G

has a proper k-coloring. A clique of a graph G is a complete subgraph of G. The clique number of a graph G,
written ω(G), is the order of the largest clique of G. For any graph G, it is always true that χ(G) ≥ ω(G). A
graph G is called perfect if χ(F) = ω(F) for every induced subgraph F of G, and a graph is called imperfect if
it is not perfect. An odd hole of G is an induced subgraph of G which is an odd cycle of length at least 5. An
odd antihole of G is an induced subgraph of G whose complement is an odd hole in G. A graph having no odd
hole and no odd antihole is called a Berge graph.

In 1972, Lovász proved the Perfect Graph Theorem, asserts that a graph is perfect if and only if its complement
is perfect (Lovász , 1972). In 1961, Berge conjectured that a graph is perfect if and only if it is a Berge graph
(Berge, 1961), affirmation well-known under the name of the Strong Perfect Graph Conjecture, and has just
become a theorem since 2006 by Chudnovsky et al. (Chudnovsky et al., 2006). However, the proof was very
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long (179 pages), recently, Chudnovsky and Seymour replaced the final 55 pages with a new much shorter
proof (Chudnovsky & Seymour, 2009). This new theorem helps us to verify the perfection of our glued graphs.

Note that for vertex-disjoint graphs G1 and G2, G1 + G2 stands for the disjoint union of G1 and G2. The join

of G1 and G2, written G1 ∨ G2, is the graph obtained from the disjoint union G1 + G2 by adding the edge set
{uv : u ∈ V(G1), v ∈ V(G2)}.
It is possible that a glued graph of imperfect graphs is perfect and it is also possible that a glued graph of perfect
graphs is imperfect, see Examples A and B.

Example A Perfect glued graphs of imperfect graphs:

Let G1 = C2n+1, G2 = K1 ∨ C2n−3 where n ≥ 4 and H = K1,2n−3. Both G1 and G2 are not Berge graphs, hence

they are imperfect by the Strong Perfect Graph Theorem. Observe that G1��G2
H

� P6 + K2n−5 which is perfect.
By the Perfect Graph Theorem, we have that G1��G2

H
is perfect. If n = 4, then G1 and G2 are illustrated in

Figure .

Note from Figure 1 that it is possible that a glued graph of simple graphs has multiple edges. However, multiple
edges of a graph do not affect its the chromatic number and the clique number. Hence, we allow our glued
graphs to have multiple edges.

Example B Imperfect glued graphs of perfect graphs:

Let G1 = C2n, G2 = K1 ∨ P2n−2 where n ≥ 3 and H = P2n−2. Both G1 and G2 are Berge graphs. Observe that
G1��G2

H
contains C5, so it is not a Berge graph. By the Strong Perfect Graph Theorem, G1 and G2 are perfect

but G1��G2
H

is imperfect. If n = 3, then G1 and G2 are illustrated in Figure .

In this paper, we study the perfection of glued graphs of perfect graphs. Example B shows that a glued graph
of perfect graphs may not be perfect. A condition is required to guarantee the perfection of a glued graph when
the original graphs are perfect. Our main results reveal that the clone of the glued graph must be a complete
graph in order to get the desired result.

Throughout the paper, G1 and G2 are graphs with disjoint vertex sets and the clone H is a connected graph. We
use symbol G(u1, u2, ..., un) for a graph G on the vertex set {u1, u2, ..., un}, and G(u1, u2, ..., un) for the comple-
ment of G(u1, u2, ..., un). We use symbol Kn(u1, u2, ..., un) for a complete graph on the vertex set {u1, u2, ..., un},
and Pn(u1, u2, ..., un) and Cn(u1, u2, ..., un) for a path and a cycle on the vertex set {u1, u2, ..., un} and the edge
set {u1u2, u2u3, ..., un−1un} and {u1u2, u2u3, ..., un−1un, unu1}, respectively. Other standard notations we follow
West (West, 2001).

2. Main Results

When the clone H is an induced subgraph of both G1 and G2, it follows that G1 and G2 are induced subgraphs
of the glued graph G1��G2

H
. If G1��G2

H
is perfect, then both G1 and G2 must be perfect. This can be concluded

here:

Proposition 2.1 Let G1 and G2 be graphs containing H as an induced subgraph. If G1��G2
H

is a perfect graph,
then both G1 and G2 are perfect.

The inverse of Proposition 2.1 is not true. Namely, if H is not a complete graph, one can find perfect graphs G1
and G2 containing H as an induced subgraph while G1��G2

H
is not perfect.

Theorem 2.2 Let H be a connected incomplete graph. If H is a perfect graph, then there exist perfect graphs
G1 and G2 containing H as an induced subgraph such that G1��G2

H
is not perfect.

Proof. Assume that H is a perfect graph. Let |V(H)| = r. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr) be the
copies of H with an isomorphism f : V(H1) → V(H2) which is defined by f (ui) = vi for all i ∈ {1, 2, ..., r}.
Let Pl(u1, u2, ..., ul) and Pl(v1, v2, ..., vl) be the longest induced paths of H1 and H2, respectively. Since H1 and
H2 are not complete graphs, l ≥ 3. Choose G1 = H1 ∨ K1(z); a join graph between H1 and a new vertex z,
and choose G2 = (H2 ∨ K2(x, y)) − {xvl, yv1}. Then G1 and G2 are perfect. Consider G1��G2

H1� f H2
, we see that the

corresponding vertices of v1, x, y, vl, z in G1��G2
H1� f H2

form C5. By the Strong Perfect Graph Theorem, G1��G2
H1� f H2

is not
perfect. �

26 � www.ccsenet.org/jmr



Journal of Mathematics Research March, 2009

The clone of a glued graph is called a complete clone if it is a complete graph.

The graph gluing at a complete clone preserves the perfection. Theorem 2.8 illustrates this fact and it is yielded
by Lemmas 2.4 and 2.5.

Remark 2.3 For graphs G1 and G2, we have

1. χ(G1��G2) ≥ max{χ(G1), χ(G2)} and

2. ω(G1��G2) ≥ max{ω(G1), ω(G2)}.

In general, χ(G1��G2) ≤ χ(G1)χ(G2) (Promsakon & Uiyyasathian, 2006). When the clone is a complete graph,
the chromatic numbers of glued graphs do not exceed the chromatic numbers of their original graphs, see
Lemma 2.4.

For a positive integer r, a glued graph at a complete clone, G1��G2
Kr

, denotes an arbitrary glued graph between
graphs G1 and G2 at any clone which is isomorphic to Kr. For convenience, Kr in our proofs always means the
clone of the glued graph G1��G2

Kr
, not arbitrary subgraph Kr in the glued graph .

Lemma 2.4 For graphs G1 and G2, χ(G1��G2
Kr

) = max{χ(G1), χ(G2)}.
Proof. Let χ(G1) = m and χ(G2) = n. Assume m ≥ n. By Remark 2.3(1), it suffices to show that χ(G1��G2

Kr
) ≤

m. Let a1, a2, ..., am be colors labeling vertices of G1 by f and b1, b2, ..., bn colors labeling vertices of G2 by g.
Note that any pair of vertices in Kr must have different colors. Without loss of generality, for i ∈ {1, 2, ..., r},
let ai and bi be colors of the corresponding vertices of Kr in G1 and G2, respectively. Let h : V(G1��G2

Kr
) →

{a1, a2, ..., am} defined by

h(v) =

⎧⎪⎪⎨⎪⎪⎩
f (v) , if v ∈ V(G1);
ai , if v ∈ V(G2) − V(Kr) and g(v) = bi.

Since the clone is a complete graph, h is well-defined. To show that h is proper, let u and v be vertices in G1��G2
Kr

such that u and v are adjacent. If u, v ∈ V(G1), then h(u) = f (u) � f (v) = h(v). If u, v ∈ V(G2), then g(u) = bi

and g(v) = b j for some i � j, so h(u) = ai � a j = h(v). Besides, vertices in V(G1) − V(Kr) and V(G2) − V(Kr)
are not adjacent. Hence, h is proper. That is, G1��G2

Kr
has a proper m-coloring. Therefore, χ(G1��G2

Kr
) ≤ m. �

Unlike the chromatic number, we have not had an upper bound of the clique numbers of glued graphs in
terms of the clique numbers of their original graphs. Promsakon conjectured that ω(G1��G2) ≤ ω(G1)ω(G2)
(Promsakon, 2006).

In general, the graph gluing can join two non-adjacent vertices in the clone of an original graph, Consider graphs
G1, G2 and G1��G2

H
whose clone H is shown as bold edges in Figure . We see that b and d are non-adjacent

vertices in G1 but the corresponding vertices of b and d in the glued graph are adjacent.

Since any pair of vertices in the complete clone are adjacent, there is no new edge created from the graph gluing.
Thus all cliques in a glued graph at a complete clone are cliques in original graphs, so ω(G1��G2) ≤ ω(Gi) for
i = 1, 2. The following lemma is concluded.

Lemma 2.5 For graphs G1 and G2, ω(G1��G2
Kr

) = max{ω(G1), ω(G2)}.
The condition in Lemmas 2.4 and 2.5 that the clone must be a complete graph is necessary. Theorem 2.7
confirms.

Theorem 2.6 (Brooks, 1941) If G is a connected graph other than a complete graph or an odd cycle, then
χ(G) ≤ Δ(G) where Δ(G) denotes the maximum degree of G.

Theorem 2.7 Let H be a connected graph. If H is not a complete graph, then there exist G1 and G2 such that
χ(G1��G2

H
) > max{χ(G1), χ(G2)} and ω(G1��G2

H
) > max{ω(G1), ω(G2)}.

Proof. Assume that H is not a complete graph. Let |V(H)| = r, so r ≥ 3. Choose G1 � Kr and choose
G2 � H ∨ K1. Then G1��G2

H
� Kr+1. If H is an odd cycle of length at least 5, χ(H) = 3 < r − 1. Otherwise, H
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is not an odd cycle of length at least 5, by Theorem 2.6, χ(H) ≤ Δ(H) ≤ r − 1. Now, we have χ(H) ≤ r − 1, so
χ(G2) = χ(H ∨ K1) ≤ (r − 1) + 1 = r. Hence, χ(G1��G2

H
) = r + 1 > r = max{χ(G1), χ(G2)}. Since H is not a

complete graph and |V(H)| = r, we get ω(H) ≤ r − 1. So, ω(G2) = ω(H ∨ K1) ≤ (r − 1) + 1 = r. Therefore,
ω(G1��G2

H
) = r + 1 > r = max{ω(G1), ω(G2)}. �

For graphs G1 and G2, G1∩G2 denotes the graph on the vertex set V(G1)∩V(G2) and the edge set E(G1)∩E(G2).

Theorem 2.8 For graphs G1 and G2,
G1��G2

Kr
is a perfect graph if and only if both G1 and G2 are perfect.

Furthermore, χ(G1��G2
Kr

) = ω(G1��G2
Kr

) = max{ω(G1), ω(G2)}.
Proof. Necessity follows from Proposition 2.1. For sufficiency, assume that G1 and G2 are perfect graphs.
We will show that χ(F) = ω(F) for every induced subgraph F of G1��G2

Kr
. Let F be an induced subgraph of

G1��G2
Kr

. If F is disconnected, we consider the perfection of each component of F. We may assume that F

is connected. If F has no vertex in Kr, then F is an induced subgraph of either G1 or G2, so χ(F) = ω(F).
Assume that F has at least one vertex in Kr. Let F1 = F ∩ G1 and F2 = F ∩ G2. Since F1 is an induced
subgraph of a perfect graph G1, we get χ(F1) = ω(F1). Similarly, χ(F2) = ω(F2). Now, let Fr = F ∩ Kr. Then
Fr is a complete graph. We have that F = F1��F2

Fr
. By Lemmas 2.4 and 2.5, χ(F) = max{χ(F1), χ(F2)} and

ω(F) = max{ω(F1), ω(F2)}, respectively. Hence, χ(F) = ω(F). Therefore, G1��G2
Kr

is perfect. Furthermore,

χ(G1��G2
Kr

) = ω(G1��G2
Kr

) = max{ω(G1), ω(G2)}. �

If the clone is not a complete graph, it fails to be concluded the perfection of glued graphs of perfect graphs. It
is illustrated by Theorems 2.9 and 2.10.

Theorem 2.9 Let H be a connected graph. If H is not a complete graph, then there exist a perfect graph G1 and
an imperfect graph G2 such that G1��G2

H
is perfect.

Proof. Assume that H is not a complete graph. Let |V(H)| = r, so r ≥ 3. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr)
be the copies of H with an isomorphism f : V(H1) → V(H2) which is defined by f (ui) = vi for all i ∈
{1, 2, ..., r}. Since H2 is not a complete graph, there are at least 2 non-adjacent vertices , say v1 and vr. Choose
G1 = Kr(u1, u2, ..., ur) and choose G2 = C2r−1(v1, x1, ..., vr−1, xr−1, vr). Then G1 is perfect but G2 is not per-
fect. Since H1 and H2 are not complete graphs, H1 ⊆ Kr(u1, u2, ..., ur) and H2 ⊆ Kr(v1, v2, ..., vr) − v1vr ⊆
C2r−1(v1, x1, ..., vr−1, xr−1, vr). We can verify that G1��G2

H
� G1��G2

H1� f H2
� C2r−1(v1, x1, ..., vr−1, xr−1, vr) + v1vr,

consequently, G1��G2
H

� P2r−1. Since P2r−1 is perfect, by the Perfect Graph Theorem, G1��G2
H

is perfect. �

Theorem 2.10 Let H be a connected graph. If H is not a complete graph, then there exist perfect graphs G1
and G2 such that G1��G2

H
is not perfect.

Proof. Assume that H is not a complete graph. Let |V(H)| = r, so r ≥ 3. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr)
be the copies of H with an isomorphism f : V(H1) → V(H2) which is defined by f (ui) = vi for all i ∈
{1, 2, ..., r}. Since H2 is not a complete graph, there are at least 2 non-adjacent vertices, say v1 and v2.
Choose G1 = Kr(u1, u2, ..., ur) and choose G2 = C2r+1(v1, x1, ..., vr, xr, xr+1) − v1v2. Then G1 and G2 are
perfect. Since H1 and H2 are not complete graphs, H1 ⊆ Kr(u1, u2, ..., ur) and H2 ⊆ Kr(v1, v2, ..., vr) − v1v2 ⊆
C2r+1(v1, x1, ..., vr, xr, xr+1) − v1v2. We can verify that G1��G2

H
� G1��G2

H1� f H2
� C2r+1. Thus, G1��G2

H
is not a Berge

graph. By the Strong Perfect Graph Theorem, G1��G2
H

is not perfect. �

For a subset S of V(G), a neighborhood of S in G, written NG(S ) or N(S ), is the set of vertices in V(G) − S

which are adjacent to vertices in S . We use G[S ] and G − S for the induced subgraph of G on the vertex set S

and V(G) − S , respectively.

We now extend the simplicial (perfect) elimination ordering to a new definition as follows:

Definition 2.11 A subset Vi of V(G) is simplicial if its neighborhood in G forms a clique. A simplicial
set elimination ordering is an ordering V1, ...,Vk for deletion of nonempty vertex subsets so that each Vi is a
simplicial vertex subset of the remaining graph induced by

⋃k
t=i Vt with |Vi| = 1 or |Vi| = 2 for all i ∈ {1, 2, ..., k},

and V1, ...,Vk partitions V(G).
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Note that a simplicial elimination ordering of a graph G is a simplicial set elimination ordering of G with
|Vi| = 1 for all i ∈ {1, 2, ..., n(G)}.
Remark 2.12 For any nontrivial graph G, let V1, ...,Vk be a partition of V(G). Let G1 = G, and for each
i ∈ {2, 3, ..., k}, let Gi = G − ⋃i−1

t=1 Vt. If V1, ...,Vk is a simplicial set elimination ordering of G, then for each
i ∈ {1, 2, ..., k − 1}, Gi is a glued graph between Gi[Vi ∪ N(Vi)] and Gi+1 at a complete clone Gi[N(Vi)].

Theorem 2.13 For a simple graph G, if G has a simplicial set elimination ordering, then G is a perfect graph.

Proof. Assume that G has a simplicial set elimination ordering V1, ...,Vk. Let G1 = G, and for each i ∈
{2, 3, ..., k}, let Gi = G − ⋃i−1

t=1 Vt. Since |Vk| = 1 or 2, Gk � K1 or K2, so Gk is perfect. By Remark 2.12,
Gi is a glued graph between Gi[Vi ∪ N(Vi)] and Gi+1 at a complete clone Gi[N(Vi)], it is enough to claim that
Gi[Vi ∪ N(Vi)] is perfect for all i ∈ {1, 2, ..., k − 1}. Let i ∈ {1, 2, ..., k − 1}. Let C be an induced cycle in
Gi[Vi ∪ N(Vi)]. Since NGi

(Vi) forms a clique, at most 2 vertices in NGi
(Vi) can be in C. Together with vertices

in Vi, C has length at most 4. Again, since NGi
(Vi) forms a clique, 2 vertices in NGi

(Vi) cannot be adjacent in
the complement of Gi[Vi ∪ N(Vi)]. Besides, each vertex in NGi

(Vi) must be adjacent to at least one vertex in
Vi, so it can be adjacent to at most one vertex of Vi in the complement of Gi[Vi ∪ N(Vi)]. Thus, there is no
cycle in the complement of Gi[Vi ∪ N(Vi)]. Hence, Gi[Vi ∪ N(Vi)] contains no odd hole and no odd antihole.
By the Strong Perfect Graph Theorem, we get Gi[Vi ∪ N(Vi)] is perfect. By Theorem 2.8, Gi is perfect for all
i ∈ {1, 2, ..., k − 1}. �

The inverse of the theorem is not true, for instance, C2n, where n ≥ 3, is perfect while it has no simplicial
set elimination ordering. It is well-known that the simplicial elimination ordering characterizes a subclass of
perfect graphs, namely the chordal graphs. It would be interesting if one could characterize a subclass of perfect
graphs by the simplicial set elimination ordering.
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Figure 1. A perfect glued graph of imperfect graphs

Figure 2. An imperfect glued graph of perfect graphs

Figure 3. A glued graph containing a new edge
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Abstract

The traditional Graph Method is a basic approach to solve Linear Goal Programming. The paper attained a
modified method based on the traditional way. The modified method can attain the satisfaction solution, while
the traditional Graph Method has its limitation in solving some Linear Goal Programming.
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1. Introduction

Goal programming is one of the most widely used methodologies in operations research and management
science, and it encompasses most classes of multiple objective programming models. Goal programming is first
brought up in 1961 by A. Charnes and W. W. Cooper (Editor Group of O.R., 1990), and then there were many
scholars studying it and it developed rapidly in the past several decades. Goal programming allowed a decide-
maker to put many requests within one decision. With goal programming the decide-maker should not look for
an absolute optimal solution, instead, he should only look for a solution that can make himself more satisfactory
than any other solutions. Because goal programming makes up some defects of linear programming, it is
considered as a decision tool that is nearer to real decision process than linear programming (Hu Yunquan,
2003).

In 1972, Lee.Sang.M put forward the graph method for linear goal programming for the first time in his mono-
graph ’Goal Programming for Decision Analysis (Editor Group of O.R., 1990). In the last 30 years, the graph
method was included as an important content of linear goal programming in many textbooks, such as in (Hu
Yunquan, 2003, Ignizio, 1976. Lee and Sang M., 1972). Analogous to the graph method for liner programming,
the graph method for goal programming can only solve problems with no more than two decision variables.
Since there are lots of problems with no more than two decision variables and graph method can give us some
help on understanding the characteristics of the optimal solution of linear programming and the satisfaction
solution of linear goal programming, graph method was an important part in almost all textbooks that included
goal programming. Hence it’s of theoretic sense to study graph methods for goal programming.

2. Goal programming

We describe linear goal programming in this section. Goal programming is a programming problem with
multiple goals, in which there is a priority order among the goals. We first introduce some basic notations used
commonly in goal programming as follows:

2.1 Deviation variable

For each decision goal, we introduce a positive deviation variable d+ and a negative deviation variable d−, while
d+ denotes how much the decision has exceeded the goal, and d− denotes how far the decision is from the goal.
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Here, we have d+ ≥ 0, d− ≥ 0, and d+ • d− = 0.

2.2 Absolute constraint and goal constraint

If a constraint must be satisfied, we call it absolute constraint. Because it is a hard constraint, a solution is not
a feasible one if it can not satisfy any one absolute constraint. Goal constraint is a special weak constraint that
can only be seen in goal programming. And sometimes a feasible solution does not satisfy a goal constraint.

2.3 Priority factor and weight coefficient

Some goal is important, while some others are unimportant. If a goal is far more important than another one,
we give it a priority factor Pl, and we give another goal a priority factor Pl+1. Here we have Pl >> Pl+1. If a
goal is a little more important than another one, we can give it a bigger weight coefficient while we give them
same priority factor.

2.4 Goal function

Goal function is composed of goal constraints’ deviation variables, their priority factors and weight coefficient.
Usually, goal programming try to minimize its deviation variables, such as min{ f (d+ + d−)}, min{ f (d+)} and
min{ f (d−)}.
2.5 Satisfaction solution

If a solution satisfies all the absolute constraints, and its cost value is no bigger than any other solution, we call
it a satisfaction solution.

3 Traditional graph method for linear goal programming

While constraints and cost function are all linear, goal programming is linear goal programming.

In traditional graph method for linear goal programming, firstly the feasible solutions should satisfy all absolute
constraints. Then we consider every goal constraint according to their priority factors. Generally, if R j is the
solution region for priority factor P j, solution region R j+1 for priority factor P j+1 must be a subspace of R j, i.e.
R j+1 ⊆ R j. If R j � Φ, and R j+1 = Φ, there is a satisfaction solution in R j. It satisfies goal P1, P2, · · · , P j, but
it can not satisfy the other goals always.

Since there is no solution that can satisfy all the goals of P j+1, we preferentially let deviation variable be zero
whose cost coefficient is larger. For example, if the goal function is 2d−3 + 3d−4 , we let d−4 be zero preferentially
as the coefficient 3 of d−4 is larger than that 2 of d−3 . So the satisfaction solution satisfies d−4 = 0.

The above described method is just the Graph Method for Linear Goal Programming. But when we look for a
satisfaction solution simply by whether the coefficient is larger or smaller, we ignore the difference among the
influence that the constraint functions have upon different deviation variables, and so it is not reliable. Now let
us look at an example of goal programming and solve it by Graph Method:

Example1: min{P1d−1 , P2d+2 , P3(2d−3 + 3d−4 ), P4d+1 }

st.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 2x2 + d−1 − d+1 = 6
x1 + 2x2 + d−2 − d+2 = 9
x1 − 2x2 + d−3 − d+3 = 4
x1 − 2x2 + d−4 − d+4 = 2
x1, x2, d−i , d+i ≥ 0, d−i ∗ d+i = 0, i = 1, 2, 3, 4

From Fig. 1, we know that the solution region R2 for goal P1 and P2 is quadrangle ABCD. While considering
the goal P3, we minimize d−4 in priority as its cost coefficient 3 is larger than that 2 of P3. So the feasible
solution region is reduced to quadrangle CDEF. Then we minimize d−3 . But there is no point that satisfies
d−3 = 0 in quadrangle CDEF, so we have to try to look for a point that minimize d−3 . The point is F(5, 2). So
the feasible solution for the Goal Programming is x1 = 5, and x2 = 2.

4. Defect of tradition graph method

In fact, the cost value of point F(5, 2) about P3(2d−3 +3d−4 ) is 3, and that of G(6.5, 1.25) is 2.25 which is smaller
than 3. So point G(6.5, 1.25) is more satisfactory than point F(5, 2), and the satisfaction solution is x1 = 6.5,
and x2 = 1.25 indeed.

32 � www.ccsenet.org/jmr



Journal of Mathematics Research March, 2009

With the above analysis, we can get that the solution found by the traditional graph method is not very satisfac-
tory sometimes. Now let us prove that point G(6.5, 1.25) is the satisfaction solution of the example.

Theorem1: G(6.5, 1.25) is the satisfaction solution of example1.

Proof: First, we will prove that any point I out of quadrangle EFGH must be not a satisfaction solution.
Without loss of generality, we suppose that point I is in quadrangle ABGH. Firstly, we move point I to line
d+3 = d−3 = 0 in the vertical direction of line d+4 = d−4 = 0, and the point of intersection is denoted by I’.
Obviously, d−3 (I′) = 0 < d−3 (I), and d−4 (I′) < d−4 (I) so we have (2d−3 + 3d−4 )(I′) < (2d−3 + 3d−4 )(I).

But d−3 (G) + 3d−3 (I′) = 0, and d−4 (G) < d−4 (G′), so

(2d−3 + 3d−4 )(G) < (2d−3 + 3d−4 )(I′)
< (2d−3 + 3d−4 )(I)

That is to say, point G is more satisfactory than point I. With same reason, point F is more satisfactory than all
the points in quadrangle CDEF.

Now let us prove that the cost value of point G is smaller than that of all points in quadrangle EFGH. In
quadrangle EFGH, all the points satisfy that d−1 = 0, d+2 = 0, d+3 = 0 and d+4 = 0, so the original problem can
be transferred into the following linear programming:

min{2d−3 + 3d−4 }

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 2x2 − d+1 = 6
x1 + 2x2 + d−2 = 9
x1 − 2x2 + d−3 = 4
x1 − 2x2 + d−4 = 2
x1, x2, d−i , d+i ≥ 0, i = 1, 2, 3, 4

The optimal solution of the above linear programming certainly can be found in the vertices of its feasible
region, and they are E, F, G and H. In the four vertices, the cost value of point F is obviously smaller than that
of point E, and that of point G is smaller than that of point H. And with the above calculation, we know that the
cost value of point G is smaller than that of point F. So point G is the most satisfactory point, and point G(6.5,
1.25) is the satisfaction solution of Example1.

5. Improvement of graph method

With the proof of Theorem 1, we know that there must be a vertex which is the satisfaction solution of the goal
programming. So we can improve the Traditional Graph Method. We put a concept algorithm of the improved
graph method as follows:

Suppose that the feasible set of goal P1, P2, · · · , P j is R j, and there is no point that can satisfy all the goals in
R j. Then, for every deviation variable in P j+1, we first draw a line whose deviation variables are all equal to
zero rightly, then we calculate the intersection of each line and the boundary of R j and the intersection of any
two lines among them. Successively we calculate all the points’ cost function of P j+1. The point whose cost
function is the smallest is just the satisfaction solution.

Remark 1: In Example 1, there is no point that can make all deviation variables in goal P3(2d−3 + 3d−4 ) (d−3 and
d−4 ) equal to zero in R2 (quadrangle ABCD). Then we draw the lines d+3 = d−3 = 0 and d+4 = d−4 = 0. Following
the steps described in the above concept algorithm, we find the satisfaction solution G as prove in the previous
section.

Remark 2: The concept algorithm posed above can find a satisfaction solution, because the satisfaction must
be on the intersections among the lines of the deviation variables which are all zeros and the boundary of the
feasible region of the problem.

6. Conclusion

The Improved Graph Method for Goal Programming can solve problems whose goals are to minimize their
deviation variables with no more than two decision variables. While it can not solve the problems whose goals
are to maximize their deviation variables, such as max 2d+2 + 3d−3 and min 2d+2 − 3d−3 .
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Abstract

This paper presents a new approach to Automatic Differentiation (AD) for a scalar valued and twice contin-
uously differentiable function f : Rn → R. A new arithmetic is obtained based on the chain rule and using
augmented algebra of real numbers. The chain rule based differentiation arithmetic is used to find the Gradient
and Hessian. Jacobian is evaluated using Gradient arithmetic by computing Gradient for components and is ar-
ranged in matrix form to give Jacobian value. The resulting derivative evaluation uses the operator overloading
concept which uses computer programs written in C++.

Keywords: Automatic Differentiation, Augmented algebra, operator overloading, Forward mode

1. Introduction

Any efficient non-linear optimization routine needs good gradient approximations. Over the last decades, sev-
eral research groups have developed the technique of Automatic Differentiation, which generates exact deriva-
tives for a given code segment. A comprehensive introduction to this method can be found in (Griewank, A.,
2000 & 1990; Naumann, U., 2008; Moore, R.E., 1962; Rall, L.B., 2007). Automatic Differentiation can be
implemented in various ways, each of which is dependent on circumstances partially. Here, we use a new
methodology to implement AD for computing Gradient, Hessian and Jacobian. A new arithmetic is obtained
based on the chain rule and using augmented algebra of real numbers through forward mode of Automatic
Differentiation.

2. The Differentiation Arithmetic for Evaluation of Gradient and Hessian

To obtain the arithmetic for Gradients and Hessians, an ordered triples of the form U = (u f , ug, uh) with
u f ∈ R, ug ∈ Rn, uh ∈ Rn × Rn where the scalar u f denotes the function value u(x)of the twice differentiable
function u : Rn → R, the vector ugand the matrix uh denote the value of the gradient ∇u(x) and the Hessian
∇2u(x) respectively, each at a fixed point x ∈ Rn is considered. For the constant function u(x) = c, the triple
is U = (u f , ug, uh) = (c, 0, 0).For the function u(x) = xk with k ∈ {1, 2, · · · , n}, (u f , ug, uh) = (xk, e(k), 0) is
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defined, where ek ∈ Rn denotes the kth unit vector and 0 denotes the zero matrix, respectively. There are some
rules for the differentiation arithmetic similar to one dimensional case. They are

W = U + V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f + v f ,

wg = ug + vg,

wh = uh + vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U − V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f − v f ,

wg = ug − vg,

wh = uh − vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U · V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f · v f ,

wg = ugv f + u f vg,

wh = v f · uh + ug · vT
g + vg · uT

g + u f · vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U/V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f /v f ,

wg = (ug − w f · vg)/v f ,

wh = (uh − wg · vT
g − vg · wT

g − w f · vh)/v f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the familiar rules of calculus have been used in second and third components, and v f � 0 is assumed
in the case of division. The operations for w f ,wg and wh in these definitions are operations on real numbers,
vectors and matrices. If the independent variables xiof a formula for a function f : Rn → R and x → f (x) are
replaced by Xi = (xi, e

(i), 0), and if all constants c are replaced by their (c, 0, 0) representation, then evaluation
of f using the rules of differentiation arithmetic gives

f (X) = f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
X2
X3
·
·
·

Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x1, e
(1), 0)

(x2, e
(2), 0)

(x3, e
(3), 0)
·
·
·

(xn, e
(n), 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ( f (x),�u(x),�2u(x))

For the elementary function S : R → R and U = (u f , ug, uh), the differentiation arithmetic is

W = S (U) ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = S (u f ),
wg = S ′(u f ) · ug,

wh = S ′′(u f ) · ug · uT
g + S ′(u f ) · uh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.1 Algorithmic Description

Here the algorithm for the elementary operators {+, −, ·, /} and for elementary functions S ∈ {power, exp, log,
sin, cos, tan, cot, asin, acos, atan, acot, sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth} of a Gradient and
Hessian arithmetic for a twice continuously differentiable function f : Rn → Ris discussed.

Algorithm for overloading the ± operator for U and V is given by

Step 1:
[
W f

]
=
[
u f

]
±
[
v f

]
; (Function value)

Step 2: for i = 1 : n[
Wg

]
i
=
[
ug

]
i
±
[
vg

]
i
; (Gradient component

for j = 1 : i

[Wh]i j = [uh]i j ± [vh]i j ; (Hessian component)
Step 3: return [W] ;

The algorithmic description for the multiplication operator for (U,V) is given by
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Step 1:
[
W f

]
=
[
u f

]
·
[
v f

]
; (Function value)

Step 2: for i = 1 : n[
Wg

]
i
=
[
v f

]
·
[
ug

]
i
+
[
u f

]
·
[
vg

]
i
; (Gradient component

for j = 1 : i

[Wh]i j =
[
v f

]
· [uh]i j +

[
ug

]
i
·
[
vg

]
j
+
[
vg

]
i
·
[
ug

]
j
+
[
u f

]
· [vh]i j ; (Hessian component)

Step 3: return [W] ;

The algorithm for overloading the / operator for (U,V) is

Step 1:
[
W f

]
=
[
u f

]
/
[
v f

]
(Function value)

Step 2: for i = 1 : n[
Wg

]
i
= (
[
ug

]
i
−
[
W f

]
·
[
vg

]
i
)/
[
v f

]
; (Gradient component)

for j = 1 : i

[Wh]i j = ([uh]i j −
[
Wg

]
i
·
[
vg

]
j
−
[
vg

]
i
·
[
Wg

]
j
−
[
W f

]
· [vh]i j)/

[
v f

]
(Hessian component)

Step 3: return [W] ;

The algorithm for overloading the elementary functions for (U,V) is

Step 1:
[
W f

]
= S

[
u f

]
; (Function value)

Step 2: for i = 1 : n[
Wg

]
i
= S ′(

[
u f

]
) ·

[
ug

]
i
; (Gradient component)

for j = 1 : i

[Wh]i j = S ′′(
[
u f

]
) ·
[
ug

]
i
·
[
ug

]
j
+ S ′(

[
u f

]
); (Hessian component)

Step 3: return [W] ;

Here, W returns three components of which the first one is the function value, the second one is the Gradient
and the third one is the Hessian.

INPUT: (i) Multi-variate functions of dimension 3.
(ii) Values of the components x, y, z

OUTPUT: (i) Value of the function
(ii) Value of the Gradient
(iii) Value of the Hessian

2.2 Numerical Results

The input function is f (x) = x sin(x) + cos(y2) + z2. The function is evaluated at the point (2 · 5, 3 · 5, 4 · 5)

Value of the function = 523 · 6875

Value of the Gradient =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
210 · 875
220 · 5

149 · 625

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Value of the Hessian =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
42 91 · 45 49

91 · 75 40 · 5 42 · 75
49 42 · 75 31 · 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3. Evaluation of Jacobians

Jacobian can be evaluated using Gradient arithmetic by computing Gradient for components fi with i =

1, 2, · · · , n. The same differentiation arithmetic, which is used for finding the functional value along with
the Gradient, is used. Then, the Gradients for each fi, i = 1, 2, · · · , n are computed and are arranged in the ma-
trix form to give the Jacobian value. Using this new technique the Jacobian is computed exactly with minimum
human effort.

4. Conclusion

Here a new technique is used for implementing AD for a scalar valued and twice continuously differentiable
function f : Rn → R. Automatic Differentiation is a useful tool as it facilitates the automatic generation of
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Gradient and Hessian which enhances the robustness of an optimization algorithm that requires derivatives. The
chain rule based differentiation arithmetic is used to find the Gradient and Hessian. Jacobian is also evaluated
using Gradient arithmetic by computing Gradient for components and is arranged in the matrix form to give the
Jacobian value.
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Abstract

Plateau’s problem is to determine the surface with minimal area that lies above an obstacle with given boundary
conditions. In this paper, a special example of this class of the problem is given and solved with the linear
finite element method. First, we triangulate the domain of definition, and transform the linear finite element
approximation into a constrained nonlinear optimization problem. Then we introduce a simple and efficient
method, named sequential quadratic programming, for solving the constrained nonlinear optimization problem.
The sequential quadratic programming is implemented by the fmincon function in the optimization toolbox of
MATLAB. Also, we discuss the relations between the number of grids and the computing time as well as the
precision of the result.

Keywords: Minimal surface problem with obstacle, Finite element approximation, Constrained nonlinear op-
timization, Sequential quadratic programming

1. Introduction

Plateau’s problem is to determine the surface of minimal area with a given closed curve in R3 as boundary
(Elizabeth, etc., 2004, pp.39-40). Suppose that the surface can be represented in nonparametric form z : R2 →
R, and the requirement is z ≥ zL for some obstacle zL. The solution of this obstacle problem minimizes the
function f : K → R

f (z) =
∫

D

√
1 + ‖∇z(x)‖2dx (1)

over the convex set

K = {z ∈ H1(D)|z(x) = zD(x) for x ∈ ∂D, z(x) ≥ zL(x) for x ∈ D} (2)
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where ‖ • ‖ represents the Euclidean norm, H1(D) is the space of functions with gradients in L2(D). The
function zD : ∂D → R defines the boundary data, and zL : D → R is the obstacle. We assume that zL ≤ zD on
the boundary ∂D.

The linear finite element approximation to the minimal surface with obstacle, defined by (1) and (2), can be
obtained by triangulating D and minimizing f over the space of piecewise linear functions. The linear finite
element approximation for the minimal surface with obstacle is analyzed, the existence and uniqueness of
the solution for the discrete problem are shown, and the error estimate of the finite element approximation is
obtained (Shen, etc., 1992, pp. 42-51).

In this paper, we intend to solve an example of the problem with the linear finite element approximation. In the
example, we set D = [0, 1] × [0, 1], and use the boundary data

zD(x, y) =
{

1 − (2x − 1)2 y = 0, 1
0 otherwise

(3)

and the obstacle

zL(x, y) =
{

1 if
√

(x − x0)2 + (y − y0)2 ≤ 0.25
0 otherwise

(4)

where (x0, y0) is the center of the projection circle on X-Y plane of the obstacle. The question is: when
(x0, y0) = (0.5, 0.5), what is the minimal area? And when (x0, y0) can move freely within D, what is the
maximum minimal area?

2. Mathematic Model

To obtain the linear finite element approximation to the minimal surface, we use a triangulation with, respec-
tively, nx and nν internal grid points in the coordinate directions, as shown in Figure 1, where (m, n) represents
the index of the coordinate data.

We set nx = nν = n for simplicity, and let zi j denote z(xi j, yi j). Thus the surface area is approximately 2n2 small
triangle area, and the linear finite element approximation of the problem (1)(3)(4) may be transformed into the
following constrained nonlinear optimization problem

min
zi j

S =

2n2∑
k=1

S k({zi j, i, j = 1, · · · , n + 1}) (5)

subject to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zi1 = 0
z1i = 1 − (2x1i − 1)2 i = 1, 2, · · · , n + 1
zi, n+1 = 0
zn+1, i = 1 − (2xn+1, i − 1)2

(6)

and

zi, j ≥
⎧⎪⎪⎨⎪⎪⎩ 1 if

√
(xi j − x0)2 + (yi j − y0)2 ≤ 0.25 i, j = 1, 2, · · · , n + 1

0 otherwise
(7)

The minimum of this class of constrained nonlinear multivariable function can be solved by the fmincon func-
tion of MATLAB.

3. Solving Algorithm

The fmincon function uses the sequential quadratic programming (SQP) method to solve Medium-Scale Opti-
mization problem of the following form

min
x

f (x)

s.t. gu(x) ≤ 0 (u = 1, 2, · · · , p)
hν(x) = 0 (ν = 1, 2, · · · , m)

(8)
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The recursive procedure of the SQP method is as follows (Li, 2006, pp. 117-119; Zhang, etc., 2007, pp.
117-122):

Give the initial point x0, the initial Hessian matrix H0 = I (identity matrix), and set k=0.

(1) A QP problem of the following form is solved to get dk.

min
d∈Rn

∇ f (xk)T d + 1
2 dT Hkd

s.t. gu(xk) + ∇gu(xk)T d ≤ 0 (u = 1, 2, · · · , p)
hν(xk) + ∇hν(xk)T d = 0 (ν = 1, 2, · · · , m)

(9)

(2) Use linear search to form a new iterate

xk+1 = xk + αkdk (10)

where the step length αk is determined according to certain rules.

(3) Update the Hessian matrix using the BFGS formula of the Quasi-Newton method.

Hk+1 = Hk +
qkqT

k

qT
k

sk

− HkHT
k

sT
K

Hksk

(11)

where
sk = xk+1 − xk

qk = ∇ f (xk+1) +
m∑

i=1

λi∇gi(xk+1) − [∇ f (xk) +
m∑

i=1

λi∇gi(xk)]

and λi(i = 1, · · · , m) is an estimate of the Lagrange multipliers.

4. Results and Analysis

4.1 The minimal area when (x0, y0) = (0.5, 0.5)

Write MATLAB program using the fmincon function (choose Medium-Scale Algorithm), and run it to get the
results. The minimal surface is shown in Figure 2. The minimal surface area is minS=2.4075. It can be seen
from Figure 2 b) that the surface is sunken in the y direction.

The minimal surface area depends on the number of the grid points. Figure 3 shows the relationship between
the minimal area and the number of grid points.

As can be seen from Figure 3, with the increase of the number of grid points, the minimal area is increasing on
the whole. This is because the area of a triangular element unit is smaller than that of the curved surface, and
the approximate error is reduced with more grid points, as shown in Figure 4. And the volatility is weakening,
i.e. it has the trend to a constant. This is in line with the theoretical result of (Shen, Shumin, 1992), which
concludes that the finite element approximate solution converges to the true solution when the number of grid
points tends to infinity.

In addition, with the increase of the number of grid points, the number of the variable is increasing, so the
computation becomes slower. For example, it takes only 37.48s for 10 grid points to finish computation, an
hour for 35 grid points, while about 4 hours for 40 grid points. The computed result also depends on the
parameters of the fmincon function. In the experiment, TolFun(termination tolerance on the function value),
TolCon(termination tolerance on the constraint violation) and TolX (termination tolerance on x) are all set to
be 10−5.

4.2 The maximum minimal area when moves freely within D

In this case, x0, y0 can be treated as extra parameters to be optimized. Due to symmetry of the boundary data,
it only need to consider the case when (x0, y0) ∈ [0, 0.5] × [0, 0.5].

Write MATLAB program using the fmincon function (choose Medium-Scale Algorithm), and run it to get
the results. As shown in Figure 5 (30 grid points), the maximum minimal area is obtained when (x0, y0) =
(0.25, 0.5). The corresponding maximum minimal area is maxminS=2.5158.
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From the above analysis, we have known that the minimal surface is sunken in the y direction. Obviously
the surface with minimal area without obstacle is as Figure 6 shows. With the center of the plate obstacle
approaching the y axis, the surface is bulging more, and the area of the surface will increase accordingly. So it
is reasonable that the maximum minimal area is obtained when the plate obstacle is tangent to the y axis.

The maximum minimal area can also be obtained with (x0, y0) = (0.75, 0.5) for symmetry. Computed result
that the minimal area is also 2.5158 confirms the conclusion. The corresponding surface (30 grid points) is
shown in Figure 7.

5. Conclusion

This paper solves the minimal surface problem with obstacle with linear finite element approximation. We
transform the minimal surface problem with obstacle into a constrained nonlinear optimization problem. Our
method is based on the sequential quadratic programming method, and we use the fmincon function in the
optimization toolbox of MATLAB. Based on the results, the relation between the number of grid points and
precision of the results as well as computation time is discussed.
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Figure 1. Triangulation of the region D = [0, 1][0, 1]
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a) Three- dimensional graph

b) View from x direction

Figure 2. Minimal surface with obstacle (30 grid points)

Figure 3. The relationship between the minimal area and the number of grid points
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a) 10 grid points

b) 40 grid points

Figure 4. Comparison of the minimal surface with 10 grid points and 40 grid points

Figure 5. Surface with maximum minimal area
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Figure 6. Minimal surface without obstacle

Figure 7. Surface with maximum minimal area
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Abstract

In this paper, a multigrid algorithm is studied for mortar element method for rotated Q1 element, the mortar
condition is only dependent on the degrees of the freedom on subdomains interfaces. We prove the convergence
of W-cycle multigrid and construct a variable V-cycle multigrid preconditioner which is available.

Keywords: Multigrid, Mortar element method, Rotated Q1 element

1. Introduction

The mortar element method is a nonconforming domain decomposition method with non-overlapping subdo-
mains. The meshes on different subdomains need not align across subdomains interfaces, and the matching of
discretizations on adjacent subdomains is only enforced weakly. This method offers the advantages of freely
choosing highly varying mesh sizes on different subdomains. The rotat Q1 element is an important nonconform-
ing element. It was first proposed and analysised for numerically solving the Stokes problem, the rotated Q1
element provides the simplest example of discretely divergence-free nonconforming element on quadrilaterals.

Let Ω ∈ R2 be a rectangular or L-shape bounded domain with boundary ∂Ω. Partition Ω into geometrically
conforming rectangular substructures, i.e..

Ω =
N⋃

k=1
Ωk and Ωk

⋂
Ωl = φ, k � l, Ωk

⋂
Ωl is empty set or a vertex or an edge for k � l.

Let T i
1 = T i

1(Ωi) be a coarsest quasi-uniform triangulation of the subdomain Ωi, which made of elements that
are rectangles whose edges are parallel to X-axis or Y-axis. Let T1 =

⋃N
i=1 T i

1. The mesh parameter h1 is the
diameter of the largest element in T1 the global triangulation of Ω. We refine the triangulation T1 to produce
T2 by joining the midpoints of the edges of the rectangles in T1. Obviously, the mesh size h2 in T2 satisfies
h2 =

1
2 h1. Repeating this process, we get a sequel of triangulations T1(l = 1, 2, · · · , L). Let Ωi,l and ∂Ωi,l be the

set of vertices of the triangulation T i
1 that are in Ωi and ∂Ωi respectively.

We construct the rotated Ql element for each triangulation Tl(Ωi) as follows.

Xl(Ωi) = {ν ∈ L2(Ωi)|ν|E = α1
E + α

2
E x + α3

E
y + α4

E(x2 − y2), α2
E ∈ R,

∫
∂E|∂Ω ν|∂Ωds = 0, ∀E ∈ Tl(Ωi); for

E1, E2 ∈ Tl(Ωi), if ∂E1|∂E2 = e, then
∫

e
ν|∂E1ds =

∫
e
ν|∂E2ds}

The global discrete space is defined by

Xl(Ω) =
N∏

i=1

Xl(Ωi)

The interface Γ =
⋃N

i=1 ∂Ωi\∂Ω is broken into a set of disjoint open straight segments γm(1 ≤ m ≤ M), i.e.,
Γ =

⋃M
m=1 γm, γm ∩ γ = φ, if m � n.
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By γm(i) we denote an edge of Ωi called mortar and by δm( j) an edge of Ωi that geometrically occupies the
same place called nonmortar, then γm(i)=δm( j)=γm

. Since γm inherits two different triangulations, by Tl(γm(i))
and Tl(δm( j)) denote the different triangulations across γm (Assume the fine side is chosen as mortar). Define
S l(δm( j)) to be a subspace of L2(γm), such that its functions are piecewise constants on Tl(δm( j)). The dimension
of S l(δm( j)) is equal to the number of elements on the δm( j). For each nonmortar edge δm( j), define an L2-
projection operator Ql,δ : L2(γm) → S l(δm( j)) by

(Ql,δν, ψ)L2(δm( j)) = (ν, ψ)L2(δm( j)), ∀ψ ∈ S l(δm( j)) (1)

The purpose of this paper is to study the multigrid method for mortar element for the rotated Q1 element. An
intergrid transfer operator is presented for nonnested mortar element spaces. On the basis of this operator,
we give a multigrid algorithm. Using the theory developed by Bramble, Pasciak, Xu, we prove the W-cycle
multigrid is optimal, i.e., the convergence rate is independent of mesh size and mesh level. Furthermore, a
variable V-cycle multigrid preconditioner is developed, which results in a preconditioned system with uniformly
bounded condition number.

The remainder of this paper is organized as follows. In section two we introduce Multigrid algorithm. Section
three presents some lemmas. Last section gives our results.

2. Multigrid algorithm

We must define a suitable intergrid transfer operator for nonnested mesh space Vl. First introduce a local
intergrid operator Ji

l
from Xl−1(Ωi) to Xl(Ωi) by

1
| e |

∫
e

Ji
lνds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 e ⊂ ∂Ωi ∩ ∂Ω
1
|e|
∫

e
νds e ⊂ ∂Ωi \ ∂Ω

1
|e|
∫

e
νds e � ∂E E ∈ T i

l−1

1
2|e|
∫

e
(ν |E1 +ν |E2 )ds e ⊂ ∂E1 ∩ ∂E2 E1, E2 ∈ T i

l−1

Where e ∈ ∂E, E ∈ T i
l
.

Based on the operator Ji
l
, a global intergrid transfer operator Jl : Xl−1(Ω) → Xl(Ω) introduced as follows.

Jlν =
(
J1

l ν, J2
l ν

2, · · · , JN
l ν

N), ∀ν = (ν1, ν2, · · · , νN) ∈ Xl−1(Ω)

To construct an intergrid operator in mortar element spaces we define an operator εl, δm( j) :

Xl(Ω) → Xl(Ω) by

∫
e

εl,δm( j) (ν)ds =

{ ∫
e

Ql,δ

⎧⎩I
γ
l

Ql,γν |γm(i) −ν |δm( j)

⎫⎭ds e ∈ Tl(δm( j))
0 otherwise

Then for any ν ∈ Xl(Ω), let

ν∗ = ν +
M∑

m=1

εl,δm( j) (ν) (2)

It is easy to check that ν∗ ∈ Vl, since for any ψ ∈ S l(δm( j)), we can derive
∫
δl,m( j)
ν∗|δm( j)ψds =

∫
δm( j)
ν|δm( j)ψds +

∫
δm( j)
εl,δm( j) (ν)|δm( j)ψds

=
∫
δm( j)
ν|δm( j)ψds +

∫
δm( j)

Ql,δ(I
γ
l

Ql,γν|γm(i) − ν|δm( j) )ψds

=
∫
δm( j)
ν |δm( j) ψds +

∫
δm( j)

(Iγ
l

Ql,γν|γm(i) − ν|δm( j) )ψds

=
∫
δm( j)

I
γ
l

Ql,γν|γm(i)ψds

=
∫
δm( j)

I
γ
l

Ql,γν
∗|γm(i)ψds
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After above preparation, we can construct an intergrid transfer operator Il in mortar element spaces.

Il : Xl−1(Ω) → Vl by Ilν = Jlν +

M∑
m=1

εl,δm( j) (Jlν), ∀ν ∈ Xl−1(Ω) (3)

To present our multigrid algorithm, we describe some auxiliary operators. For l = 1, 2, · · · , L, define Al :
Vl → Vl, Pl−1 : Vl → Vl−1, and P0

l−1 : Vl → Vl−1 respectively by (Alu, ν) = αl(u, ν), ∀u, ν ∈ Vl, (P0
l−1u, ν) =

(u, Ilν), ∀u ∈ Vl, ν ∈ Vl−1, al−1(Pl−1u, v) = al(u, Ilv), ∀u ∈ Vl, v ∈ Vl−1,

Furthermore we must find smoothing operator Rl, including Gauss-Seidel, conjugate gradient iterations and so
on, which satisfy the following condition.

(R). There exists a constant CR ≥ 1 independent of l such that

‖u‖2
0

λ1
≤ CR(Rlu, ν), ∀u ∈ Vl (4)

For both Rl = (I − K∗
l
Kl)A−1

l
or Rl = (I − KlK

∗
l
)A−1

l
, where Kl = I − RlAl, K∗

l
= I − RT

l
Al, RT

l
is the adjoint of

Rl with respect to (.,. ) and λl is the maximum eigenvalue of Al.

Define R
(k)
l
=

⎧⎪⎪⎨⎪⎪⎩
Rl k is odd

RT
l

k is even

A general multigrid operator Bl : Vl → Vl can be defined recursively as follows.

Multigrid Algorithm. Set B1 = A−1
1 . Let 2 ≤ l ≤ L and p be a positive integer, assume that Bl−1 has been

defined and define B1g for g ∈ Vl by

(1) Set initial value X0 and let q0 = 0.

(2) Define xk for k = 1, 2, · · · , m(l) by xk = xk−1 + R
(k+m(l))
l

(g − Alx
k−1).

(3) Define ym(l) = xm(l) + Ilq
py, where qi for i = 1, · · · , p are determined by qi = qi−1 + Bl−1(P0

l−1(g− Alx
m(l))−

Al−1qi−1)

(4) Define yk for k = m(l) + 1, · · · , 2m(l) by yk = yk−1 + R
(k+m(l))(g−Aly

k−1)
l

.

(5) Set B1g = y2m(l).

Remark. In the Multigrid Algorithm, m(l) gives the number of presmoothing and postsmoothing steps, it can
vary as a function of l. If p = 1, we have a V-cycle method, and p = 2 denotes a W-cycle method. A variable
V-cycle algorithm is one in which the number of smoothing m(l) increase exponentially as l decreases, i.e., the
number of smoothing m(l) satisfies β0m(l) ≤ m(l − 1) ≤ β1m(l), with 1 < β0 < β1.

3. Some lemmas

To reach our conclusion, we present some auxiliary technical lemmas and prove an approximation assumption.

Define an operator Ml,i : Xl(Ωi) → V
1
2

l
(Ωi) as follows.

Definition 1. Given ν ∈ Xl(Ωi), let Ml,iν ∈ V
1
2

l
(Ωi) by the values of Ml,iν at the vertices of the partition T

1
2

l
(Ωi).

(1) If P is a central point of E, E ∈ Tl(Ωi), then (Ml,iν)(P) = 1
4
∑

ei∈∂E
1
|ei |
∫

ei
νds.

(2) If P is a midpoint of one edge e ∈ ∂E, E ∈ Tl(Ωi), then (Ml,iν)(P) = 1
|ei |
∫

e
νds.

(3) If P ∈ Ωi,l \ ∂Ωi,l, then (Ml,iν)(P) = 1
4
∑
ei

1
|ei |
∫

ei
νds. Where the sum is taken over all edges ei with the

common vertex P, ei ∈ ∂Ei, Ei ∈ Tl(Ωi).

(4) If P ∈ ∂Ωi,l \ {c1, · · · , cn}, then (Ml,iν)(P) = 1
2 ( 1
|el |
∫

el
νds + 1

|eγ |
∫

eγ
νds), where el ∈ ∂E1 ∩ ∂Ωi and eγ ∈

∂E2 ∩ ∂Ωi are the left and right neighbor edges of P, E1, E2 ∈ Tl(Ωi), c1, · · · , cn are the vertices of subdomain
Ωi.
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(5) If P ∈ {c1, · · · , cn}, then

(Ml,iν)(P) =
|el|

|el| + |eγ| (
1
|el|

∫
el

νds) +
|eγ|

|el| + |eγ| (
1
|eγ|

∫
eγ

νds)

For the above operator Ml, j, we have the following result.

Lemma 1. For any ν ∈ Xl(Ωi), we have |Ml,iν|H1(Ωi) ≈ ‖ν‖l,i.

Lemma 2. ‖ν − Ql,δν‖L2(γm) ≤ h
1
2
l
|v|

H
1
2 (γm)

∀ν ∈ H
1
2 (γm).

Lemma 3. For any ν ∈ Xl(Ωi), then ‖Ql,δI
γ

l
Ql,γν|γm(i) − I

γ

l
Ql,γν|γm(i)‖L2(γm(i)) ≤ h

1
2
l
‖ν‖l,i.

‖Ir
l
Ql,rν|γm(i) − Ql,rν|γm(i)‖L2(γm(i)) ≤ h

1
2
l
‖ν‖l,i

Lemma 4. For any νi ∈ Vl−1(Ωi), we have ‖Ji
l
νi‖l,i ≤ ‖νi‖l−1,i, ‖νi − Ji

l
νi‖0,i ≤ hl‖νi‖l−1,i.

Lemma 5. For any ν ∈ Vl−1, it holds that ‖Ilν‖l ≤ ‖ν‖l−1, ‖ν − Ilν‖0 ≤ hl‖ν‖l−1.

Lemma 6. For the operator Πl, we have ‖ξ − Πlξ‖0 + hl‖ξ − Πlξ‖l ≤ h2
l
|ξ|2, ∀ξ ∈ H1

0(Ω) ∩ H2(Ω).

Lemma 7. For any ξ ∈ H1
0(Ω) ∩ H2(Ω), we have ‖ξ − ILΠl−1ξ‖l ≤ hl|ξ|2.

The proofs of the above all lemmas can be found in relevant references. Let’s come to see the last two lemmas.

Lemma 8. The operator Pl−1 has following property ‖ν − Pl−1ν‖0 ≤ hl‖ν‖l, ∀ν ∈ Vl.

Proof. Consider the auxiliary problem as follows
⎧⎪⎪⎨⎪⎪⎩
−�ξ = ν − Pl−1ν in Ω

ξ = 0 on ∂Ω

then ‖ν − Pl−1ν‖2
0 = (−�ξ, ν − Pl−1ν) = (αl(ξ, ν) − αl−1(ξ, Pl−1ν)) − ∑

K∈Tl

∮
∂K

∂ξ
∂nνds +

∑
K∈Tl−1

∮
∂K

∂ξ
∂n Pl−1νds

:= F1 + F2 + F3

Lemma 4 and Lemma 2 reveal |F2| ≤ hl|ξ|2‖ν‖l = hl‖ν − Pl−1ν‖0‖ν‖l. Using Lemma 5, we can see ‖Pl−1ν‖2
l−1 =

αl−1(Pl−1ν, Pl−1ν) = αl(ν, IlPl−1ν) ≤ ‖ν‖l‖Pl−1ν‖l. So ‖Pl−1ν‖l−1 ≤ ‖ν‖l.

By Lemma 2 and above inequality, we have |F3| ≤ hl|ξ|2‖Pl−1ν‖l−1 = hl‖ν − Pl−1ν‖0‖ν‖l. Now we estimate F1.

|F1| = |αl(ξ, ν) − αl−1(Πl−1ξ, Pl−1ν) + αl−1(Πl−1ξ, Pl−1ν) − αl−1(ξ, Pl−1ν)|
≤ |αl(ξ − IlΠl−1ξ, ν)| + |αl−1(ξ − Πl−1ξ, Pl−1ν)|
≤ hl|ξ|2(‖ν‖l + ‖Pl−1ν‖l−1) ≤ hl|ξ|2‖ν‖l ≤ |ν − Pl−1ν‖0‖ν‖l

All the above inequalities give the proof. Now, the approximation assumption theory is given as follows.

Lemma 9. |αl((I − IlPl−1)ν, ν)| ≤ ⎧⎩ ‖Alν‖2
0

γl

⎫⎭ 1
2αl(ν, ν)

1
2 , ∀ν ∈ Vl. Proof. By triangular inequality, Lemma 5 and

Lemma 8, we derive ‖ν − IlPl−1ν‖0 ≤ ‖ν − Pl−1ν‖0 + ‖(I − Il)Pl−1ν‖0 ≤ hl(‖ν‖l + ‖Pl−1ν‖l−1) ≤ hl‖ν‖l On the
other hand

‖ν − IlPl−1ν‖l = sup
ω∈Vl,‖ω‖l=1

αl(ν − IlPl−1ν,ω)

= sup
ω∈Vl,‖ω‖l=1

αl(ν,ω − IlPl−1ω)

≤ sup
ω∈Vl,‖ω‖l=1

‖Alν‖0‖ω − IlPl−1ω‖0

≤ hl‖Alν‖0

Then, we can obtain

|αl((I − IlPl−1)ν, ν)| ≤ ‖(I − IlPl−1)ν‖l‖ν‖l ≤ hl‖Alν‖0‖ν‖l ≤
⎧⎪⎩‖Alν‖2

0

λl

⎫⎪⎭ 1
2
αl(ν, ν)

1
2 .
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4. Main result

We now state the convergence results for the multigrid algorithm. The convergence rate for the multigrid
algorithm on the l th level is measured by a convergence factor

δl satisfying |αl((I − BlAl)ν, ν)| ≤ δlαl(ν, ν), ∀ν ∈ Vl (5)

Following the above analysis, we propose two propositions:

Proposition 1. (W-cycle). Under Lemma 9, if p = 2 and m(l) = m is large enough, then the convergence factor
in (5) is δl =

C

C+m
1
2

Proposition 2. (variable V-cycle preconditioner) Under Lemma 9, and the number of smoothing m(l) increases
as decreases in such a way that β0m(l) ≤ m(l − 1) ≤ m(l), hold with 1 ≤ β0 ≤ β1. then there exists M > 0

independent of L such that C−1
0 αl(ν, ν) ≤ αl(BlAlν, ν) ≤ C0αl(ν, ν), ∀ν ∈ Vl, with C0 =

M+m(l)
1
2

m(l)
1
2

.
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Abstract

In this paper, a class of nonlinear delay functional differential equations with variable coefficients is linearized,
and through analogizing the oscillation theory of linear functional differential equation, we obtain many oscil-
lation criteria of this class of equation by using the Schauder fixed point theorem.

Keywords: Variable coefficient, Nonlinear, Functional differential equation, Oscillation

1. Introduction

There are many researchers about the oscillation of the linear delay functional differential equation with con-
stant coefficients and the linear delay functional differential equation with variable coefficients, and a series
of conclusions has been acquired. However, the literatures about the nonlinear delay functional differential
equation with variable coefficients are very few. In the following study, we suppose the functional differential
equation accords with the whole existence of solution, and we will use the Schauder fixed point theorem when
proving the existence of positive solution.

Consider the nonlinear delay functional differential equation with variable coefficients

x′(t) +
n∑

i=1

Qi(t) f (x(t − τi)) = 0 (1)

and the linear delay functional differential equation with constant coefficients

x′(t) +
n∑

i=1

qix(t − τi) = 0 (2)

where, f ∈ C[R,R], qi ∈ [0,+∞), τi ∈ [0,+∞), Qi ∈ C
[
[t0,+∞),R+

]
(i = 1, 2 · · · n).

Replace the variable coefficients in the equation (1) by the constant qi, we can obtain the equation

x′(t) +
n∑

i=1

qi f (x(t − τi)) = 0 (3)

Gyori’s article (Gyori, 1991) studied the oscillation of equation (3) and proved that if the following conditions
(H1) lim

u→0

f (u)
u
= 1

(H2) When u � 0, u f (u) > 0

(H3) σ > 0 exists and makes when u ∈ [0, σ), f (u) � u, and when u ∈ (−σ, 0], f (u) � u comes into exis-
tence, so the sufficient and necessary condition of the oscillation of differential equation (3) is the equation (2)
is oscillatory.
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In the article, we will discuss the oscillation of the equation (1) which is more common than the equation (3),
and the result will extend the conclusion in Gyori’s article. To prove the main result, we first introduce the
following lemma.

Lemma 1.1: For the delay differential inequation x′(t) + qx(t − τ) � 0, where, q ∈ R+, and x(t) is its final
positive solution, so the inequation x(t − τ) �

⎧⎩ 2
qτ

⎫⎭2
x(t) comes into existence finally.

Prove: Suppose when t � t0 − τ, x(t) > 0, x(t) fulfills the delay differential inequation x′(t) + qx(t − τ) � 0.

Make integral to the above inequation from s to s + τ2 , we can obtain

x(s +
τ

2
) − x(s) +

∫ s+ τ2

s

qx(s − τ)ds � 0, s > t0 + τ (4)

Because x′(t) � −qx(t − τ), so x(t) doesn’t increase monotonically, so

qτ

2
x(s − τ

2
) � x(s) (5)

Take t = s + τ2 , from (5), we can obtain

qτ

2
x(t − τ) � x(t − τ

2
), t � t0 +

3τ
2

(6)

Change s in (5) by t, and from (6), we can obtain x(t − τ) �
⎧⎩ 2

qτ

⎫⎭2
x(t).

Lemma 1.2: Suppose u(t) ∈ C1[[t0,∞),R+
]
, and when t is enough big, the following inequation comes into

existence.

u′(t) � 0, u(t − α) < Au(t) (7)

Where, α, A ∈ R+, suppose Ω = {λ � 0 : u′(t) + λu(t) � 0 comes into existence finally}, so when A > 1, λ0 =
lnA
α � Ω exists.

Prove: Suppose λ0 =
lnA
α ∈ Ω, so u′(t) + λ0u(t) � 0, i.e. d

dt
[eλ0tu(t)] � 0, that indicates eλ0tu(t) is final un-

increasing, so for the enough big t,
eλ0(t−α)u(t − a) � eλ0tu(t) (8)

u(t − α) � eλ0αu(t) = Au(t)

So, (7) is contrary with (8), which indicates the suppose doesn’t come into existence, and the theorem is proved.

Lemma 1.3 (Gyori, 1991): The sufficient and necessary condition of the oscillation of the differential equation

(2) is the characteristic equation λ +
n∑

i=1
qie

−τiλ = 0 has no real root.

Lemma 1.4 (Zhang, 1987) (Schauder fixed point theory): Suppose M is the closed convex subset in the Banach
space X, T : M → M is continuous, and is the relative compact subset of X, so T must have a fixed point x ∈ M

to make T x = x.

2. Main results and proofs

For the need of following proofs, we give following conditions after (H1), (H2) and (H3).

(H4) lim
t→∞ Qi(t) = qi (i = 1, 2 · · · n)

(H5) Qi(t) � qi (i = 1, 2 · · · n)

(H6)
n∑

i=1
qi > 0

Theorem 2.1: Suppose conditions (H2) and (H6) come into existence, and if x(t) is the non-oscillatory solution
of the equation (1), so x(t) is finally monotonically, and lim

x→∞ x(t) = 0.
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Prove: Suppose x(t) is the non-oscillatory solution and the finally positive solution of the equation (1), and for
the situation of finally negative solution, we can prove it analogously. From the equation (1), we can obtain

x′(t) = −
n∑

i=1

Qi(t) f (x(t − τi)) < 0 (9)

So x(t) is finally monotonically decreasing function, and suppose lim
t→∞ x(t) = l, so l = 0, or else, l > 0, from the

equation (1), we can obtain

lim
x→∞ x′(t) = −

n∑
i=1

qi f (l) < 0 (10)

The above equation indicates lim
t→∞ x(t) = −∞, that is contrary with the condition that x(t) is the finally positive

solution. So the theorem is proved.

Theorem 2.2: Under the condition of (H6), if the equation (2) is oscillatory, so one j0 exists at least and makes
q j0 > 0 and τ j0 > 0.

Prove: Because the equation (2) is oscillatory, from Lemma 1.3 (Gyori, 1991), we know the characteristic
equation

F(λ) = λ +
n∑

i=1

qie
−τiλ = 0 (11)

has no real root. And because F(∞) > 0, F(0) =
n∑

i=1
qi > 0, so one j0 exists at least to make q j0 > 0 and

τ j0 > 0, or else, τi = 0 (i = 1, 2 · · · n), λ = − n∑
i=1

qi < 0 is one negative real root of the characteristic equation

λ +
n∑

i=1
qie

−τiλ = 0, but that is impossible. The theorem is proved.

Theorem 2.3: Suppose (H1) and (H4) are fulfilled, and if the equation (1) has finally positive solution x(t), for
the enough big T0 � t0, make the set Λ = {λ � 0 : x′(t)+ λx(t− τ j0 ) � 0, t � T0}, so the set ∧ is nonempty and
bounded.

Prove: Because x(t) is the finally positive solution, according to the conditions of (H1), (H4) and Theorem 2.1,
we can obtain

lim
t→∞ Qi(t)

f (x(t − τi))
x(t − τi) = qi (i = 1, 2, · · · n) (12)

So, to any appointed positive number ε ∈ (0, 1), enough big T0 � t0 exists, and when t � T0, the following
inequation exists.

Qi(t)
f (x(t − τi))

x(t − τi) � qi − ε (i = 1, 2, · · · n) (13)

From the equation (1) and (13), for j0, the following differential inequation exists.

x′(t) +
1
θ

(q j0 − ε)x(t − τ j0 ) � 0 (14)

For the set Λ = {λ � 0 : x′(t) + λx(t − τ j0 ) � 0, t � T0}, from (6) and Lemma 1.1 and Lemma 1.2, we can
obtain A = 4θ2

(q j0−ε)2τ2
j0

> 1, λ0 =
ln A
τ j0
� Λ (where θ � 1 is certain number appointed). So the set Λ is nonempty

and bounded.

Theorem 2.4: Suppose (H1), (H2), (H4) and (H6) are fulfilled, and if the equation (2) is oscillatory, so the
equation (1) is oscillatory.

Prove: Otherwise, the equation(1) has the non-oscillatory solution x(t). Suppose x(t) is the finally positive
solution, we can analogously prove the situation of finally negative solution. From the theorem 2.3, the set
Λ ≡ {λ � 0 : x′(t) + λx(t − τ j0 ) � 0, t � T0 } is nonempty and bounded.
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Because the equation (2) is oscillatory, from Lemma 1.3, we can obtain the characteristic equation

F(λ) = λ +
n∑

i=1

qie
−τiλ = 0 (15)

has not real root. Suppose K = min
λ∈R

F(λ), so the inequation exists.

λ +

n∑
i=1

qie
−τiλ � K (16)

Because the set Λ is nonempty, and suppose λ0 ∈ Λ and φ(t) = eλ0t x(t), we can obtain dφ(t)
dt

� 0. Same to the
deduction in the proof of Theorem 2.3, we can prove (13) and (16), and from (14) and (16), we can obtain

x′(t) + (λ0 +
k

2
)x(t) = −

n∑
i=1

Q(t)i f (x(t − τi)) + (λ0 +
k

2
)x(t)

� −
n∑

i=1

(qi − ε)x(t − τi) + (λ0 +
k

2
)x(t)

� φ(t)e−λ0t[ −
n∑

i=1

(qi − ε)eλ0τi + (λ0 +
k

2
)
]

� φ(t)e−λ0t[ − λ0 − k + ε

n∑
i=1

eλ0τi + λ0 +
k

2
]

� φ(t)e−λ0t[ε
n∑

i=0

eλ0τi − k

2
]

(17)

When any positive number ε � k
2 (

n∑
i=1

eλ0τi)−1, x′(t)+ (λ0+
k
2 ) � 0 exists. So, λ0+

k
2 ∈ Λ, and from the induction,

we can deduce that when n is the enough big positive number, λ0+
K
2 n ∈ Λ exists, so the set Λ is the unbounded

set, which is contrary the the condition that the set Λ is bounded. So the theorem is proved.

Theorem 2.5: Suppose (H1), (H2), (H3), (H4), (H5) and (H6) are fulfilled, and if the equation (1) is oscillatory,
so the equation (2) is oscillatory.

Prove: Otherwise, the equation (2) is non-oscillatory. From Lemma 1.3, we know the characteristic equation

F(λ) ≡ λ + n∑
i=1

qie
−τiλ = 0 has real root u, and u < 0. If τ = max

1�i�n
{τi}, X is the Banach space which is

composed by the collectivity of bounded continuous function with supremum norm in [t0 − τ,∞], M in X is the
set composed by the function x(t) which could fulfill following characters.

(1) When t � t0, x(t) is non-increasing, and when t ∈ [t0 − τ, t0], x(t) = x0 exp(u(t − t0)).

(2) When t � t0, x0 exp(u(t − t0)) � x(t) � x0 � σ exp(uτ).

(3) When t � to, x(t − τ j) � x(t) exp(−uτ j) ( j = 1, 2 · · · n).

Define the mapping (T x)(t) in M as follows.

(T x)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 exp(u(t − t0)), t ∈ [t0 − τ, t0]

x0 exp(− n∑
i=1

∫ t

to

Qi(s) f (x(s−τi))
x(s) ds), t ∈ [t0,∞).

Next, we will use Lemma 1.4 (Schauder fixed point theorem) to prove that the fixed point exists in T on M.
Obviously, (T x)(t)is the continuously monotonically decreasing function, and (T x)(t) � x0.

When t � t0, we can obtain the following inequations.
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(T x)(t) = x0 exp(−
n∑

i=1

∫ t

t0

Qi(s) f (x(s − τi))
x(s)

ds)

� x0 exp
( −

n∑
i=1

qi

∫ t

t0

f (x(s − τi))
x(s − τi)

x(s − τi)
x(s)

ds
)

� x0 exp
( −

n∑
i=1

qi

∫ t

t0

x(s − τi)
x(s)

ds
)

� x0 exp
( −

n∑
i=1

qi exp(−uτi)
∫ t

t0

ds
)

� x0 exp(−(t − t0)
n∑

i=1

qi exp(−uτi))

= x0 exp(u(t − t0)) (18)

(T x)(t − τ j) = x0 exp(−
n∑

i=1

∫ t−τ j

t0

Qi(s) f (x(s − τi))
x(s)

ds)

= (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

f (x(s − τi))
x(s − τi)

x(s − τi)
x(s)

ds
)

� (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

x(s − τi)
x(s)

ds
)

� (T x)(t) exp
( n∑

i=1

qi

∫ t

t−τ j

exp(−uτi)ds
)

� (T x)(t) exp
(
τ j

n∑
i=1

qi exp(−uτi)
)

= (T x)(t) exp(−uτ j) (19)

From (18) and (19), we can obtain (T x)(t) ∈ M, and the set M is the closed convex nonempty set. Next, we
prove the M is relatively compact subset of X, and we only need to prove (T x)(t) is equicontinuous, i.e. d(T x)(t)

dt

is uniformly bounded. In fact,

∣∣∣d(T x)(t)
dt

∣∣∣ � x0

n∑
i=1

Qi(t) f (x(t − τi))
x(t)

� x0

n∑
i=1

qi
x(t − τi)

x(t)
� x0

n∑
i=1

qi exp(−uτi) = −x0u

So, d(T x)(t)
dt

is uniformly bounded.

From above proofs, we can see that the mapping (T x)(t) from M to M fulfills the condition of Schauder fixed
point theorem, so the fixed point x(t) exists and (T x)(t) = x(t), and x(t) > 0 fulfills the equation (1), i.e. the
equation (1) has finally positive solution, which is contrary with the condition that the equation (1) is oscillatory.
The theorem is proved. From Theorem 2.4 and Theorem 2.5, we can obtain following deductions.

Deduction 2.1: Under the conditions of (H1), (H2), (H3),(H4), (H5) and (H6), the sufficient and necessary
condition that the differential equation (1) is oscillatory is the differential equation (2) is oscillatory.

Example: We know the nonlinear functional differential equation

x′(t) + Q1(t) f (x(t − π
4

)) + Q2(t) f (x(t − 3π
4

)) = 0 (20)

Where, Q1(t) = t2√
2t2+1

e− π4 ,Q2 =
t2+

√
2t√

2t2+t+1
e− 3π

4 , f (u) = arctan u, so the equation (20) is oscillatory.
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Prove: It is easily to prove the function f (u) fulfills the conditions of (H1), (H2) and (H3),

q1 = lim
t→∞ Q1(t) =

1√
2

e−
π
4 , q2 = lim

t→∞ Q2(t) =
1√
2

e−
3π
4

Q1(t) � 1√
2

e−
π
4 ,Q2(t) � 1√

2
e−

3π
4

i.e. (H4), (H5) and (H6) are fulfilled, and the corresponding linear delay functional differential equation with
constant coefficient is

x′(t) +
1√
2

e−
π
4 x(t − π

4
) +

1√
2

e−
3π
4 x(t − 3π

4
) = 0 (21)

Through computation, we can obtain

2∑
i=1

qiτi =
1√
2

e−
π
4 × π

4
+

1√
2

e−
3π
4 × 3π

4
= 0.411 >

1
e

(22)

So the equation (21) is oscillatory, and from the deduction 2.1, we can obtain the equation (20) is oscillatory.
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Abstract

In this paper, we consider fuzzy bimatrix games with fuzzy payoffs. Based on fuzzy max order, for such games,
we define three kinds of concepts of minim ax equilibrium strategies. Some basic results obtained.

Keywords: Fuzzy bimatrix games, Fuzzy payoffs, Minimax equilibrium strategy

1. Introduction

Since seminal works by Neumann-Morgenstern(J.VonNeunann, 1994) and Nash(J.F.Nash., 1950 & J.F.Nash.,
1951), Game theory has played an important role in the fields of decision making theory such as economics,
management, and operations research, etc. When we apply the game theory to model some practical problems
which we encounter in real situations, we have to know the values of payoffs exactly. However, it is difficult
to know the exact values of payoffs and we could only know the values of payoffs approximately. In such
situations, it is useful to model the problems as games with fuzzy payoffs. In this case, since the expected
payoffs of the game should be fuzzy-valued, there are no concepts of equilibrium strategies to be accepted
widely. So, it is an important task to define the concept of equilibrium strategies and investigate their properties.
In this paper, we consider fuzzy bimatrix games, namely, the games where the number of players are two and
fuzzy payoffs. For such a game, we shall define three kinds of concepts of minim ax equilibrium strategies.

2. Preliminary

Let Rn be n-dimensional Euclidean space, and x = (x1, x2, · · · , xn)T ∈ Rn be any vector, where xi ∈ R, i =

1, 2, · · · , n and T denotes the transpose of the vector. For any two vectors x, y ∈ Rn, we write x ≥ y if xi ≥ yi,
i = 1, 2, · · · , n, x > y and x � y, respectively.

Definition 2.1 Let m be any real number and let h be any positive number. A fuzzy number ã whose member-
ship function is given by the following formula

μã(x) =

⎧⎪⎪⎨⎪⎪⎩
1 − | x−m

h
| x ∈ [m − h, m + h]

0 x � [m − h, m + h]

is called a symmetric triangular fuzzy number, and we denote the set of all symmetric triangular fuzzy numbers
by FT .

Real numbers m and h are called the center and the deviation parameter of ã, respectively. Since any symmetric
triangular fuzzy number ã is characterized by the center m and the deviation parameter h of ã we denote the
symmetric triangular fuzzy number ã by ã ≡ (m, h)T .

Let ã be any fuzzy number and let α ∈ [0, 1] be any real number. The set [ã]α ≡ x ∈ R|μã(x) ≥ α is called
the α-level set of ã. For α = 0, we set [ã]0 = cl{x ∈ R|μã(x) > 0}. where cal denotes the closure of sets.
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Since the set [ã]α is a closed interval for each α ∈ [0, 1], we denote the α-level set of a ã by [αL
α, α

R
α], where

aL
α ≡ inf[ã]α, aR

α = sup[ã]α.

For any two fuzzy numbers ã, b̃ ∈ FT , we introduce three kinds of binary relations.

Definition 2.2 For any symmetric triangular fuzzy numbers ã, b̃ ∈ FT , we write

ã = b̃, if (aL
α, aR

α)
T = (bL

α, bR
α)

T ∀α ∈ [0, 1]

ã � b̃, if (aL
α, aR

α)
T ≥ (bL

α, bR
α)

T ∀α ∈ [0, 1]

ã � b̃, if (aL
α, aR

α)
T > (bL

α, bR
α)

T ∀α ∈ [0, 1]

We call binary relations �, and � a strict fuzzy max order and a strong fuzzy max order, respectively.

Theorem 2.1 let ã = (a, α)T , and b̃ = (b, β)T be any symmetric triangular fuzzy numbers. Then, it holds that

ã � b̃ I f |α − β| ≤ a − b

ã � b̃ I f |α − β| < a − b

3. Two-person zero-sum game with fuzzy payoffs and its equilibrium strategy

Let I, J denote players and let M = {1, 2, · · · , m}, N = {1, 2, · · · , n} be the sets of all pure strategies available
for player I, and J, respectively. We denote the sets of all mixed strategies available for player I, and J by

X = {(x1, x2, · · · , xm) ∈ Rm
+ |xi ≥ 0, i = 1, 2, · · · , m,

m∑
i=1

xi = 1}

Y = {(y1, y2, · · · , yn) ∈ Rn
+|y j ≥ 0, j = 1, 2, · · · , n,

n∑
j=1

y j = 1}

By ãi j = (ai j, hi j)T , and b̃i j = (bi j, h′i j)T , we denote the payoff that player I receives and J loses when player
I plays the pure strategy i and player J plays the pure strategy i. Then we have the fuzzy payoff matrix
Ã = (ãi j)m×n, B̃ = (b̃i j)m×n, A = (ai j)m×n, H = (hi j)m×n, B = (bi j)m×n, H′ = (h′i j)m×n, we call this game
two-person fuzzy zero bimatrix game, and we denote it by

Γ̃ =< {I, J}, X, Y, Ã, B̃ >

Definition 3.1 A point (x∗, y∗) ∈ X ×Y is said to be a minim ax equilibrium strategies to Game Γ̃ if it holds that

(1) xT Ãy∗ � x∗T Ãy∗ ∀x ∈ X

(2) x∗T B̃y � x∗T B̃y∗ ∀y ∈ Y

Definition 3.2 A point (x∗, y∗) ∈ X × Y us said to be a non-dominated minim ax equilibrium strategy to Game
Γ̃ if it holds that

(1) There exist no x ∈ X such that x∗T Ãy∗ � xT Ãy∗

(2) There exist no y ∈ Y such that x∗T B̃y∗ � x∗T B̃y

Definition 3.3 A point (x∗, y∗) ∈ X × Y is said to be a weak non-dominated minim ax equilibrium strategy to
Game Γ̃ if it holds that

(1) There exist no x ∈ X such that x∗T Ãy∗ ≺ xT Ãy∗

(2) There exist no y ∈ Y such that x∗T B̃y∗ ≺ x∗T B̃y

By definition, it is obvious that the following relationship holds among these definitions.

(1) If a strategy (x∗, y∗) is a minim ax equilibrium strategy to Game Γ̃, it is a non-dominated minim ax equilib-
rium strategy.

(2)If a strategy (x∗, y∗) is a non-dominated minim ax equilibrium strategy to Game Γ̃, it is a weak non-dominated
minim ax strategy.
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Theorem 3.1 In order that a strategy (x∗, y∗) ∈ X × Y be a minim ax equilibrium strategy to Game Γ̃, it is
necessary and sufficient that, for all x ∈ X, y ∈ Y

xT Ay∗ + xT Hy∗ ≤ x∗T Ay∗ + x∗T Hy∗ (1)

xT Ay∗ − xT Hy∗ ≤ x∗T Ay∗ − x∗T Hy∗ (2)

x∗T By + x∗T H′y ≤ x∗T By∗ + x∗T H′y∗ (3)

x∗T By + x∗T H′y ≤ x∗T By∗ + x∗T H′y∗ (4)

Hold.

Proof. Let (x∗, y∗) ∈ X × Y be any minim ax equilibrium strategy to Game Γ̃. Then from Theorem 2.1, for all
x ∈ X, y ∈ Y we have

|x∗T Hy∗ − xT Hy∗| ≤ x∗T Ay∗ − xT Ay∗ (5)

|x∗T H′y∗ − x∗T H′y| ≤ x∗T By∗ − x∗T By (6)

By expanding and rearranging (5), we have

xT Ay∗ + xT Hy∗ ≤ x∗T Ay∗ + x∗T Hy∗ (7)

xT Ay∗ − xT Hy∗ ≤ x∗T Ay∗ − x∗T Hy∗ (8)

On the other hand, by expanding and rearranging (6), we have

x∗T By + x∗T H′y ≤ x∗T By∗ + x∗T H′y∗ (9)

x∗T By − x∗T H′y ≤ x∗T By∗ − x∗T H′y∗ (10)

From (7) to (10), we have (1), (2), (3), and (4).

Since
x∗T AR

0 y∗ = x∗T (A + H)y∗ = x∗T Ay∗ + x∗T Hy∗

x∗T AL
0y∗ = x∗T (A − H)y∗ = x∗T Ay∗ − x∗T Hy∗

x∗T BR
0 y∗ = x∗T (B + H′)y∗ = x∗T By∗ + x∗T H′y∗

x∗T BL
0y∗ = x∗T (B − H′)y∗ = x∗T By∗ − x∗T H′y∗

Theorem 3.1 shows that players I, J faces a pair of two-person zero-sum games with crisp payoffs Γ1 =<

{I, J}, X, Y, AL
0 , BL

0 > , Γ2 =< {I, J}, X, Y, AR
0 , BR

0 >. By setting xT A y = (xT AL
0y, xT AR

0 y)T , xT B y =

(xT BL
0y, xT BR

0 y)T , for each x ∈ X, y ∈ Y , form (1), (2), (3),(4), we have xT A y∗ ≤ x∗T A y∗, and x∗T By ≤ x∗T By∗.

Theorem 3.2 In order that a strategy (x∗, y∗) ∈ X × Y be a non-dominated minim ax equilibrium strategy to
Game Γ̃, it is necessary and sufficient that the following conditions holds:

(1) There is no x ∈ Y such that x∗T Ay∗ ≤ xT Ay∗ holds.

(2) There is no y ∈ Y such that x∗T By∗ ≤ x∗T By holds.

Proof. Let (x∗, y∗) ∈ X × Y be a non-dominated minim ax equilibrium strategy to Game Γ̃. First, we suppose
that there exists a strategy x ∈ X such that x∗T Ay∗ ≤ xT Ay∗ holds. By definition, we have

(x∗T (A − H)y∗, x∗T (A + H)y∗)T ≤ (xT (A − H)y∗, xT (A + H)y∗)T (11)

By rearranging (11), we have

(x∗T Ay∗ − xT Ay∗, x∗T Ay∗ − xAy∗)T ≤ (x∗T Hy∗ − xHy∗, xT Hy∗ − x∗T Hy∗)T

this implies that x∗T Ay∗ < xT Ay∗ holds. Therefore, for all α ∈ [0, 1], we have

(x∗T (A − (1 − α)H)y∗, x∗T (A + (1 − α)H)y∗)T ≤ (xT (A − (1 − α)H)y∗, xT (A + (1 − α)Hy∗)y∗)T
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this implies that x∗T Ãy∗ � xT Ãy∗ holds. This is a contradiction.

Next, we suppose that there exists a strategy y ∈ Y such that x∗T By∗ ≤ x∗T By holds. By definition, we have

(x∗T (B − H′)y∗, x∗T (B + H′)y∗)T ≤ (x∗T (B − H′)y, x∗T (B + H′)y)T (12)

By rearranging (12), we have

(x∗T By∗ − x∗T By, x∗T By∗ − x∗T By)T ≤ (x∗T H′y∗ − x∗T H′y, x∗T H′y − x∗T H′y∗)T

this implies that x∗T By∗ ≤ x∗T By holds. Therefore, for all α ∈ [0, 1], we have

(x∗T (B − (1 − α)H′)y∗, x∗T (B + (1 − α)H′)y∗)T ≤ (x∗T (B − (1 − α)H′)y, x∗T (B + (1 − α)H′)y)T

this implies that x∗T By∗ � x∗T By. This is a contradiction.

Conversely, let (x∗, y∗) be any strategy to Game Γ̃ such that conditions (1) and (2) hold.

First, we suppose that there exists strategy x ∈ X such that x∗T Ãy∗ � xT Ãy∗ holds. Then, by definition 2.2, we
have

(x∗T (A − H)y∗, x∗T (A + H)y∗)T ≤ (xT (A − H)y∗, xT (A + H)y∗)T

this is a contradiction.

Next, we suppose that there exists a strategy y ∈ Y such that x∗T B̃y∗ � x∗T B̃y holds. Then, by Definition 2.2,
we have

(x∗T (B − H′)y∗, x∗T (B + H′)y∗)T ≤ (x∗T (B − H′)y, x∗T (B + H′)y)T

this is a contradiction.

By a similar way, we have the following theorem.

Theorem 3.3 In order that a strategy (x∗, y∗) ∈ X × Y be a weak non-dominated minim ax equilibrium strategy
to Game Γ̃, it is necessary and sufficient that the following conditions hold:

(1) there is no x ∈ X such that x∗T Ay∗ < xT Ay∗ holds.

(2) there is no y ∈ Y such that x∗T By∗ < x∗T Byholds

Theorem 3.4 we have the following conclusion:

(1) There is a non-dominated minim ax equilibrium strategy to Game Γ̃ at least.

(2) There is a weak non-dominated minim ax equilibrium strategy to Game Γ̃ at least.
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Abstract

In this paper, some relative topological properties were studied, especially including relative regular and rela-
tive countable1-paracompact and the property of countable1-paracompact under the perfect mapping was also
discussed.

Keywords: X is regular, X is lindeloff, Y is regular in X, Y is countable1-paracompact in X

1. Introduction

Relative topological properties are extension of classic topological invariants.In 1989,the relative topologi-
cal properties were discussed by A.V.Archangel’skii and H.M.M.Genecli in (A.V.Arhangel’skii. 1996), and
A.V.Arhangel’skii gave the first systematic text on relative topological properties in 1996. In recent years,
some further new results of the relative topology were obtained respective by A.V.Arhangel’skii, J.Tartir and
W.Just, O.Pavlov and M.Matveer, I.Yaschenko, V.V.Tkachuk, M.G.Tkachenko and R.G.Wilson, etc.

In my paper, some relative topological properties were studied and some results were given.

2. The properties of relative topology

X is a space, Y ⊂ X, the concept of X is regular, lindeloff were introduced in (R.Engelking, 1997) and the
concept of Y is regular in X and the definition of countable1-paracompact was respectively introduced in
(A.V.Arhangel’skii. 1996) and (Gartside P and Aneirin G, 2000) . In this part, some properties of them were
discussed, and I gave two results.

Definition 2.1 X is regular: If for each y of X and each closed subset p of X, such that y � p, there are disjoint
open subsets u and v of X, such that: y ∈ u and p ⊂ ν.
Definition 2.2 X is lindeloff: If for each open covering A of X, there exists an countable open subcovering of
A.

Definition 2.3 Y is regular in X: If for each y of Y and each closed subset p of X, such that y � p, there are
disjoint open subsets u and v of X, such that: y ∈ u and p ∩ Y ⊂ v.
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Definition 2.4 Y is strongly regular in X: If for each x of X and each closed subset p of X, such that y � p, there
are disjoint open subsets u and v of X, such that: x ∈ u and p ∩ Y ⊂ v.

Definition 2.5 Y is countable1-paracompact in X: If for each countable open covering A of X, there exists an
open family covering R of X, such that: R refines A, ∪R = X and R is locally finite at each y of Y.

Theory 2.6 If X is regular. Then, Y is regular in X.

Proof. Let y is a arbitrary points of Y and an arbitrary closed subset p of X, such that y � p. Since X is regular,
so there exist two disjoint open subsets u1 and ν1 in X, such that: y1 ∈ u1 and y2 ∈ ν1. Obviously, y1 ∈ u1 and
p ∩ Y ⊂ ν1. This is, Y is regular in X.

Theory 2.7 If X is regular and Y is Lindloff. Then, Y is in countable1-paracompact X.

Proof. Let A = {us : s ∈ S } is an countable open covering of X, and y is an arbitrary point of Y. Then there is
an u ∈ A, such that: ν ∈ u. Since X is regular, so there exists an open set νy of X, such that: y ∈ νy ⊂ νy ⊂ u .
So X \ νy is closed in X and which does not contain y. By the Theory 2.6, Y is regular in X, so, there are two
disjiont open sets ty and wy, such that: y ∈ ty and X \ νy ∩ Y ⊂ wy. It is obvious that ty ∩ (X \ νy)∩ Y = Ø, so we
can get: ty ∩ Y ⊂ νy. Then for each arbitrary points y of Y, there is an open set ty of X, such that: y ∈ ty ⊂ νy,
ty ∩ Y ⊂ νy ∩ Y . This is, R = {ty : y ∈ Y} is an countable open covering of Y. And since Y is Lindloff, so there

exist an countable subcovering R1 = {ty j
: j = 1, 2 · · · }. We may also assume that ν′y j

= νyi
\

j−1⋃
i=1

tyi
: for each

j. It is obvious that: R2 = {νy j
: j = 1, 2 · · · } is an open family of X and which refines A and for each y ∈ Y ,

since Y ⊂ ∞⋃
j=1

ty j
.So there exist the most smallest integer j, such that: y ∈ ty j

, so, y ∈ ν′y j
, this is Y ⊂ ∞⋃

j=1
ν′y j

Also

since Y ⊂ ∞⋃
j=1

ty j
, then there tyi

which contains y. And since ν′y j
= νy j

\
j−1⋃
i=1

tyi
, so when j > i ty j

∩ ν′y j
= Ø, then,

R2 is locally finite at each y of Y. This is, Y is in countable1-paracompact X.

3. The Property of Relative Compactness under the Perfect Mapping.

Some properties of topological spaces under the perfect mapping were given in (R.Engelking, 1997). In this
part, I studied the property of countable1-paracompact under the perfect mapping, and gave a result about it.

Definition 3.1 f: X → Y is a perfect mapping: If f is a continuous mapping which is closed and for each y ∈ Y ,
the fiber f −1(y) is compact subset of X.

Theorem 3.2 Let f: X → Y is a perfect countable 1 mapping. If Y1 is countable 11-paracompact in Y. Then,
f −1(Y1) is countable 1-paracompact in X.

Proof. Let A = {us : s ∈ S } is an countable open covering of X. Since f is a perfect mapping, so for each
y ∈ Y , the fiber f −1(y) is a compact subset of X. Thus, there exists a finite subset of s(y) S, such that: f −1(y) ⊂⋃

s∈S (y) us = uy(s). Since f is a perfect mapping, by the TH1.4.13 in (R.Engelking, 1997), there exists an
open neighborhood wy(s) of y, such that: f −1(y) ⊂ f −1(wy(s)) ⊂ uy(s). We may also assume that: f −1(wy(s)) is
νy(s). That is νy(s) = f −1(wy(s)). Then, it is obvious that: νy(s) is open in X and such that: f −1(y) ⊂ νy(s) =

f −1( f (νy(s))) ⊂ uy(s) and is an open subset of Y. Obviously, R1 = { f (νy(s)) : y ∈ Y} is an open covering of Y.
Since Y1 is nearly1-paracompact in Y, so there exists an open family covering R2 = {νa : a ∈ A} of Y by open
subsets of Y, such that: R2 refines R1, ∪R2 = Y and R2 is locally finite at each y ∈ Y . We may also assume
that f (νy(s)) which contains νa is f (ya(s)). Since f is perfect mapping, thus, R3 = { f −1(νa), a ∈ A} is an open
family of X and locally Finite each x ∈ f −1(Y1). Obviously. Let R = { f −1(νa) ∩ us ∩ Y : a ∈ A, s ∈ S a(y)}.
Then, R is an open family covering of Y and such that R refines A, ∪R = X and R is locally finite at each
x ∈ f −1(Y1). That is f −1(Ys) is countable1-paracompact in X.
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Abstract

In this article, we introduced the concept of complex metapositve subdefinite matrix, studied its properties and
subeigenvalue, put forward some necessary and sufficient conditions that the complex matrix was the complex
metapositive subdefinite matrix, and obtained the positive definiteness of the metapositve matrix which is sub-
congruent to the complex metapositive subdefinite matrix.

Keywords: Complex metapositive subdefinite matrix, Subtransposed matrix, Subeigenvalue, Subcongruence,
Necessary and sufficient condition

1. Introduction and symbols

The positive definite matrix is always the important topic for the research of mathematic theory. However, tra-
ditional researches about the real symmetric positive definite matrix have not fulfilled the demands of theoretic
development and applied practice, so numerous literatures extensively studied the metapositve definite ma-
trix, the subpositive definite matrix, the complex positive definite matrix, the metapositive subdefinite matrix,
the complex metapositive definite matrix and complex subpositive definite matrix (Guo, 2005, P.135-136, Jia,
1995, P.40-41, Johnson, 1970, P.259-264, Shen, 2002, P.186-192, Tong, 1984, P.801-810, Tu, 1990, P.462-471,
Tu, 1991, P.91-102, Yang, 2000, 134-138, Zhan, 2003, P.191-196), but there are few researches for the complex
metapositve subdefinite matrix. In this article, we mainly study the properties of the complex metapositive sub-
definite matrix, put forward some criterions of the complex metapositive subdefinite, which is the extension and
deepening for the results of metapositve definite matrix, subpositive definite matrix, complex positive definite
matrix, metapositive subdefinite matrix, complex metapositive definite matrix and complex subpositive definite
matrix.

In the article, Cn×n denotes the n order matrix set in the complex number field, Cn×1 denotes n-dimensional
complex vector, AT denotes the transpose matrix of A, AT denotes the conjugate transpose matrix of A, A−
denotes the subtransposed matrix, and A− denotes the sub-conjugate transpose matrix of A.

2. Basic definitions

In the article, we extend some concepts in references to the complex matrix and obtain some new concepts
about complex metapositive subdefinite matrix.

Definition 1 (Yang, 2000, P.134-138): Suppose A = (ai j) is m× n complex matrix, B = (bi j)(bi j = am− j+1, n−i+1)
is n × m complex matrix, and B is the complex subtransposed matrix of A, i.e. B = A−. And if A− = A, so A

is called as the complex symmetric matrix. And if A− = −A, so A is called as the reverse complex symmetric
matrix.

Yang’s article had given some properties of sub-transposed matrix in the real number field, and we will cite
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them in the next part.

(A−)− = A, (A + B)− = A− + B−, (AB)− = B−A−

It is easily to show the above properties exist in the complex number field.

Definition 2. The matrix which all elements on the minor diagonal are 1 and other elements are 0 is called the
sub-identity matrix, because it has many properties of identity matrix in many aspects, and it is denoted by J.

In the same way, we will cite some properties of the sub-identity matrix in Yang’s article in the following part.

(1) J− = J (2) JT = J (3) J2 = E (4) J−1 = J (5) JnA−Jm = AT (A is arbitrary m × n matrix)

Definition 3 (Guo, 2005, P.135-136 & Tu, 1991, P.91-102): Suppose A ∈ Cn×n, H+(A) = A+AT

2 and G+(A) =
A−AT

2 , so A = H+(A) + G+(A), we call H+(A) and G+(A) are respectively Hermite branch and reverse Hermite
branch.

For H+(A) and G+(A), H+(A)T = H+(A) and G+(A)T = −G+(A) exist obviously.

Definition 4 (Guo, 2005, P.135-136 & Tu, 1991, P.91-102): Suppose A ∈ Cn×n, if XT H+(A)X > 0 to ∀0 � X ∈
Cn×1, so A is called as the complex metapositive subdefinite matrix.

Definition 5: A ∈ Cn×n, H (A) = A+A−
2 , G (A) = A−A−

2 , so A = H (A) + G (A), we call H (A) and G (A)
respectively are Hermite sub-branch and reverse Hermite sub-branch of A. For H (A) and G (A), H (A)− =
H (A) and G (A)− = −G (A) exist obviously.

Definition 6: Suppose A ∈ Cn×n, if X−H (A)X > 0 to ∀0 � X ∈ Cn×1, so A is called as the complex metapositive
subdefinite matrix.

Definition 7: Suppose A ∈ Cn×n, the root of n order multinomial det(λJ − A) is the subeigenvalue of A.

Because det(λE − JA) = det(λJJ − JA) = detJ × det(λJ − A) = (−1)
n(n−1)

2 det(λJ − A), so λ is the subeigenvalue
of A if and only if λ is the eigenvalue of JA.

3. Main results

Theorem 1. The necessary and sufficient condition that n orders complex matrix A is the complex metapositive
subdefinite matrix is that JA is complex metapositve subdefinite matrix.

Proof. To ∀0 � X ∈ Cn×1 and A ∈ Cn×n, X− = J−XT J = XT J, JA− = AT J and A− = J−1AT J = JAT JT exist,
so we can obtain the necessary and sufficient condition that A is the complex metapositive subdefinite matrix is
X−H (A)X > 0 to ∀0 � X ∈ Cn×1, which is equivalent to XT JH (A)X > 0 for ∀0 � X ∈ Cn×1, and is equivalent
to XT J A+A−

2 X > 0 for ∀0 � X ∈ Cn×1, and is equivalent to XT JA+JA−
2 X > 0 for ∀0 � X ∈ Cn×1, and is equivalent

to XT JA+JJAT JT

2 X > 0 for ∀0 � X ∈ Cn×1, and is equivalent to XT H+(JA)X > 0 for ∀0 � X ∈ Cn×1. From
Definition 4, JA is complex metapositive subdefinite matrix.

Theorem 2. If n orders complex matrix A is the complex metapositive subdefinite matrix, all real parts of
eigenvalue of JA are positive.

Proof. From Theorem 1, JA is the complex metapositive subdefinite matrix, and from the properties of complex
metapositive subdefinite matrix, the real parts of eigenvalue JA of are positive.

Theorem 3. If A is complex metapositive subdefinite matrix and B is real reverse sub-symmetric matrix (B− =
−B, B = B), so A + B is complex metapositve subdefinite matrix.

Proof. Because A is complex metapositive subdefinite matrix, so JA is complex metapositive subdefinite

matrix, i.e. for ∀0 � X ∈ Cn×1, XT JA+(JA)T

2 X > 0. And because B is real reverse sub-symmetric ma-
trix, i.e. B− = −B, so JB− = −JB, JB− = BT J, BT J = −JB, (JB)T = −JB. So for ∀0 � X ∈ Cn×1,

XT J(A+B)+[J(A+B)]T

2 X = XT JA+JB+(JA)T+(JB)T

2 X = XT JA+(JA)T

2 X + XT JB+(JB)T

2 X = XT JA+(JA)T

2 X + XT JB−JB
2 X =

XT JA+(JA)T

2 X + XT JB−JB
2 X = XT JA+(JA)T

2 X > 0.

So, J(A + B) is complex metapositive subdefinite matrix, and according to Theorem 1, A + B is complex
metapositive subdefinite matrix.
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Theorem 4. If A and B are n orders complex metapositive subdefinite matrixes, so A+B is complex metapositive
subdefinite matrix.

Proof: If A and B are n orders complex metapositive subdefinite matrixes, so JA and JB are complex metaposi-
tive definite matrixes, and J(A+ B) = JA+ JB is complex metapositive subdefinite matrix, so A+ B is complex
metapositive subdefinite matrix.

Theorem 5. Suppose A is n orders complex metapositive subdefinite matrix, so the real parts of subeigenvalue
of A are positive.

Proof. From Theorem 2 and Definition 7, the conclusion comes into existence obviously.

Theorem 6. Suppose A is n orders complex metapositive subdefinite matrix and B is n orders real symmetric
positive definite matrix, so the real parts of subeigenvalue of AB are positive.

Proof. Because B is real symmetric positive definite matrix, so the real symmetric positive definite matrix P

exists to make B = P2, and PJABP−1 = PJAP = PT JAP, so PT JAP is similar with JAB, and they have same
eigenvalues. And because JA is complex metapositive subdefinite matrix, so PT JAP is complex subpositive
definite matrix, and its real part of the eigenvalue is positive, so the real parts of eigenvalue of JAB is positive,
i.e. the real part of subeigenvalue of AB is positive.

From above demonstrations, we can easily deduce following theorems.

Theorem 7. Suppose A is complex metapositive subdefinite matrix, so A is reversible.

Theorem 8. Suppose A ∈ Cn×n, so following propositions are equivalent.

(1) A is complex metapositive subdefinite matrix.

(2) X−H (A)X > 0 for ∀0 � X ∈ Cn×1.

(3) A− is complex metapositive subdefinite matrix.

(4) A− is complex metapositive subdefinite matrix.

(5) A−1 is complex metapositive subdefinite matrix.

(6) To arbitrary positive real number k, kA is complex metapositive subdefinite matrix.

Proof. (1)⇔ (2) can be directly proved by the definition. For (2)⇔ (3), because X−H (A)X > 0 and X− A+A−
2 X >

0 for ∀0 � X ∈ Cn×1, implement conjugation for both sides of the equipment, so X− A−+(A−)−
2 X > 0, if X = Y ,

Y− A−+(A−)−
2 Y > 0, i.e. Y−H (A−)Y > 0, so A− is complex metapositive subdefinite matrix, vice versa.

For (3)⇔ (4), implement conjugation to A−, it can be proved. For (2)⇔ (5), because X−H (A)X > 0, and
X− A+A−

2 X > 0 for ∀0 � X ∈ Cn×1 implement matrix inverse to both sides of the equation, we can obtain

X
−1 A−1+(A−1)−1

2 (X−1)−1 > 0, and if Y = (X −1)−, so Y− A−1+(A−1)−
2 Y > 0. So A− is complex metapositive subdefinite

matrix. (2) ⇔ (6) comes into existence obviously.

Theorem 9: The necessary and sufficient condition that n orders complex matrix A is complex metapositive
subdefinite matrix is that the all sequential principal minor of matrix A are complex metapositive subdefinite
matrixes.

Proof. For the ”necessity”, suppose A1 is the i’th sequential principal minor, and A =

(
A3 A4
A1 A2

)
, i = 1, 2, · · · , n,

and take nonzero vector X1, construct n-dimensional column vector X =

(
X1
0

)
, so following conclusion comes

into existence.

X−H (A)X = (0 X−
1 )

⎛⎜⎜⎜⎜⎜⎜⎜⎝
A3 A4
A1 A2

⎞⎟⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎝
A−2 A−4
A−1 A−3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

(
X1
0

)
= X−

1
A1+A−1

2 X1 = X−
1 H (A1)X1 > 0

So, A1 is complex metapositive subdefinite matrix, i.e. the all sequential principal minor of matrix A are
complex metapositive subdefinite matrixes.
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The ”sufficiency” is obvious, so the proving process is omitted.

Theorem 10. If A is complex metapositive subdefinite matrix, B is complex subsymmetric matrix, so BAB is
complex metapositive subdefinite matrix.

Proof. Because A is complex metapositive subdefinite matrix and B is complex subsymmetric matrix, so for
∀0 � X ∈ Cn×1, X− A+A−

2 X > 0 and B− = B, and let X = BY , so (BY)− A+A−
2 (BX) = Y−B− A+A−

2 BY =

Y−B A+A−
2 BY = Y− BAB+(BAB)−

2 Y > 0. So, BAB is complex metapositive subdefinite matrix.

Definition 8: To arbitrary complex matrix A, if the real inverse matrix C exists and makes B = C−AC, so A is
sub-congruent to B. For the subcongruent matrix, we can obtain following theorems.

Theorem 11. The matrix which is sub-congruent to complex metapositive subdefinite matrix still is complex
metapositive subdefinite matrix.

Proof. Suppose A is complex metapositive subdefinite matrix, the matrix B is sub-congruent to the matrix A,
so the real inverse matrix C exists and makes A = C−BC, ∀0 � X ∈ Cn×1, so X− A+A−

2 X = X−C−BC+(C−BC)−
2 X =

X−C−BC+C−B−C
2 X = (CX)− B+B−

2 (CX) > 0, and let Y = CX, so for 0 � Y ∈ Cn×1, we have (Y)− B+B−
2 Y > 0. So B

is complex metapositive subdefinite matrix.

Theorem 12: If A ∈ Cn×n is sub-congruent to J, so A is complex metapositive subdefinite matrix.

Prove: Because J is complex metapositive subdefinite matrix, and from Theorem 11, it is easily to know A is
complex metapositive subdefinite matrix.
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Abstract

Bushell and Trustrum (Bushell, 1990, p. 173-178) give the famous Bushell-Trustrum inequality, but their proof
exists two main mistakes which make their proof process can not establish. This paper corrects these mistakes
and gives the correct proof.

Keywords: Bushell-Trustrum inequality, Positive semi-definite Hermite matrix, Unitary matrix

1. Introduction

Let A and B be two positive semi-definite Hermite matrix with rank n, there eigenvalues are λ1 ≥ · · · ≥ λn ≥ 0
and μ1 ≥ · · · ≥ μn ≥ 0, respectively. Then for any positive integer k, (Marcus, 1956, p. 173-174. Marshall,
1979).

n∑
i=1

λk
i μ

k
n−i+1 ≤ tr(AkBk) ≤

n∑
i=1

λk
i μ

k
i

And (Lieb and Thirring, 1976, see the third reference of (Bushell P J, 1990)).

tr(AB)k ≤ tr(AkBk)

In 1990, Bushell and Trustrum proved

n∑
i=1

λk
i μ

k
n−i+1 ≤ tr(AB)k ≤ tr(AkBk) ≤

n∑
i=1

λk
i μ

k
i

Whereas the result proved by Lieb and Thirring, Bushell and Trustum only need to prove∑
i=1

λk
i μ

k
n−i+1 ≤ tr(AB)k ≤

∑
i=1

λk
i μ

k
i

They construct Bi = UiBU∗
i (i = 1, 2) in their proof firstly, then tr(AB1)k, tr(AB2)k are the smallest and largest

values of tr(AB)k, here Ui is unitary matrix. The mistakes in their proof are mainly in the following two points:

(1) Exist unitary matrix X with rank n, such that X∗AX, X∗B1X, X∗B2X become diagonal at the same time; (2)

tr(AB)k =

n∑
i=1

λk
π(i)μ

k
i (1)
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We will point out that unitary matrix X with rank n, which makes X∗AX, X∗B1X, X∗B2X become diagonal at
the same time does not definitely exist, and for general positive semi-definite Hermite matrix, (1) does also not
definitely exist.

We give the following conclusions:

Exist unitary matrixX with rank n, such that X∗AX and X∗B1X become diagonal at the same time; Exist unitary
matrixY with rank n, such that Y∗AY and Y∗B2Y become diagonal at the same time. And for B1, B2,

tr(AB1)k =

n∑
i=1

λk
π(i)μ

k
i (2)

tr(AB2)k =

n∑
i=1

λk
π(i)μ

k
i (3)

Thus complete the certification of Bushell-Trustrum inequality. We need to use the following Lemma:

Lemma (Wang Song-Gui, 2006, p. 143) Assuming that α1 ≥ · · · ≥ αn, μ1 ≥ · · · ≥ μn. If π(1), · · · , π(n) is any
permutation of 1, · · · , n, then

n∑
i=1

αiμn−i+1 ≤
n∑

i=1

απ(i)μi ≤
n∑

i=1

αiμi

2. Our proof

Suppose A > 0, B > 0, otherwise for any c > 0, There must be A + cI > 0, B + cI > 0, finally we take limit to
the result obtained when c → 0, then we conclude the proof.

Since entire unitary matrix with rank n constitutes a closed set and mapping U → tr(AUBU∗)k is a continuous
function defined on this closed set, so there must be the smallest and largest values in U1 and U2, Then

tr(AU2BU∗
2)k ≤ tr(AUBU∗)k ≤ tr(AU1BU∗

1)k (4)

Especially, in (4), take U = I, then we have

tr(AU2BU∗
2)k ≤ tr(AB)k ≤ tr(AU1BU∗

1)k (5)

If let Bi = UiBU∗
i (i = 1, 2), we will prove first: Exist unitary matrix X with rank n, such that X∗AX and X∗B1X

are diagonal.

Let

R =

(
R12 0
0 I

)
(6)

R =

(
F12 0
0 0

)
(7)

where

R12 = (1 + |ε|2)−
1
2

[
1 −ε
ε 1

]
(8)

F12 =
1
|ε|
[

0 −ε
ε 0

]
(9)

R, F are n × n rectangular matrix, 0, I are zero matrix and unit matrix on some degree.

Obviously, R is an unitary matrix, and to infinitely small ε � 0, R can denoted as

R = I + |ε|F + o(|ε|2) (10)

Here o(|ε|2) is n × n rectangular matrix, everyone of its element is infinitesimal of higher order of |ε|. For
convenient we use o(|ε|2) to denote either matrix or number.
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In fact,

R − I − |ε|F =
[

R12 − I − |ε|F12 0
0 0

]
(11)

R12 − I − |ε|F12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1√

1+|ε|2
− 1 − ε√

1+|ε|2
− ε

ε√
1+|ε|2

− ε 1√
1+|ε|2

− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

From mathematical analysis, when x → 0,

1 − 1√
1 + x2

=

√
1 + x2 − 1√

1 + x2
=

x2
√

1 + x2(
√

1 + x2 + 1)
∼ x2

so elements in (11) and (12) are infinitesimal of higher order of |ε|, thus (10) holds. For any unitary matrix T,
define

B̃ = (TRT ∗)B(TR∗T ∗) (13)

Since R is unitary matrix, TRT ∗ is unitary matrix. Because B is positive semi-definite Hermite matrix, TR∗T ∗ =
(TRT ∗)∗, B̃ is positive semi-definite Hermite matrix too. From (10), we get

TRT ∗ = T (I + |ε|F + o(|ε|2))T ∗ = I + |ε|T FT ∗ + o(|ε|2) (14)

Notice that F∗ = −F,
TR∗T ∗ = T (I + |ε|F∗ + o(|ε|2))T ∗ = I − |ε|T FT ∗ + o(|ε|2) (15)

Then

B̃ = B + |ε|(T FT ∗B − BT FT ∗) + o(|ε|2)

= B + |ε|T (FT ∗BT − T ∗BT F)T ∗ + o(|ε|2)

= B + |ε|T (FC −CF)T ∗ + o(|ε|2) (16)

Here
C = T ∗BT (17)

It is easy to prove that for any two unitary matrix with rank n P and Q, have

tr(P + |ε|Q)k = trPk + k|ε|trPk−1Q + o(|ε|2) (18)

Then from (16), (18)

tr(AB̃)k = tr(AB + |ε|AT (FC −CF)T ∗ + o(|ε|2))k

= tr(AB)k + k|ε|tr(AB)k−1AT (FC −CF)T ∗ + o(|ε|2)

= tr(AB)k + k|ε|tr[D(FC −CF)] + o(|ε|2) (19)

Here
D = T ∗(AB)k−1AT (20)

We can prove that (AB)k−1A ≥ 0

In fact, notice that A and B are both positive semi-definite Hermite matrixes.

When k = 2, ABA = AB
1
2 B

1
2 A = (B

1
2 A)∗B 1

2 A ≥ 0.

When k = 3, ABABA = ABA
1
2 A

1
2 BA = (A

1
2 BA)∗A 1

2 BA ≥ 0. It can be proved by induction.

In(20), because (AB)k−1A is positive semi-definite, T is any unitary matrix, so we can choose unitary matrix T,
such that D becomes diagonal,

D = diag(d1, · · · , dn), d1 ≥ · · · ≥ dn ≥ 0 (21)
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Let C =

(
C1 C2
C3 C4

)
, D =

(
D1 0
0 D2

)
, where C1 =

(
C11 C12
C21 C22

)
, D1 =

(
d1 0
0 d2

)
; Notice that C1 is

Hermite matrix, F∗
12 = −F12, then

|ε|trD(FC −CF) = |ε|tr
[

D1 0
0 D2

] [(
F12 0
0 0

) (
C1 C2
C3 C4

)
−
(

C1 C2
C3 C4

) (
F12 0
0 0

)]

= |ε|tr
[

D1 0
0 D2

] [
F12C1 −C1F12 F12C2

−C2F12 0

]

= |ε|tr
[

D1(F12C1 −C1F12) D1F12C2
−D2C2F12 0

]

= |ε|trD1(F12C1 −C1F12)

= |ε|trD1(F12C1 + (F12C1)∗)

= (d2 − d1)(εc12 + εc12) (22)

The last equation is right because C1 is Hermite matrix, and

|ε|F12C1 =

(
0 −ε
ε 0

) (
c11 c12
c21 c22

)
=

( −εc21 −εc22
εc11 εc12

)

By (22) and (19), then
tr(AB̃)k − tr(AB)k = k(d2 − d1)(εc12 + εc12) + o(|ε|2) (23)

This formula is correct on arbitrary semi-positive Hermite matrix B and infinitely small ε � 0.

Especially, set B = B1, ε = ηc12, η > 0, If d2 � d1, then by definition of B1 and (2), we obtain εc12 + εc12 =

η|c12|2 = 0, then c12 = c21 = 0.

Similarly, we take R, F such that their i, j(i < j) row and column have form of (8), (9), and similar to the proof
above, then it can be obtained.

tr(AB̃)k − tr(AB)k = k(d j − di)(εci j + εci j) + o(|ε|2) (24)

Set ε = ηci j, η > 0, Use the same method ci j = c ji = 0 can be obtained.

Suppose c1 > c2 > · · · > cl are l different value of d1, · · · , dn, here D = diag(c1In1, · · · clInl). make C = T ∗B1T

become block matrix
C = diag(C1, · · · , Cl) (25)

Here Ci is positive semi-definite Hermite matrix with rank ni. Let Vi(i = 1, · · · , l) is unitary matrix, such that
Ei = V∗

i CiVi, i = 1, · · · , l, becomes diagonal matrix.

Let
V = diag(V1, · · · , Vl) (26)

E = diag(E1, · · · , El) (27)

Set X = TV , then X is an unitary matrix, and

X∗B1X = V∗T ∗B1TV = V∗CV = E (28)

This is a diagonal matrix, its diagonal elements are eigenvalues of B1, furthermore

X∗(AB1)k−1AX = V∗T ∗(AB1)k−1ATV = V∗DV = D (29)

The last equation is correct because V and D are block matrix with same degree. By (28) and (29) we know

(E
1
2 (X∗AX)E

1
2 )k = E

1
2 X∗(AB1)k−1AXE

1
2 = E

1
2 DE

1
2 (30)

72 � www.ccsenet.org/jmr



Journal of Mathematics Research March, 2009

then
X∗AX = E− 1

2 (E
1
2 DE

1
2 )

1
k E− 1

2 (31)

It is a diagonal matrix. It be proved that exist n × n unitary matrix such that X∗AX, X∗B1X are all diagonal
matrix.

Similarly, in(24), let B = B2, ε = ηci j, η < 0, then ci j = c ji = 0. Notice that because C = T ∗BT and Bi are
different, so we write as G = T ∗B2T .

Suppose that g1 > g2 > · · · > gm are m different values of d1, · · · , dn, here D = diag(g1In1, · · · gmInm
), make

G = T ∗B2T become block matrix
G = diag(G1, G2, · · ·Gm) (32)

Let Wi(i = 1, 2, · · ·m) be an unitary matrix, such that W∗
i GiWi(i = 1, 2, · · ·m) is diagonal matrix. Write

W = diag(W1, W2, · · ·Wm) (33)

Set Y = TW, then Y is an unitary matrix, similar to the proof on (28)-(31), it be obtained that exist unitary
matrixY such that Y∗AY, Y∗B2Y are all diagonal matrix.

According to (28) and (31), X∗AX, X∗B1X, Y∗AY, Y∗B2Y are all diagonal matrixes. Notice that X∗B1X =

X∗U1B1U1
∗X, Y∗B2Y = Y∗U2B2U2

∗Y, U1, U2, X, Y are all unitary matrix, so diagonal elements of X∗B1X, Y∗B2Y

are eigenvalues of B. Thus

tr(AB1)k = tr(X∗(AB1)kX) = tr(X∗AXX∗B1X)k =

n∑
i=1

λk
π(i)μ

k
i (34)

tr(AB2)k = tr(Y∗(AB2)kY) = tr(Y∗AYY∗B2Y)k =

n∑
i=1

λk
π′(i)μ

k
i (35)

Here π(i), π′(i) is any permutation of 1, 2, · · · , n, respectively. From Lemma,

tr(AB1)k ≤
n∑

i=1

λk
i μ

k
i (36)

tr(AB2)k ≥
n∑

i=1

λk
i μ

k
n−i+1 (37)

And using(5), then the proof is completed.
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Abstract

In the Seller Bidding of order statistics bidding function, the expected deviation of the last non-winner’s price
and the winner’s price is a decrease function of the number of bidder. This paper analysis and know that the
expected deviation of the last non-winner’s price and the winner’s price decrease with the increasing of the
number of bidder on the Seller Bidding of the generalized order statistics.

Keywords: The Generalized Order Statistics, Bidding Price Function, Seller Bidding

1. Reviews

Anand Paul and Genaro Gutierrez prove that the expected returns of bidding proprietor in a seller’s bidding
is a monotonically decreasing function of the number of bidders if the population from which the valuations
are sampled is characterized by a concave distribution function. BUIOW and Klemperer prove that expected
revenue with N +1 bidders exceeds expected revenue with N bidders if the bidders’ valuations are either inde-
pendent. Now we study bidding model in the Generalized Order Statistics and analysis the relations between
the number of bidder with the expected the expected deviation of the last non-winner’s price and the winner’s
price.

2. Definition

The concept of generalized order statistics (gos) was given by Kamps (1995) as below (see (HASEEB, 2004)):

Let F(X̃) be an absolutely continuous distribution function (d f ) with probability density function (pd f )f(X̃),Let

n ∈ N, n ≥ 2, k > 0, m̃ = (m1, m2, · · · , mn−1) ∈ Rn−1, Mi =
n−1∑
j=i

m j, such that γi = k + n − i + Mi > 0 for all

i ∈ {1, 2, · · · , n − 1}. Then X(i, n, m̃, k), i = 1, 2, · · · , n are called generalized order statistics (gos) if their
joint probability density function is given by

k
⎧⎩ n−1∏

j=1

γ j

⎫⎭ n−1∏
i=1

[1 − F(xi)]k−1 f (xi)[1 − F(xn)]k−1 f (xn) (1)

on the cone F−1(0+) < x1 ≤ x2 ≤ · · · ≤ xn < F−1(1) of Rn

For m1 = m2 = · · · = mn−1 = m, the gos will be denoted as X(i, n, m, k) and its pd f is given by Kamps (1995)
as:

fX(i, n,m, k)(x) =
ci−1

(i − 1)!
[1 − F(x)]γi−1 f (x)gi−1

m (F(x)) (2)

Where Ci−1 =
i∏

j=1
γ j, γ j = k + (n − j)(m + 1); gm(x) =

⎧⎪⎪⎨⎪⎪⎩
1−(1−x)m+1

m+1 m � −1

log( 1
1−x

) m = −1
x ∈ [0, 1)
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3. Bidding Model Setup

We first analyze a special bidding. Denote the ith generalized order statistics in a sample of size N by X̃i:N
and suppose there are N bidders competing to sell a good. Each bidder has a function valuation X̃(i,N,m, k).
The buyer assumes that the function valuations of the bidders are iid random variables. Prices are bid in a
descending sequence by individual bidders until only one bidder remains, the winner. The valuation of the
winner is the first generalized order statistics.

E(X̃K+1:N − X̃K:N) = CN
K

∫ ∞

0
F(X̃)K(1 − F(X̃))N−KdX̃ (3)

which is a standard result when the parent distribution is positive valued (see Udo Kamps, 1995).

The expectation of the deviation between the second and first generalized order statistic of a random sample of
size N in a seller’s bidding by

E(X̃2:N − X̃1:N) = N

∫ ∞

0
F(X̃){1 − F(X̃)}N−1dX̃ (4)

Now we denote the deviation between expected of N bidders and N + 1 bidders by D(N).

D(N) = E(N) − E(N + 1)

= N
∫ ∞

0 F(X̃){1 − F(X̃)}N−1dX̃ − (N + 1)
∫ ∞

0 F(X̃){1 − F(X̃)}NdX̃

=
∫ ∞

0 F(X̃){1 − F(X̃)}N−1{(N + 1)F(X̃) − 1}dX̃

Note that as N tends to infinity£this integral tends to zero by Lévesque’s Dominated Convergence Theorem£We
are, however, interested in the situation when N is finite. In order to guarantee D(N) > 0, we assume that the
valuations are distributed on a compact interval [a, b](0 ≤ a < b ≤) on the positive real line and that the density
function of the underlying random variable is continuous.

4. Important Result

Lemma 1: Let m1 = m2 = · · · = mi−1 = m, the d f of the i th uniform gos is denoted by ϕi,N(x) =
fU(i,N,m, k)(x) = ci−1

(i−1)! (1 − x)γi−1gi−1
m (x), x ∈ (0, 1), 1 ≤ i ≤ n (see(Anand Paul, 2003) and (Udo Kamps,

1995))

Lemma 2 Let m1 = m2 = · · · = mi−1 = m and i ∈ {1, 2, · · · , n}£then we have, φi,N(x) = 1−Ci−1(1−x)k+N−i+Mi+
i−1∑
j=0

1
j!Ci− j−1

g
j
m(x), x ∈ (0, 1) and FX(i,N,m, k)(x) = φi,N(F(x)) (see(CRAMLR,E, 2000)).

Lemma 3
∫ b

a
F(X̃)[1 − F(X̃)]N−1[(N + 1)F(X̃) − 1]dF(X̃) > 0 for all function F(X̃) where J(X̃) = F(X̃){1 −

F(X̃)}N−1{(N + 1)F(X̃) − 1} is obvious.

The Stieltjes integral
∫ b

a
J(X̃)dF(X̃) in Lemma 3 can be rewritten as

∫ b

a
J(X̃) f(i,N,m, k)(x)dx where f(i,N,m, k)(x)

is pd f of the distribution of valuations

Theorem 1 The expected deviation of the last non-winner’s price and the winner’s price in a seller’s bidding
is a monotonically decreasing function of the number of bidders if the bidder from which the valuations are
sampled is characterized by a concave distribution function in the Generalized Order Statistics.

In theorem 1, we only considerate two cases: case I m1 = m2 = · · · = mi−1 = m � −1 and Case II m1 = m2 =

· · · = mi−1 = m = −1.

For case I: From Lemma 1, we have ϕ2,N(x) = γ1γ2
m+1 {(1 − x)γ2−1 − (1 − x)γ1−1}. So we know the probability

density function and the distribution function of 2nd generalized order statistics ( gos ) as follows:

f (c) = ϕ2,N(c) =
γ1γ2[(1 − c)γ2−1 − (1 − c)γ1−1]

(m + 1)
(5)

F(c) =
∫ c

a

ϕ2,N(x)dx =
γ1(1 − c)γ2 − γ2(1 − c)γ1 + γ2(1 − a)γ1 − γ1(1 − a)γ2

m + 1
(6)
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And from Definition and Lemma 2, we can rewrite the generalized order statistics distribution function FX(i,N,m, k)(x)
and the probability density function fX(i,N,m, k)(x):

FX(2,N,m, k)(x) =
γ2[1 − F(x)]γ1 − γ1[1 − F(x)]γ2 + 1

m + 1

fX(2,N,m, k)(x) =
γ1γ2

m + 1
{[1 − F(x)]γ2−1 − [1 − F(x)]γ1−1} f (x)

From Lemma 3 we know if fX(2,N,m, k)(x) were a decreasing function such that fX(2, n,m, k)(c) = 1 and FX(2, n,m, k)(c) =
1/(N + 1), then J(X̃) is 0 at x = a, c and b, negative on the interval (a, c) and positive on the interval
(c, b). we would have

∫ b

a
J(X̃)(1 − f(i,N,m, k)(x))dx > 0 in [a, c] and [c, b], then we have integral unequal∫ b

a
J(X̃)dx >

∫ b

a
J(X̃) f(i, N, m, k)(x)dx > 0 and Theorem 1 would be proved.

But if fX(2, n,m, k)(c) = 1 is unknown here, So we reduce two equation through substituting (5) and (6) to

{
N

N + 1
+ k

[
v(b) − v(c)

m + 1

]k} (1 − c)γ1 − (1 − c)γ2

1 − c
+

(v(b) − v(c))
γ1γ2

= 0

where v(t) = γ1(1 − t)γ2 − γ2(1 − t)γ1 . Let

T1(x) =
{

N

N + 1
+ k

[
v(b) − v(x)

m + 1

]k} (1 − x)γ1 − (1 − x)γ2

1 − x
+

(v(b) − v(x))
γ1γ2

. Where we would have

T1(a) =
−γ1�(1 − a)γ2 − (1 − a)γ1


(N + 1)(1 − a)
− 1 < 0

and T1(b) =
Nγ1 �(1−b)γ2−(1−b)γ1 


(N+1)(1−b) > 0. So we have at least a point c which make T(c) equal to 0 for T1(x) is a
continuous function.

For Case II: From Lemma 1, we have ϕ2,N(x) = −γ1γ2(1 − x)γ1−1 ln(1 − x). So we obtain the density function
and the distribution function of 2nd generalized order statistics (gos) as follows:

f2,N(c) = ϕ2,N(c) = −γ1γ2(1 − c)γ1−1 ln(1 − c) (7)

F2,N(c) =
∫ c

a

φ2,N(x)dx =
(1 − c)γ1

γ2
1

ln
(1 − c)γ1

e
− (1 − a)γ1

γ2
1

ln
(1 − a)γ1

e
(8)

From Definition and Lemma 2, the distribution function FX(i,N,m, k) and the probability density function fX(i,N,m, k)
in generalized order statistics can be rewrote:

FX(z,N,m, k)(x) =
∫ F(x)

0
ϕi,N(t)dt = [1 − F(x)]k{k ln[1 − F(x)] − 1} + 1

fX(2,N,m, k)(x) = −k2[1 − F(x)]k−1 ln[1 − F(x)] f (x)

As case I, we analysis Case II and substitute (7) and (8) to above two equation and reduce them to

k
{ N

N + 1
− [u(b) − u(c)]k}(1 − c)γ1−1 ln(1 − c) +

u(b) − u(c)
γ1γ2

= 0

where

u(t) =
(1 − t)γ1

γ2
1

ln
(1 − t)γ

1

e

Let
T2(x) = k

{ N

N + 1
− [u(b) − u(x)]k}(1 − x)γ1−1 ln(1 − x) +

u(b) − u(x)
γ1γ2

.
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Then we would have
T2(a) =

k(1 − a)γ1

(N + 1)(1 − a)
ln(1 − a) − 1 < 0

and

T2(b) =
kN(1 − b)γ1 [1 − (1 − b)m+1]

(N + 1)(1 − b)
> 0

So we have at least a point c which make T2(c) equal to 0 for T2(x) is a continuous function also.

From case I and Case II, we would have
∫ b

a
J(X̃)dx >

∫ b

a
J(X̃) f(r, n,m, k)(x)dx > 0 if m1 = m2 = · · · = mi−1 = m.

So the result has been proved.
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Abstract

In this paper we have introduced the concept of Topological Transformation Groups in fuzzy setting as a natural
transition from the corresponding crisp structure and study some properties thereof. Classical results on orbits,
orbit closure, invariant subsets are investigated in this setting. Finally we have constructed some new fuzzy
topological transformation groups from given ones.
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1. Introduction

A classical Topological Transformation Group is a structure (π, G, X,) where G is a topological group, X is a
topological space and π is a continuous function from G × X → X satisfying π(0, x) = x and π(s, π(t, x)) =
π(s + t, x), where 0 is the identity of G. In this paper we fuzzify the above concept as a natural transition from
the corresponding crisp structure. For this fuzzification we will consider a fuzzy topological group (Chu-hai
Yu, 1987), a fuzzy topological space and a fuzzy continuous map from G × X → X satisfying the above stated
conditions. Throughout our discussion the fuzzy topology on any set will contain all the constant fuzzy subsets.
In other words we will use Lowen (R. Lowen, 1976) definition of fuzzy topology.

2. Preliminaries

In this section we recall some preliminary definitions and results to be used in the sequel.

Let X be a non-empty set. A fuzzy set in X is an element of the set IX of all functions from X into the unit
interval I. A fuzzy point of a set X is a fuzzy subset which takes non-zero value at a single point and zero at
every other point. The fuzzy point which takes value α � 0 at x ∈ X, and zero elsewhere is denoted by xα . If
x ∈ X, then the fuzzy point x1 will be denoted simply by x. Let λ be a fuzzy subset of X. Suppose λ(x) = α
for x ∈ X. Then λ can be expressed as union of all its fuzzy points, i.e, λ = ∨x∈X xα. Here ∨ denote union.
We will use the same notation ∨ to denote supremum of a set of numbers. Similarly ∧ will be used to denote
intersection of fuzzy sets as well as infimum of a set of real numbers.

Let λ and μ be fuzzy subsets of X, then we write λ ⊆ μ whenever λ(x) ≤ μ(x). Let λ be a fuzzy subset of a
group (G, +). Then we define a fuzzy subset −λ as −λ(x) = λ(−x). If f is a function from X into Y and μ ∈ IY ,
then f −1(μ) is the fuzzy set in X defined by f −1(μ)(x) = μ( f (x)). Equivalently, f −1(−μ) = μ ◦ f . Also, for
ρ ∈ IX , f (ρ), is the member of IY which is defined by

f (ρ)(y) =
{

sup{ρ(x) : x ∈ f −1[y]} if f −1[y]is not empty
0 otherwise
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For the definition of a fuzzy topology, we will use the one given by Lowen (1976) since his definition is more
appropriate in our case. So, throughout this paper, by a fuzzy topology on a set X we will mean a sub-collection
τ of IX satisfying the following conditions:

(i) τ contains every constant fuzzy subset in X ;

(ii) If μ1, μ2 ∈ τ, then μ1 ∧ μ2 ∈ τ;
(iii) if μi ∈ τ for each i ∈ A, then ∨i∈Aμi ∈ τ.
A fuzzy topological space is a set X on which there is given a fuzzy topology τ. The elements of τ are the open
fuzzy sets in X. Complement of an open fuzzy set is called a closed fuzzy set. Interior of a fuzzy set λ is the
union of all the open fuzzy set contained in λ and the closure of λ is the intersection of all fuzzy set containing
λ. The interior and closure of λ will be denoted by λo and clλ respectively. A map f from a fuzzy topological
space X to a fuzzy topological space Y, is called continuous if f −1(μ) is open in X for each open fuzzy set μ
in Y. Let X be a fuzzy topological space and x ∈ X. A fuzzy set μ in X is called a neighborhood of the fuzzy
point xα if there exists an open fuzzy set ρ with ρ ⊆ μ and xα ∈ ρ ⊆ μ. Given a crisp topological space (X, T ),
the collection �(T ), of all fuzzy sets in X which are lower semicontinuous, as functions from X to the unit
interval I = [0, 1] equipped with the usual topology, is a fuzzy topology on X (Lowen, 1976). We will refer
to the fuzzy topology �(T ) as the fuzzy topology generated by the usual topology T. If (X, T j) j∈J is a family
of crisp topological spaces and T the product topology on X =

∏
j∈J X j, then �(T ) is the product of the fuzzy

topologies �(T j), j ∈ J (Lowen, 1977).

Result 2.1. (A. K. Katsaras, 1981) Let (Xi, Ti), i = 1, 2, 3, be crisp topological spaces, X = X1 × X2, T the
product of the topologies T1 , T2 and f : (X, T ) → (X3, T3) a continuous map. If δ is the product of the fuzzy
topologies �(T1) and �(T2), then

f : (X, δ) → (X3, �(T3))

is fuzzy continuous.

Proof. Let μ ∈ �(τ3). Then μ is a lower semicontinuous function from (X3, T3) to the unit interval I. Since
f is continuous with respect to the topologies T and T3, it follows that the function f −1(μ) = μ ◦ f is a lower
semicontinuous function from (X, T) to the unit interval. Thus f −1(μ) ∈ �(T ) = δ. This completes the proof.

Result 2.2. Let ( π, G, X) be a classical topological transformation group. If we equip G and X with the induced
fuzzy topologies and G × X, with the corresponding product fuzzy topology, then the mapping π: G × X → X

is fuzzy continuous.

Proof. It follows from the previous result.

Definition 2.3(Liu Ying-Ming, 1997) : Let (X, δ ) be a fuzzy topological space and Y ⊆ X. Then the collection
δ/Y = {σ/Y : σ ∈ δ} is a fuzzy topology on Y. Then (Y, δ/Y ) is called fuzzy subspace of (X, δ).

Result 2.4 : Let (X, δ) and (Y, μ) be two fuzzy topological spaces. If f : X → Y is fuzzy continuous, then for
any subset A ⊆ X, f /A is fuzzy continuous. In particular an inclusion map is fuzzy continuous.

Result 2.5 (Liu Ying-Ming, 1997) Let (X, δ), (Y, τ) and (Z, κ) be fuzzy topological spaces and f : X→Y and g
: Y→ Z be any mappings. Then f, g are fuzzy continuous ⇒gof is fuzzy continuous.

Definition 2.6 If σ is a fuzzy subset of X and η is a fuzzy subset of Y, then the fuzzy subset σ × η on X × Y is
defined as (σ × η)(x, y) = min{σ(x), η(y)}.
Definition 2.7 (Liu Ying-Ming, 1997) Let (X, δ) and (Y, τ) be two fuzzy topological spaces. Then f : X → Y is
fuzzy open (closed) if the image of every fuzzy open(closed) subset of X is fuzzy open(closed) in Y.

Definition 2.8 (R. Lowen, 1976) Let X be a fuzzy topological space and λ a fuzzy subset of X. An open fuzzy
cover of λ is a collection {λα} of open fuzzy subsets of X such that λ ⊆ ∨λα. If every open cover of λ and ε > 0
there exists a finite sub-collection {λi : i = 1, 2 · · · n} such that ∨{λi : i = 1, 2 · · · n} ≥ λ − ε then λ said to be
fuzzy compact.

Result 2.9 (R. Lowen, 1976) (X, δ) and (Y, τ) be two fuzzy topological spaces and f : X → Y be a fuzzy
continuous function. If λ is fuzzy compact subset of X, then f (λ) is fuzzy compact in Y.
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Result 2.10 (R. Lowen, 1977). Let (X, δ) and (Y, τ) be two fuzzy topological spaces and λ, μ are fuzzy compact
subsets of X and Y respectively, then λ × μ is fuzzy compact in X × Y .

Definition 2.11 (Rajesh Kumar, 1993). Let (G, +) be a group. Then a fuzzy subset λ is said to be a fuzzy
subgroup of G if λ(x + y) ≥ min{λ(x), λ(y)) and λ(−x) = λ(x)

Remark : If λ is a fuzzy subgroup of G then supp is a crisp subgroup of G.

Definition 2.12 (N. Palaniappan, 2005) A fuzzy topological space (X, τ) is said to be product related to another
fuzzy topological space (Y, δ) if for any fuzzy set υ of X and ζ of Y whenever λc � υ and μc � ζ implies
(λc × 1)∨ (1 × μc) ≥ υ × ζ, where λ ∈ τ and μ ∈ δ, then there exist λ1 ∈ τ and μ1 ∈ δ such that λc

1 ≥ υ or μc
1 ≥ ζ

and (λc × 1) ∨ (1 × μc) = (λc
1 × 1) ∨ (1 × μc

1).

Result 2.13. (N. Palaniappan, 2005) Let (X, τ) be product related to (Y, δ). Then for any fuzzy subset λ of X
and a fuzzy subset μ of Y, cl(λ × μ) = clλ × clμ.

3. Fuzzy topological transformation groups

In this section we will introduce the concept of fuzzy topological transformation group and prove some prop-
erties.

Definition 3.1 Let X be fuzzy topological space, G be a fuzzy topological group. If π : G × X → X satisfies

(FTG1) π(0, x) = x

(FTG2) π(s, π(t, x)) = π(s + t, x)

(FTG3) π is fuzzy continuous

then (π, G, X, ) is called a fuzzy topological transformation group.

Definition 3.2 Let t ∈ G, then the t-transition of (π, G, X, ) denoted by πt is the mapping : πt : X → X such that
πt(x) = π(t, x).

Result 3.3 (i) π0 is the identity mapping of X.

(ii) πsπt = πs+t for s, t. ∈ G.

(iii) πt is one-to-one mapping of X onto X and −(πt) = π−t.

(iv) For t ∈ G, πt is a fuzzy homomorphism of X onto X.

Proof. Straightforward.

Definition 3.4 The transition group of (π , G, X,) is the set G = {πt : t ∈ G}. The transition projection of (G, X,
π) is the mapping θ : G → G defined as θ(t) = πt.

Definition 3.5 (G, X, π) is said to be effective if t ∈ G with t � 0 ⇒ πt(x) � x for some x.

Result 3.6 (i) G is a group of fuzzy homeomorphisms of X onto X

(ii) θ is a group homomorphism of G onto G.

(iii) θ is one-one iff (π , G, X) is effective.

Proof. Straightforward.

Definition 3.7 Let x ∈ X, then the x-motion of (π , G, X) is the mapping πx : G → X such that πx(t) = π(t, x).

Result 3.8 πx is a fuzzy continuous mapping of G into X.

Proof. Straightforward.

Result 3.9 Let X, Y, Z be fuzzy topological spaces and f : X × Y → Z be a fuzzy continuous map. If aα, bβ
be fuzzy points of X and Y respectively and γ be a fuzzy neighbourhood of f (aα, bβ) then there exists fuzzy
neighbourhoods η and ρ of aα and bβ respectively such that f (η × ρ) ⊆ γ.
Proof. Without loss of generality we can assume that γ is fuzzy open. As f is continuous f −1(γ) is a fuzzy open
set containing aα × bβ. So there exists basic fuzzy open sets say, η of aα and ρ of bβ such that aα × bβ ∈ η× ρ ⊆
f −1(γ). Which gives f (aα × bβ) ∈ f (η × ρ) ⊆ γ.
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Result 3.10 Let X, Y, Z be fuzzy topological spaces and f : X × Y → Z be a fuzzy continuous map. If λ and
μ are fuzzy compact subsets of X and Y respectively and γ is a fuzzy neighbourhood of f (λ × μ), then for any
ε > 0, there exists fuzzy open sets λ′ and μ′ such that λ′ ≥ λ − ε and μ′ ≥ μ − ε and f (λ′ × μ′) ⊆ γ.
Proof. Let ε > 0 be arbitrary. Let x ∈ X be arbitrarily fixed and suppose λ(x) = α. Then for any y ∈ Y with
μ(y) = β, by previous result there exist fuzzy open sets λy " xα and μy " yβ such that f (xα×yβ) ∈ f (λy×μy) ⊆ γ.
This is true for each y ∈ Y . Thus the collection Cμ = {μy : y ∈ Y} is an open cover of μ. As μ is compact there
is a finite sub-collection say S μ of Cμ satisfying ∨{μy : μy ∈ S } ≥ μ− ε. Let μx denote the union of all members
of S μ and λx denote the intersection of the corresponding λ′ys. Then λx is a fuzzy open set containing xα and μx

is a fuzzy open set satisfying μx ≥ μ − ε.
But this is true for each x ∈ X. Thus we get a collection {μx : x ∈ X} of fuzzy open sets each satisfying μx ≥ μ−ε
and another collection {λx : x ∈ X} of fuzzy open sets such that xα ∈ λx(α = λ(x)). Then Cλ = {λx : x ∈ X} is
a cover of λ. As λ is compact there exists a finite collection S λ of Cλ satisfying ∨{λx : λx ∈ S λ} ≥ λ − ε. Let
λ′ denote the union of the members of S λ and μ′ denote the intersection of the corresponding μx. Then λ′ is a
fuzzy open set satisfying λ′ ≥ λ− ε and μ′ is a fuzzy open set satisfying μ′ ≥ μ− ε. Further then f (λ′ × μ′) ⊆ γ.
Result 3.11

(i) For t ∈ G and a fuzzy subset μ of X, clπ(t × μ) = π(t × clμ)

(ii) Let G and X be product related, then for a fuzzy subset λ of G and a fuzzy subset μ of X, π(clλ × clμ) ⊆
clπ(λ × μ) and clπ(clλ × μ) = clπ(λ × clμ) = clπ(λ × μ).
(iii) If λ is a compact fuzzy subset of G and μ is a compact fuzzy subset of X, then π(λ × μ) is a compact fuzzy
subset of X.

(iv) If λ is a compact fuzzy subset of G and μ is a compact fuzzy subset of X, and γ is a fuzzy neighbourhood
of π(λ × μ), then for any ε > 0, there exists fuzzy open sets λ′ and μ′ such that λ′ ≥ λ − ε and μ′ ≥ μ − ε such
that f (λ′ × μ′) ⊆ γ.
(v) πtμ = μπ−t for any t ∈ G.

(vi) πtμc = 1 − πtμ

Proof. (i) Since πt is a homeomorphism clπt(μ) = πt(clμ), i.e., clπ(t × μ) = π(t × clμ)

(ii) Since G and X are product related, (clλ × clμ) = cl(λ × μ) which implies

π(clλ × clμ) = π{cl(λ × μ)}

⇒ π(clλ × clμ) = π{cl(λ × μ)} ⊆ clπ(λ × μ), since π is continuous.

Again π(λ × μ) ⊆ π(clλ × μ) ⊆ π(clλ × clμ) ⊆ clπ(λ × μ)
and π(λ×μ) ⊆ π(λ× clμ) ⊆ π(clλ× clμ) ⊆ clπ(λ×μ) and consequently clπ(clλ×μ) = clπ(λ× clμ) = clπ(λ×μ).
(iii) λ and μ are fuzzy compact, so λ×μ is fuzzy compact. As continuous image of a fuzzy compact set is fuzzy
compact π(λ × μ) is fuzzy compact.

(iv) Follows from Result 3.10.

(v) We have for any u ∈ X, πt(μ)(u) = π(t × μ)(u) = sup{(t × μ)(s, x) : π(s, x) = u}
= sup{(t(s) ∧ μ(x) : π(s, x) = u}
= sup{(t(t) ∧ μ(x) : π(t, x) = u}, since t(s) � 0 only when t = s.

= μ(x) where π(s, x) = u

= μ(π−t)(u).

(vi) From (v) we have πt(μ) = μ(π−t) for any μ ∈ IX and t ∈ G.

Now for any x ∈ X, we have (πtμc)(x) = (μcπ−t)(x) = μc((π−t)(x)) = 1 − (μπ−t)(x)

= (1 − μπ−t)(x). Therefore πtμc = 1 − μπ−t.
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Result 3.12. Let α be a constant fuzzy subset of G and μ ∈ IX be fuzzy open. Then π(α × μ) is fuzzy open.

Proof. We have for any u ∈ X, π(α × μ)(u) = sup{(α × μ)(t, x) : π(t, x) = u}
= sup{(α(t) ∧ μ(x) : π(t, x) = u} = sup{(α ∧ μ(x) : π(t, x) = u}
= α ∧ sup{μ(x) : πt(x) = u} = α ∧ sup{μ(π−t(u)) : π−t(u) = x}
= α ∧ sup{πtμ(u) : π−t(u) = x}, since μπ−t = πtμ.

= α ∧ {∨{πtμ(u)} where π−t(u) = x

= {α ∧ {∨(πtμ)}}(u), where π−t(u) = x

Thus π(α × μ) = α ∧ {∨(πtμ)}. Now each πt is open and μ is open so πtμ is open. Also by definition of fuzzy
topology is open. Consequently α ∧ {∨(πtμ)} is open. Hence π(α × μ) is open.

Corollary 3.13. Let μ be a fuzzy open subset of X. then for any fuzzy point tα of G, π(tα × μ) is fuzzy open.

Proof. We have for any u ∈ X, π(tα × μ)(u) = sup{(tα × μ)(s, x) : π(s, x) = u}
= sup{tα(s) ∧ μ(x) : π(s, x) = u} = α ∧ μ(x) : π(t, x) = u

= α ∧ μ(x) : πt(x) = u

= α ∧ μ(π−t(u))

= α ∧ πtμ(u), since μπ−t = πtμ.

= (α ∧ πtμ)(u), considering α as a constant fuzzy subset on X.

Thus π(α × μ) = α ∧ πtμ. Now πt is open and μ is open so πtμ is open. Also by definition of fuzzy topology α
is open. Consequently α ∧ πt is fuzzy open. Hence π(tα × μ) is open.

Corollary 3.14. Let λ be any fuzzy subset of G and μ ∈ IX be fuzzy open, then π(λ × μ) is fuzzy open.

Proof. We have λ = ∨tα, where α = λ(x). So π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ). As already proved each
π(tα,×μ) is open and hence π(λ × μ) is open.

Result 3.15 Let μ be a fuzzy closed subset of X. then for any fuzzy point tα of G, π(tα × μ) is fuzzy closed.

Proof. We have for any u ∈ X, π(tα × μ)(u) = sup{(tαμ)(s, x) : π(s, x) = u}
= sup{tα(s) ∧ μ(x) : π(s, x) = u}
= α ∧ μ(x) : π(t, x) = u, since tα(s) � 0 only when s = t.

= α ∧ μ(x) : πt(x) = u

= α ∧ μ(π−t(u))

= α ∧ πtμ(u), since μπ−t = πtμ.

= (α ∧ πtμ)(u), considering α as a constant fuzzy subset on X.

Thus π(α×μ) = α∧πtμ. Now πt is closed and μ is closed so πtμ is closed. Also by definition of fuzzy topology
is closed. Consequently α ∧ πtμ is fuzzy closed. Hence π(tα × μ) is closed.

Corollary 3.16. Let λ be any fuzzy subset of G and μ ∈ IX be fuzzy closed. If suppλ is finite, then π(λ × μ) is
fuzzy closed.

Proof. We have λ = ∨tα, where α = λ(x). So π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ). As already proved each
π(tα,×μ) is closed. Also since suppλ is finite, the union is over finite number of closed fuzzy subsets. Hence
π(λ × μ) is closed.

4. Invariant fuzzy subsets

In this section we will introduce the notion of invariance of a fuzzy subset of X under the action of a fuzzy
subset of G.

Definition 4.1 Let λ a fuzzy subset of G and μ a fuzzy subset of X. Then μ is said to be invariant under λ or
λ-invariant provided that π(λ×μ) ⊆ μ. If λ = χG then μ is simply said to be invariant. If λ = χG and μ is a crisp
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subset, then fuzzy invariance reduces to crisp invariance.

Result 4.2 (i) If μ is a fuzzy subset of X, and λ is a fuzzy subgroup of X satisfying λ(0) = 1, then the following
statements are pairwise equivalent : π(λ × μ) ⊆ μ. ; π(λ × μ) = μ; π(λ(t) × μ) ⊆ μ ∀t ∈ G.

(ii) 0 and 1 are invariant.

(iii) If π(t × μ) ⊆ μ, then π(−t × μc) ⊆ μc and conversely

(iv) If μ is λ-invariant then intμ is λ-invariant and clμ is λ-invariant provided G and X are product related.

(v) If {μi} is a collection of λ-invariant fuzzy subset, then ∨μi and ∧μi are λ-invariant.

(vi) Let A be a crisp subset of G and μ a fuzzy subset of X., then μ is χA-invariant iff μc is χ−A- invariant.

Proof (i) First we show π(λ × μ) ⊆ μ⇔ π(λ × μ) = μ.
Suppose π(λ × μ) ⊆ μ. We have for any u in X, π(λ × μ)(u) = sup{(λ × μ)(t, x) : π(t, x) = u}
= sup{(λ(t) ∧ μ(x) : π(t, x) = u}
≥ λ(0) ∧ μ(u), since π(0, u) = u

= μ(u) since λ(0) = 1.

Thus π(λ × μ) = μ. Consequently π(λ × μ) ⊆ μ.⇔ π(λ × μ) = μ.
Next we show π(λ(t) × μ) ⊆ μ⇔ ∀t ∈ G.π(λ × μ) ⊆ μ
Given π(tα × μ) ⊆ μ for all tα : α = λ(t).

Now π(λ × μ) = π(∨tα × μ) = ∨π(tα × μ) ⊆ μ
(ii) Trivial

(iii) We have π(t × μ) ⊆ μ⇒ πt(μ) ⊆ μ
And π(−t × μc) = π−t(μc)

Now 1 − μ ⊆ 1 − πt(μ) = μcπ−t ⇒ μc ⊆ πtμc ⇒ π−tμc ⊆ μc ⇒ π(−t × μc) ⊆ μc

(iv) We have π(λ × μ) ⊆ μ. Now π(λ × μo) ⊆ π(λ × μ) ⊆ μ. Now μo is open so π(λ × μo) is open and contained
in μ. But μo is the largest open fuzzy set contained in μ.

Hence π(λ × μo) ⊆ μo.

Since G and X are product related λ × clμ ⊆ clλ × clμ = cl(λ × μ)
⇒ π(λ × clμ) ⊆ π{cl(λ × μ)} ⊆ clπ(λ × μ), since π is continuous

⊆ clμ.

(v) We have π(λ × ∨μi) = π{∨(λ × μi)} = ∨π(λ × μi) ⊆ μ.
Similarly π(λ × ∧μi) = π{∧(λ × μi)} ⊆ ∧π(λ × μi) ⊆ μ.
(vi) It is sufficient to show that π(t × μ) ⊆ μ, then π(−t × μc) ⊆ μc and conversely for t ∈ A. Hence it follows
from (iii)

5. Fuzzy Orbits

In this section we will introduce the notion of orbits in fuzzy setting and extend some classical results.

Definition 5.1 Let x ∈ X and λ a fuzzy subgroup of G. Then the fuzzy orbit of x under λ or the λ- orbit of x is
defined to be fuzzy subset π(λ × x). The fuzzy orbit closure of x under λ or the λ- orbit closure of x is defined
to be the fuzzy subset clπ(λ × x).

When λ = χG, then the fuzzy orbit coincides with the crisp orbit. We will denote the orbit of x under λ by λx.
We assume that G and X are product related and that λ(0) = 1.

Remark : λx(u) = sup{λ(t) : π(t, x) = u}.
We have λx(u) = π(λ, x)(u) = sup{(λ, x)(t, y) : (t, y) = u}
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= sup{(λ(t) ∧ x(y) : π(t, y) = u}
= sup{(λ(t) : π(t, x) = u}, since x(y) � 0 iff x = y.

Result 5.2 Let x, y ∈ X, then

(i) λx(y) = λy(x)

Proof. We have λx(y) = sup{λ(t) : π(t, x) = y} = sup{λ(t) : π(−t, y) = x}
= sup{λ(−t) : π(−t, y) = x} = λy(x).

(ii) λ-orbit of x is λ-invariant.

Proof. We have for any u ∈ X,

π(λ × λx)(u) = sup{(λ × λx)(t, y) : π(t, y) = u} = sup{λ(t) ∧ λx(y) : π(t, y) = u}.
= sup[λ(t) ∧ sup{λ(s) : π(s, x) = y} : π(t, y) = u}]
= supt sups{λ(t) ∧ λ(s) : π(t + s, x) = u}}
≤ supt sups{λ(t + s) : π(t + s, x) = u}, since λ is a fuzzy subgroup of G

= sup{λ(r) : π(r, x) = u} = λx(u). Hence π(λ × λx) ⊆ λx.

(iii) Let η ∈ IG be λ-invariant and η(x) = 1, then λx ⊆ η. In other words fuzzy orbit of x is the least λ-invariant
fuzzy subset containing the fuzzy point x.

Proof. We have for any u ∈ X,

λx(u) = sup{λ(t) : π(t, x) = u} = sup{λ(t) ∧ η(x) : π(t, x) = u}, since η(x) = 1.

= π(λ × η)(u) ⊆ η(u).

(iv) The closure of λ-orbit of x is λ-invariant.

Proof. Since G and X are product related, we have π(λ × clλx) ⊆ π(cl(λ × λx))

⊆ clπ(λ × λx), since π is continuous

⊆ clλx, since π(λ × λx) ⊆ λx.

(v) Let η ∈ IG be closed, λ-invariant and η(x) = 1, then clλx ⊆ η. In other words fuzzy orbit of x is the least
λ-invariant fuzzy closed subset containing the fuzzy point x.

Proof. Since λx is λ-invariant, π(λ × λx) = λx by Result 2(i). So λx = π(λ × x) ⊆ π(λ × η), since η(x) = 1,

⊆ η⇒ λx ⊆ η⇒ clλx ⊆ clη⇒ clλx ⊆ η , since η is closed.

(vi) If clλx(y) = 1, then clλy ⊆ clλx.

Proof. Since clλy is the least closed λ-invariant fuzzy subset containing y, the result follows.

(vii) The collection {λx : x ∈ X} is a cover of 1.

Proof. This is because for each x ∈ X, λx(x) = 1.

(viii) Let x, y ∈ X such that λx(y) > 0. Then, λx(u) > 0 ⇔ λy(u) > 0 for any u in X.

Proof. Given λx(y) > 0. So ∃t ∈ G with λ(t) > 0 : π(t, x) = y. This implies π(−t, y) = x. Let λx(u) > 0, then
there exist s ∈ G with λ(s) > 0 : π(s, x) = u.

So π(s − t, y) = u and λ(s − t) ≥ λ(s) ∧ λ(−t) = λ(s) ∧ λ(t) > 0, since λ is a fuzzy subgroup ⇒ λy(u) > 0.

Similarly λy(u) > 0 ⇒ λx(u).

(ix) If λx(y) = 0, then λx(u) = 0, for all u in X such that λy(u) > 0

Proof. We have λx(y) = 0, so there exists no t ∈ G with λ(t) > 0 : π(t, x) = y − −(i) Let u ∈ X such that
λy(u) > 0 ⇒ ∃r ∈ G with λ(r) > 0 : π(r, y) = u. − −(ii)

Suppose λx(u) > 0, then ∃s ∈ G with λ(s) > 0 : π(s, x) = u ⇒ π(−r, (s, x)) = π(−r, u) = y using (ii)

⇒ π(−r + s, x)) = y, where λ(−r + s) ≥ λ(−r) ∧ λ(s) = λ(r) ∧ λ(s) > 0, since λ is a fuzzy subgroup But this
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contradicts (i). Hence the result.

We consider the collection of all λ-orbits and define a relation on it as λx ∼ λy if λx(y) > 0. Then it can be easily
verified that this relation is an equivalence relation, where the equivalence class of λx is [λx] = {λy : λx(y) > 0}.
So [λx] is a fuzzy subset of X defined as [λx](y) = λx(y).

The collection {supp[λx] : x ∈ X} is a crisp partition of X.

Let us denote the set of all equivalence classes by X/λ, i.e., X/λ = {[λx] : x ∈ X}. Define a map f : X → X/λ
given by f (x) = [λx]. We equip X/λ with the corresponding quotient topology.

Result 5.3 The map f : X → X/λ given by f (x) = [λx] is an open map.

Proof. Let μ be an open fuzzy subset of X. To show f (μ) is fuzzy open in X/λ. Since X/λ has quotient topology
with respect to f, it is sufficient to show f −1{ f (μ)} is open in X.

We have f −1{ f (μ)}(x) = f (μ)( f (x)) = f (μ)[λx] = sup{μ(y) : f (y) = [λx]}
= sup{μ(y) : [λy] = [λx]} = sup{μ(y) : λy ∈ [λx]}
= sup{μ(y) : λx(y) > 0} = sup{μ(y) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{μ(π−t(x)) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{πtμ(x) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= ∨πtμ(x), where t ∈ G with λ(t) > 0

Hence f −1{ f (μ)} = ∨πtμ.

Now each πt is a homeomorphism and μ is open and so πtμ is open. Consequently ∨πtμ. is open. Hence
f −1{ f (μ)} is open.

Consequently f is a fuzzy open map.

Corollary 5.4 : If λ has finite support, then the map f : X → X/λ given by f (x) = λx is a closed map.

Proof. Let μ be a closed fuzzy subset of X. To show f (μ) is fuzzy closed in X/λ. Since X/λ has quotient
topology with respect to f, it is sufficient to show f −1{ f (μ)} is closed in X.

We have f −1{ f (μ)}(x) = f (μ)( f (x)) = f (μ)[λx] = sup{μ(y) : f (y) = [λx]}
= sup{μ(y) : [λy] = [λx]} = sup{μ(y) : λy ∈ [λx]}
= sup{μ(y) : λx(y) > 0} = sup{μ(y) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{μ(π−t(x)) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= sup{πtμ(x) : π(t, x) = y for some t ∈ G with λ(t) > 0}
= ∨πtμ(x), where t ∈ G and λ(t) > 0

Hence f −1{ f (μ) = ∨πtμ. Now each πt is a homeomorphism and μ is closed and so each πtμ is closed. As suppλ
is finite supremum is over finite number of t′s.

Consequently ∨πtμ being union of finite number of closed fuzzy sets is closed.

Hence f −1{ f (μ)} is closed.

Consequently f is a fuzzy closed map.

6. Construction of new fuzzy topological transformation groups from given ones

In this section we will construct new fuzzy topological transformation groups from given ones.

Result 5.1 Let (π, G, X) and (ϕ , G, Y) be two fuzzy topological transformation groups. DefineΨ: G×(X×Y) →
X × Y as Ψ(t, (x, y)) = (π(t, x), (t, y)). Then (Ψ, G, (X × Y)) is a fuzzy topological transformation group.

Proof. As π is fuzzy continuous Ψ is fuzzy continuous.

Also Ψ(0, (x, y)) = (π (0, x), π(0, y)) = (x, y) and

Ψ (s + t, (x, y)) = ( π(s + t, x), π(s + t, y))
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= (π (s, π(t, x), π(s, π(t, y)) = Ψ (s, ( π(t, x), π(t, y) )) = Ψ(s, Ψ(t, (x, y) ).

Thus (FGT1), (FGT2) and FGT3) are satisfied and hence (Ψ, G, (X×Y) ) is a fuzzy topological transformation
group.

Result 5.2 Let λ be a fuzzy subgroup of G and μ ∈ IX such that π(λ×μ) ⊆ μ. Then ( suppλ, suppμ, π/suppλ×suppμ)
is fuzzy topological transformation group.

Proof. Since λ is fuzzy subgroup, suppλ is an ordinary group Since subgroup of a fuzzy topological group is
a fuzzy topological group, suppλ is a fuzzy topological group. Since π(λ × μ) ⊆ μ, range of π/suppλ×suppμ) is
contained in suppμ. Also restriction of fuzzy continuous function if fuzzy continuous. Hence the result.

Corollary 5.3 Let λ be a fuzzy subgroup of G then ( suppλ, X, π/suppλ×X is fuzzy topological transformation
group.

Result 5.4 Consider the map f : X → X/λ given by f (x) = [λx]. Define a map φ : G × X → X/λ as
φ(t, [λx]) = f (π(t, x)). Then (φ, G, X/λ) is a fuzzy topological transformation group.

Proof. f and π being continuous, we have φ is continuous. Now φ(0, [λx]) = f (π(0, x)) = f (x) = [λx]. Also
φ(s, φ(t, [λx])) = φ{s, f (π(t, x))} = φ{s, [λπ(t, x)]} = f {π(s, π(t, x)} = f {π(s + t, x)} = φ(s + t, [λx]). Thus
(FGT1), (FGT2) and FGT3) are satisfied and hence (φ, G, X/λ) is a fuzzy topological transformation group.

In X define a relation x ∼ y if [λx] = [λy]. Then this relation is an equivalence. Denote the equivalence class of
x by [x]. Let g be the canonical mapping from X to {[x] : x ∈ X}, i.e, g(x) = [x]. Equip {[x] : x ∈ X} with the
corresponding quotient topology. Then clearly this space is fuzzy homemorphic with the already introduced
space X/λ, where the corresponding homeomorphism is x → [λx]. We can denote both the spaces by the same
notation X/λ. Consequently (φ, G, X/λ), where φ: G × X → X/λ defined as φ(x) = g(π(t, x)) is a fuzzy
topological transformation group. Here X/λ stands for the quotient space {[x] : x ∈ X}.
Conclusion :. In this paper we have developed the notion of topological transformation group in fuzzy setting.
We have attempted to extend most of the results of classical topological transformation group to this fuzzy
setting. A topological transformation group is the basic structure in the study of topological dynamics. As the
concept of orbit and orbit closure are fuzzified, it is expected that the other concepts of topological dynamics
can be worked on in this setting.
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Abstract

A subgroup H is said to be weakly c∗-normal in a group G if there exists a subnormal subgroup K of G such that
HK = G and H ∩ K is s-quasinormally embedded in G. We give some results which generalize some authors’
results.

Keywords: Weakly c∗-normality, p-nilpotence, s-quasinormally embedded

1. Introduction

In this paper the word group is always finite. Ore (1937, p150) gives quasinormality of subgroups. A subgroup
H is said to be quasinormal in G if for every subgroup K of G such that HK = KH. A subgroup H of a group G
is said to be s-quasinormal in G if H permutes with every Sylow subgroup of G. This concept was introduced
by Kegel (1962, p 205),and extensively studied (Deskins, 1963, p126-131). Ballester-Bolinches and Pedraza-
Aguilera (1998, p114) introduce the conception of s-quasinormally embedded in G if for each prime divisor
p of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G. Wei and
Wang (2007, p212)introduced the notion of c∗-normality, a subgroup H of G is said to be c∗-normal in G if
there exists a subgroup K ≤ G such that G = HK and H ∩ K is s-quasinormally embedded in G.

For some notions and notations,the reader is referred to Robinson (1995)and Huppert (1968).

2. Some definitions and preliminary results

A subgroup H is called weakly c-normal in a group G if there exists a subnormal subgroup T of G such that
G = HT and H ∩ T ≤ HG, where HG is the largest normal subgroup of G contained in H. The conception of
weakly c-normality was introduced by Lu, Guo, and Shum (2002, p 5506).

Definition 2.1 A subgroup H is said to be weakly c∗-normal in G if there exists a subnormal subgroup T of G
such that G = HT and H ∩ T ≤ HsG, where HsG is s-quasinormally embedded subgroup of G contained in H.

Lemma 2.1 (Ballester-Bolinches and Pedraza-Aguilera, 1998, Lemma 1) Suppose that U is s-quasinormally
embedded in a group G, and that H ≤ G and K � G.

(1) If U ≤ H, then U is s-quasinormally embedded in H.

(2) If UK is s-quasinormally embedded in G, then UK/K is s-quasiormally embedded in G/K.

(3) If K � H and H/K is s-quasinormally embedded in G/K, then H is s-quasinormally embedded in G.

Lemma 2.2 Let G be a group. Then the following statements hold.

(1) If H is weakly C∗-normal in G and H ≤ M ≤ G, then H is weakly c∗-normal in M.

(2) Let N � G and N ≤ H. Then H is weakly c∗-normal in G if and only if H/N is weakly c∗-normal in G/N.

(3)Let π be a set of primes. H is a π-subgroup of G and N a normal π′-subgroup of G, if H is weakly c∗-normal
in G, then HN/N is weakly c∗-normal in G/N.

(4)Let L ≤ G and H ≤ Φ(L) If H is weakly c∗-normal in G, then H is s-quasinormally embedded in G.
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(5)Let H is c∗-normal in G, then H is weakly c∗-normal in G.

Proof. (1) If H is weakly c∗-normal in G, that is, there exists a subnormal subgroup T of G such that HT = G

and H ∩ T is s-quasinormally embedded in G, then M = M ∩ G = (M ∩ T )H. Since T is subnormal in G,
then M ∩ T is subnormal in M, and H ∩ (M ∩ T ) is s-quasinormally embedded in M. So we have H is weakly
c∗-normal in M.

(2) If H is weakly c∗-normal in G, then there exists a subnormal T of G such that G = HT and H ∩ T is
s-quasinormally embedded in G. Then G/N = (H/N)(T N/N), where T N/N is subnormal in G/N and (H/N) ∩
(T N/N) is s-quasinormally embedded in G/N. Then H/N is weakly c∗-normal in G/N. The converse part can
be proved similarly.

(3) If H is weakly c∗-normal in G, then there exists a subnormal subgroup T of G such that G = HT and H ∩ T

is s-quasinormally embedded in G. Since |G|π′ = |T |π′ = |T N |π′ , then N ≤ T . Clearly (HN/N)(T/N) = G/N

and (HN/N) ∩ (T/N) = (H ∩ T )N/N is s-quasinormally embedded in G/N.

(4) Since H is weakly c∗-normal in G, then there exists a subnormal subgroup T such that G = HT and H ∩ T

is s-quasinormally embedded in G.L = L ∩ (HT ) = H(T ∩ L). Since H ≤ Φ(L), then L = T ∩ L and so L ≤ T ,
then T = G and H = H ∩ T is s-quasinormally embedded in G.

(5) The result is obvious.

Lemma 2.3 Let M be a maximal subgroup of G and P a normal Sylow p-subgroup of G such that G = PM,
where p is a prime, then P ∩ M is a normal subgroup of G.

Lemma 2.4 (Wei and Wang, 2007, Lemma 2.5) Let G be a group, K an s-quasinormal subgroup of G, P a Sylow
p-subgroup of K where p is a prime divisor of |G|. If either P ≤ OP(G) or KG = 1, then P is s-quasinormal in G.

Lemma 2.5 (Li, Wang and Wei, 2003, Lemma 2.2) Let G be a group and P is s-quasinormal p-subgroup of G
where p is a prime, then OP(G) ≤ NG(P).

Lemma 2.6 (Wei and Wang, 2007, Lemma 2.8) Let G be a group and p a prime dividing |G|with (|G|, p−1) = 1.

(1) If N is normal in G of order p, then N is in Z(G).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3)If M ≤ G and |G : M| = p, then M � G.

Lemma 2.7 (Huppert, 1968, IV, 5.4) Suppose that G is a group which is not p-nilpotent but whose proper
subgroups are all p-nilpotent. Then G is a group which is not nilpotent but whose proper subgroups are all
nilpotent.

Lemma 2.8 (Robinson, 1995, III, 5.2) Suppose that G is a group which is not nilpotent but whose proper
subgroups are all nilpotent. Then

(1) G has a normal Sylow p-subgroup for some prime p and G = PQ, where Q is a non-normal cyclic q-
subgroup for some prime q � p.

(2) P/Φ(P) is a minimal normal subgroup of G/Φ(P).

(3) If P is non-abelian and p � 2, then exp(P) = p.

(4) If P is non-abelian and p = 2, then exp(P) = 4.

(5)If P is abelian, then exp(P) = p.

Lemma 2.9 Let H be a subgroup of G. Then H is weakly c∗-normal in G if and only if there exists a subgroup
K such that G = HK and H ∩ K = HsG.

Proof. ⇐ It is clear.

⇒ By definition 2.1, there exists a subnormal subgroup L of G such that G = HL and H ∩ L ≤ HsG If
H ∩ L < HsG, note that K = LHsG, then HK = HLHsG = LHHS G = LH = G and hence H ∩ K = H ∩ LHsG =

(H ∩ L)HsG = HsG.
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3. Main results

Theorem 3.1 Let G be a group, P a Sylow p-subgroup of G, where p is a prime divisor of |G|with (|G|, p−1) = 1.
If all maximal subgroups of P are weakly c∗-normal in G, then G is p-nilpotent.

Proof. Suppose that the result is false, then we chose a minimal order G as a counterexample.We will prove by
the following steps:

Steps 1. For every proper subgroup of G is p-nilpotent, thus G is a group which is not p-nilpotent but whose
proper subgroups are all p-nilpotent.

Let M be a maximal subgroup of G, Then P ∩ M is a maximal p-subgroup of P. By hypothesis, P ∩ M is
weakly c∗-normal in G and so P ∩ M is weakly c∗-normal in M by lemma 2.2(1). Thus M, P ∩ M satisfies the
hypotheses of the theorem, the minimal choice of G implies that M is p-nilpotent. Then we have that G is not
p-nilpotent but all proper subgroups are p-nilpotent. Then, by lemma 2.7 and lemma 2.8(1), G has a normal
Sylow p-subgroup for some prime p and G = PQ, where Q is a non-normal cyclic q-subgroup for some prime
q � p.

Steps 2. Let L be a minimal normal subgroup of G contained in P, then G/L is p-nilpotent, L is the unique
minimal normal of G and L � Φ(G).

Since P/L is a Sylow p-subgroup of G/L, we have M/L is a maximal subgroup in P/L, where M is a maximal
subgroup of P. Since M is weakly c∗-normal in G, by lemma 2.2(2) M/L is weakly c∗-normal in G/L. Thus
G/L, P/L satisfies the hypotheses of the theorem and so we have G/L is p-nilpotent by the minimal choice of
G. If L1 is an another minimal normal subgroup, then G/1 � G/L ×G/L1 is p-nilpotent and so L is unique. If
L ≤ Φ(G), then G/Φ(G) is p-nilpotent, and so is G, a contradiction.

Steps 3. Φ(P) � 1.

If Φ(P) = 1, then P is abelian. By steps 1 and lemma 2.8(5), exp(P) = p. If |P/Φ(P)| = Pn and P/Φ(P) =<
x1Φ(P), x2Φ(P), · · · , xnΦ(P) >, then P =< x1, x2 · · · , xn >. So we have | < x1 > | = p, and < xi > char P,
where i is nature number. And since P is normal in G, then < xi > are normal p-subgroup of G of order p.
Thus by lemma 2.6(1), we have < xi >≤ Z(G) for all i = 1, 2, · · · , n, then P ≤ Z(G), then G is p-nilpotent, a
contradiction. Thus Φ(P) � 1.

Steps 4. L is a Sylow p-subgroup of G.

By steps 3, Φ(P) � 1, then L ≤ P. If L < P, then for a maximal subgroup M of P, M is weakly c∗-normal in G
and so there exists a subnormal subgroup K such that G = MK and M ∩ K is s-quasinormally embedded in G.
We consider the following cases.

1) M ∩ K = 1.

Since |K|p = |G : M|p = |PQ : MQ|p = |P : M| = p, then K has a normal p-complement Q1 which is also a
Sylow q-subgroup of G. By Sylow theorem, there exists an element g ∈ G \Q such that Q

g

1 = Q. Since M � P,
then G = MK = (MK)g = MKg. Since Kg � K and Q = Q

g

1 ≤ Kg, this implies Kg ≤ NG(Q) in this case Q is
not normal in G. So we have G = MK = (MK)g = MNG(Q). So we have M ∩ NG(Q) = 1 and NG(Q) ≤ Kg.
Thus Kg = NG(Qg) = NG(Q). If H be a sylow subgroup of NG(Q), then K = HQ and HP = PH = P. This
implies that H is s-quasinormal in G, then by lemma 2.5 we have Op(H) ≤ NG(H), and H is normal in G. Then
L = H ≤ M since the minimality of L and L is unique. But L � M, a contradiction.

2) M ∩ K = M = MsG .

Then we have M ≤ K, then G = K is p-nilpotent, a contradiction.

3) 1 < MsG < M.

Let S = M ∩ K. Then S is s?quasinormally embedded in G. Thus there exists an s-quasinormal subgroup R
such that S is a Sylow p-subgroup of R. Then by lemma 2.5, we have Op(G) ≤ NG(S ) and so S is normal in
G, then we have, S = P or S = L. If S = P. On the other hand, |M| < |P|, a contradiction. Then S = L is
a minimal normal Sylow p-subgroup of some s-quasinormal subgroup R of G, then for any sylow q-subgroup
Q, we have RQ = QR is a subgroup of G and, if QS < G, Q � RQ by (1), and so LQ = L × Q. By steps 1
and Burnside’s theorem, we have G is solvable. Thus Q ≤ CG(L) ≤ L, a contradiction. Then QS = G, then
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G = PQ = QS and so P = S g for some g ∈ Q, a contradiction.

Steps 5. Conclusions.

By steps 4, L = P is a Sylow p-subgroup of G, then, by hypothesis, maximal subgroup M of L = P is
weakly -normal in G. Then by lemma 2.10 there exists a subnormal subgroup K of G such that G = MK and
M∩K ≤ MsG. Since MsG < L = P < L = P, then MsG = 1 and LQ/L is p-nilpotent since G/L is p-nilpotent by
steps 2, where Q is a Hall p’-subgroup of G, then LQ/L � G/L and so LQ � G. It follows from Q char LQ � G

that Q is normal in G. Therefore G is p-nilpotent.

Corollary 3.1 (Wei and Wang, 2007, Theorem 3.1) Let G be a group, P a Sylow p-subgroup of G, where p
is a prime divisor of |G| with (|G|, p − 1) = 1. If all maximal subgroups of P are c∗-normal in G, then G is
p-nilpotent.

Theorem 3.2 Let G be a group, P a Sylow p-subgroup of G, where p is a prime divisor of |G|with (|G|, p−1) = 1.
If all cyclic subgroups of P of order p or 4 (if p = 2) are weakly c∗-normal in G, then G is p-nilpotent.

Proof. Suppose that the result is false, then we chose a minimal order G as a counterexample. We will prove
by the following steps:

Steps 1. Let M be a proper subgroup of G, then M is p-nilpotent. So G is not p-nilpotent but all proper
subgroups are p-nilpotent. Thus G = PQ, where P is a normal Sylow p-subgroup of G and Q is a non-normal
cyclic Sylow q-subgroup of G. And so by Burnside’s theorem G is solvable. Then M∩P is a Sylow p-subgroup
of M. By hypothesis, for every cyclic subgroup of P of order p or 4 (if p = 2) is weakly -normal in G, then By
lemma 2.2(1), for every cyclic subgroup of P M of order p or 4 (if p = 2) is weakly c∗-normal in M. Then M,
M ∩ P satisfies the hypotheses of the theorem, M is p-nilpotent by the minimal choice of G, so we have: G is
not p-nilpotent but all proper subgroups are p-nilpotent and so by lemma 2.7 and lemma 2.8(1), G = PQ, where
P is a normal Sylow p-subgroup of G and Q is a non-normal cyclic Sylow q-subgroup of G.

Steps 2. Let L be a minimal normal subgroup of G contained in P, then L is unique minimal normal p-subgroup
for some prime of |G|, G/L is p-nilpotent and L � Φ(G). Furthermore, L = F(G) = CG(L).

Since all cyclic subgroups of P of order p or 4(if p = 2) is weakly c∗-normal in G, then by lemma 2.2(2) all
cyclic subgroups of P/L with order p or 4 (if p = 2) is weakly c∗-normal in G/L, then the minimal choice of G
implies that G/L is p-nilpotent. If L ≤ Φ(G), then G/Φ(G) is p-nilpotent and G is p-nilpotent, a contradiction.
By lemma 2.6 (Li, etc, 2003), F(G) = L. By steps 1, solubility of G implies that L ≤ CG(F(G)) ≤ F(G) and so
CG(L) = F(G) = L as L is abelian.

Steps 3. Conclusions.

By steps 2 CG(L) = F(G) = L. But on the other hand, for x ∈ P, < x > is weakly c∗-normal in G, then there
exists a subnormal subgroup T of G such that G =< x > T and < x > ∩T is s-quasinormally embedded in G.
By lemma 2.7 and lemma 2.8, we have if p is odd or P is abelian, then exp(P) = p or if p = 2exp(P) = 4.
Since F(G) =< x1, x2, · · · , xn >= L, | < xi > | = p or 4 and < xi > char P since P is normal in G. Thus
F(G) = L =< xi >. So we have LQ = QL = L × Q, Then Q ≤ NG(L), then G = P × Q is nilpotent, a
contradiction.

Corollary 3.2 (Li and Wang, 2004, Theorem 4.1) Suppose G is a group, p is a fixed prime number. If every
element of Pp(G) is contained in Z∞(G). If p = 2, every cyclic subgroup of order 4 of G is s-quasinormal in G,
then G is p-nilpotent.
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Abstract

In this paper, we promote the definition of Kronecker product, and give its corresponding properties. As the
application of generalized Kronecker product, this paper shows the determination method that the algebraic
operation in finite set suits the associative law.
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1. Introduction

Kronecker product expresses a special product of matrix. The product of a matrix A by m × n and a matrix B

by p × q can be denoted by A ⊗ B, which is a matrix by mp × nq.

Definition 1.(Kronecker product)(BellmanR.,1970) The product of a matrix A by m × n and a matrix B by p × q can
be denoted by A ⊗ B, which is defined as follows:

A ⊗ B = [ai, jB] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Kronecker product also can be called direct product or tensor product.

Kronecker product has the following properties:

1). For Am×n and Bp×q, generally A ⊗ B � B ⊗ A.

2). The Kronecker product of arbitrary matrix and zero matrix equals zero matrix, i.e. A ⊗ 0 = 0 ⊗ A = 0.

3). If α and β are constant, αA ⊗ βB = αβ(A ⊗ B).

4). For Am×n , Bn×k, Cl×p and Dp×q, AB ⊗CD = (A ⊗C)(B ⊗ D).

5). For Am×n , Bp×q, Cp×q, A ⊗ (B ±C) = (A ⊗ B) ± (A ⊗C), (B ±C) ⊗ A = (B ⊗ A) ± (C ⊗ A).

Note: properties 1)-5) is referred from (Rao c R,1971).

6).For Am×n and Bp×q, (A ⊗ B)T = AT ⊗ BT .

7). For Am×n and Bp×q, rank(A ⊗ B) = rank(A)rank(B).

8). For Am×m and Bn×n, det(A ⊗ B) = (detA)n(detB)n.

9). For Am×m and Bn×n, tr(A ⊗ B) = tr(A)tr(B).

10). For Am×n , Bm×n, Cp×q and Dp×q, (A + B) ⊗ (C + D) = A ⊗C + A ⊗ D + B ⊗C + B ⊗ D.
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11). For Am×n , Bk×l, Cp×q and Dr×s, (A ⊗ B) ⊗ (C ⊗ D) = A ⊗ B ⊗C ⊗ D.

12). For Am×n , Bk×l, Cp×q, (A ⊗ B) ⊗C = A ⊗ (B ⊗C).

13). For Am×n , Bp×q, Cn×r and Dq×s, (A ⊗ B)(C ⊗ D) = (A ⊗C)(B ⊗ D).

Note: properties 6)-13) is referred from (Brewer j w, 1978, 772-781).

But for the need of the real life and the mathematics development, the element of matrix may not limit to
numbers, thus we introduce a new concept, also namely promoting the matrix concept.

2. Definition of generalized Kronecker product

Definition 2. Suppose S be a nonempty set, (S , ◦,+) be an algebra system, then A is matrix in algebraic system
(S , ◦,+) if and only if A = [ai j]m×n, ai j ∈ S (i = 1, 2, · · · ,m; j = 1, 2, · · · , n).

Definition of Kronecker product can be promoted as the below definition.

Definition 3(generalized Kronecker product). The Kronecker product of a matrix A by m× n and a matrix B by
p × q in algebra system (S , ◦,+) can be denoted by A ⊗ B, which is defined as follows:

A ⊗ B = [ai j ◦ B] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 ◦ B a12 ◦ B · · · a1n ◦ B

a21 ◦ B a22 ◦ B · · · a2n ◦ B
...

...
. . .

...

am1 ◦ B am2 ◦ B · · · amn ◦ B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note: The generalized product, addition and number product of matrix are similar with the usual product,
addition and number product of matrix.

3. Properties of generalized Kronecker product

Theorem 1. For Am×n and Bp×q, generally A ⊗ B � B ⊗ A.

Since the number operate is a special algebraic operator, for restricted untenable proposition, it is also untenable
in generalized condition.

Theorem 2. The Kronecker product of arbitrary matrix and zero matrix equals zero matrix, i.e. A⊗0 = 0⊗A = 0.

The reason is as that of theorem 1.

Theorem 3. If (S , ◦) is a commutative semi-group, and for arbitrary α and β , (α◦A)⊗ (β◦B) = (α◦β)◦ (A⊗B).

This theorem is equivalent the operate of elements: (α ◦ ai, j) ◦ (β ◦ bkl) = (α ◦ β) ◦ (ai j ◦ bkl), where ai j =

[A]i j, bkl = [B]kl.

Theorem 4. If (S , ◦) is a commutative semi-group, and for Am×n , Bn×k, Cl×p and Dp×q, (A ◦ B) ⊗ (C ◦ D) =
(A ⊗C) ◦ (B ⊗ D).

This theorem is equivalent the operate of elements: (ai j ◦ bkl) ◦ (ctu ◦ dwv) = (ai, j ◦ ctu) ◦ (bkl ◦ dwv), where
ai j = [A]i j, bkl = [B]kl, ctu = [C]tu, dwv = [D]wv.

Theorem 5. If (S ,+, ◦) is a ring, and for Am×n , Bp×q, Cp×q, A ⊗ (B ± C) = (A ⊗ B) ± (A ⊗ C), (B ± C) ⊗ A =

(B ⊗ A) ± (C ⊗ A).

Theorem 6. If (S , ◦) is a commutative algebraic system, and for Am×n and Bp×q, (A ⊗ B)T = AT ⊗ BT .

Theorem 7. If (S ,+, ◦) is a ring and for Am×n , Bm×n, Cp×q and Dp×q, (A+B)⊗(C+D) = A⊗C+A⊗D+B⊗C+B⊗D.

This theorem is equivalent the operate of elements: (ai j+bi j)◦ (ckl+dkl) = ai j ◦ckl+ai j ◦dkl+bi j ◦ckl+bi j ◦dkl,
where ai j = [A]i j, bi j = [B]i j, ckl = [C]kl, dkl = [D]kl.

Theorem 8. If (S , ◦) is a commutative semi-group, and for Am×n , Bk×l, Cp×q and Dr×s, (A ⊗ B) ⊗ (C ⊗ D) =
A ⊗ B ⊗C ⊗ D.

This theorem is equivalent the operate of elements: (ai j ◦ bkl) ◦ (ctu ◦ dwv) = ai j ◦ bkl ◦ ctu ◦ dwv, where
ai j = [A]i j, bkl = [B]kl, ctu = [C]tu, dwv = [D]wv.

Theorem 9. If (S , ◦) is a semi-group , and for Am×n , Bk×l, Cp×q, (A ⊗ B) ⊗C = A ⊗ (B ⊗C).

� www.ccsenet.org/jmr 93



Vol. 1, No. 1 ISSN: 1916-9795

This theorem is equivalent the operate of elements: (ai j ◦ bkl) ◦ ctu = ai j ◦ (bkl ◦ ctu), where ai j = [A]i j, bkl =

[B]kl, ctu = [C]tu.

Theorem 10. If (S , ◦) is a commutative semi-group, and for Am×n , Bp×q, Cn×r and Dq×s, (A ⊗ B) ◦ (C ⊗ D) =
(A ⊗C) ◦ (B ⊗ D), where ai j = [A]i j, bkl = [B]kl, ctu = [C]tu, dwv = [D]wv.

This theorem is equivalent the operate of elements: (ai j ◦ bkl) ◦ (ctu ◦ dwv) = (ai j ◦ ctu) ◦ (bkl ◦ dwv).

4. Application of generalized Kronecker product[7],[8],[9],[10],[11]

Theorem 12. Suppose S = {a1, a2, · · · , an} and (S , ◦) is an algebraic system, then the table of algebraic operator
in S is as follows:

<Figure1>

Construct A = [a1 a2 · · · an]T , then (S , ◦) is a semi-group if and only if A ⊗ (A ⊗ AT ) = (A ⊗ A) ⊗ AT .

Theorem 13. Suppose S = {a1, a2, · · · , an} and (S , ◦) is an algebraic system, then the table of algebraic operator
in S is as follows:

<Figure1>

Construct A = [a1 a2 · · · an]T , then the algebraic operator ◦ of S satisfies associative law if and if only
A ⊗ (A ⊗ AT ) = (A ⊗ A) ⊗ AT .

Sample: Suppose set S = {a, b, c, d}, the algebraic operator in S is as follows:

<Figure2>

then whether is the algebraic operator ◦ in S associative?

Proof: Easily , algebraic operator ◦ in finite set S is closed, then (S , ◦) is a algebraic system. Construct matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , and the definition of generalized Kronecker product is as definition 3, then

A⊗(A⊗AT ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗[a b c d] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ [a b c d]
b ◦ [a b c d]
c ◦ [a b c d]
d ◦ [a b c d]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗[a b c d] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ (a ◦ a) a ◦ (a ◦ b) a ◦ (a ◦ c) a ◦ (a ◦ d)
a ◦ (b ◦ a) a ◦ (b ◦ b) a ◦ (b ◦ c) a ◦ (b ◦ d)
a ◦ (c ◦ a) a ◦ (c ◦ b) a ◦ (c ◦ c) a ◦ (c ◦ d)
a ◦ (d ◦ a) a ◦ (d ◦ b) a ◦ (d ◦ c) a ◦ (d ◦ d)
b ◦ (a ◦ a) b ◦ (a ◦ b) b ◦ (a ◦ c) b ◦ (a ◦ d)
b ◦ (b ◦ a) b ◦ (b ◦ b) b ◦ (b ◦ c) b ◦ (b ◦ d)
b ◦ (c ◦ a) b ◦ (c ◦ b) b ◦ (c ◦ c) b ◦ (c ◦ d)
b ◦ (d ◦ a) b ◦ (d ◦ b) b ◦ (d ◦ c) b ◦ (d ◦ d)
c ◦ (a ◦ a) c ◦ (a ◦ b) c ◦ (a ◦ c) c ◦ (a ◦ d)
c ◦ (b ◦ a) c ◦ (b ◦ b) c ◦ (b ◦ c) c ◦ (b ◦ d)
c ◦ (c ◦ a) c ◦ (c ◦ b) c ◦ (c ◦ c) c ◦ (c ◦ d)
c ◦ (d ◦ a) c ◦ (d ◦ b) c ◦ (d ◦ c) c ◦ (d ◦ d)
d ◦ (a ◦ a) d ◦ (a ◦ b) d ◦ (a ◦ c) d ◦ (a ◦ d)
d ◦ (b ◦ a) d ◦ (b ◦ b) d ◦ (b ◦ c) d ◦ (b ◦ d)
d ◦ (c ◦ a) d ◦ (c ◦ b) d ◦ (c ◦ c) d ◦ (c ◦ d)
d ◦ (d ◦ a) d ◦ (d ◦ b) d ◦ (d ◦ c) d ◦ (d ◦ d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ c a ◦ d a ◦ a

a ◦ b a ◦ c a ◦ a a ◦ d

a ◦ c a ◦ a a ◦ b a ◦ d

a ◦ d a ◦ b a ◦ a a ◦ c

b ◦ a b ◦ c b ◦ d b ◦ a

b ◦ b b ◦ c b ◦ a b ◦ d

b ◦ c b ◦ a b ◦ b b ◦ d

b ◦ d b ◦ b b ◦ a b ◦ c

c ◦ a c ◦ c c ◦ d c ◦ a

c ◦ b c ◦ c c ◦ a c ◦ d

c ◦ c c ◦ a c ◦ b c ◦ d

c ◦ d c ◦ b c ◦ a c ◦ c

d ◦ a d ◦ c d ◦ d d ◦ a

d ◦ b d ◦ c d ◦ a d ◦ d

d ◦ c d ◦ a d ◦ b d ◦ d

d ◦ d d ◦ b d ◦ a d ◦ c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a d a a

c d a a

d a c a

a c a d

b a d b

c a b d

a b c d

d c b a

c b d c

a b c d

b c a d

d a c b

d a c d

b a d c

a d b c

c b d a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

But

(A ⊗ A) ⊗ AT = (

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦) ⊗ [a b c d]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ [a b c d] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a

a ◦ b

a ◦ c

a ◦ d

b ◦ a

b ◦ b

b ◦ c

b ◦ d

c ◦ a

c ◦ b

c ◦ c

c ◦ d

d ◦ a

d ◦ b

d ◦ c

d ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ [a b c d] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

c

d

a

b

c

a

d

c

a

b

d

d

b

a

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ [a b c d]
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ [a b c d]
c ◦ [a b c d]
d ◦ [a b c d]
a ◦ [a b c d]
b ◦ [a b c d]
c ◦ [a b c d]
a ◦ [a b c d]
d ◦ [a b c d]
c ◦ [a b c d]
a ◦ [a b c d]
b ◦ [a b c d]
d ◦ [a b c d]
d ◦ [a b c d]
b ◦ [a b c d]
a ◦ [a b c d]
c ◦ [a b c d]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ◦ a a ◦ b a ◦ c a ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

a ◦ a a ◦ b a ◦ c a ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

a ◦ a a ◦ b a ◦ c a ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

d ◦ a d ◦ b d ◦ c d ◦ d

b ◦ a b ◦ b b ◦ c b ◦ d

a ◦ a a ◦ b a ◦ c a ◦ d

c ◦ a c ◦ b c ◦ c c ◦ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a c d a

c a b d

d b a c

a c d a

b c a d

c a b d

a c d a

d b a c

c a b d

a c d a

b c a d

d b a c

d b a c

b c a d

a c d a

c a b d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a d a a

c d a a

d a c a

a c a d

b a d b

c a b d

a b c d

d c b a

c b d c

a b c d

b c a d

d a c b

d a c d

b a d c

a d b c

c b d a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a c d a

c a b d

d b a c

a c d a

b c a d

c a b d

a c d a

d b a c

c a b d

a c d a

b c a d

d b a c

d b a c

b c a d

a c d a

c a b d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A ⊗ (A ⊗ AT ) � (A ⊗ A) ⊗ AT . From theorem 13, the algebraic operator ◦ in S is suit for associative law.
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Abstract

In this paper, we present the Lax-Wendroff theorem of entropy dissipation method for scalar conservation
laws in one space dimension. Suppose that ul(x, t) the numerical solution computed by the entropy dissipation
method converges to a function u(x, t) as l → ∞,then u(x, t) is a weak solution that satisfying the entropy
condition of the conservation law.

Keywords: Conservation law, Entropy condition, Lax-Wendroff theorem

1. Introduction

In this paper we continue to consider entropy dissipating method developed in(Li, Hong-xia, 2004), (Second-
order entropy dissipation scheme for scalar conservation laws in one space dimension, Master’s thesis, No.11903-
99118086)for scalar conservation laws in one space dimension

ut + f (u)x = 0 u(x, 0) = u0(x) (1)

In this paper, we propose and prove a Lax-Wendroff theorem of entropy dissipation method for scalar conser-
vation laws in one space dimension.

2. The Basic Definitions

In this section, we give the basic definitions of the theorem. We will consider the general form of the scheme.The
numerical solution is computed by:

un+1
j = un

j − λ( f̂ n

j+ 1
2
− f̂ n

j− 1
2
) (2)

where the numerical flux is:

f̂ n

j+ 1
2
= f̂ (un

j−k+1, · · · , un
j+k; Un

j−p+1, · · · ,Un
j+p) (3)

The numerical entropy is computed by:

Un+1
j = Un

j − λ(F̂n

j+ 1
2
− F̂n

j− 1
2
) − Dn

j (4)

where the numerical entropy flux is:

F̂n

j+ 1
2
= F̂(un

j−k+1, · · · , un
j+k; Un

j−p+1, · · · ,Un
j+p) (5)
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Dn
j = D(un

j−l, · · · , un
j+l) (6)

k, p, l are the positive integers.

Definition 2.1 (consistence): If all the un
i
(i = max( j − k + 1, j − l), · · · ,max( j + k, j + l)) in (3), (5), (6) are u

and all the Un
i′(i

′ = j − p + 1, · · · , j + p) are U(u), (where u ∈ R), then:

f̂ (u, · · · , u; U(u), · · · ,U(u)) = f (u) (7)

F̂(u, · · · , u; U(u), · · · ,U(u)) = F(u) (8)

D(u, · · · , u) = 0 (9)

If ui → u, Ui′ → U(u), then f̂ , F̂ and D convergence to f (u), F(u) and 0 in the following: for 0 < q ≤ 1 there
is a constant K (maybe dependent u) such that at u:

| f̂ (u j−k+1, · · · , u j+k; U j−p+1, · · · ,U j+p) − f (u)|
≤ K max

j−k+1≤i≤ j+k

j−p+1≤i′≤ j+p

(|ui − u|, |Ui′ − U(u)|q) (10)

|F̂(u j−k+1, · · · , u j+k; U j−p+1, · · · ,U j+p) − F(u)|
≤ K max

j−k+1≤i≤ j+k

j−p+1≤i′≤ j+p

(|ui − u|, |Ui′ − U(u)|q) (11)

|D(u j−l, · · · , u j+l) − D(u, · · · , u)| ≤ K max
j−l≤i′′≤ j+l

(|ui′′ − u|) (12)

then the scheme is consistent.

We are going to discuss the theorem as the form in (LeVeque, R.J. , 2002), (LeVeque, R.J. , 1990). First we
define two piecewise constant function ul(x, t), Ul(x, t) for all x and t from the discrete values {un

j
} and {Un

j
}:

ul(x, t) = un
j ,Ul(x, t) = Un

j , x j− 1
2
< x ≤ x j+ 1

2
, tn < t ≤ tn+1 (13)

3. The New Lax-Wendroff Theorem

Theorem 3.1 (Lax-Wendroff): Consider a sequence of g rids indexed by l = 1, 2, . . . · · · , with mesh parameters
kl, hl→ 0 as l → ∞. Let ul(x, t), Ul(x, t) are the numerical approximation computed with the scheme (2)∼(5).
Suppose that ul(x, 0), ul(x, t), Ul(x, t) are uniformly bounded functions and converge to the functions u(x, 0),
u(x, t), U(u(x, t)) as l → ∞, in the sense made precise below. Then u(x, t) is a entropy satisfying weak solution
of the conservation law.

As in (R.J. LeVeque, 2002), (R.J. LeVeque, 1990), we assume that we have convergence of ul(x, t), Ul(x, t) to
u(x, t), U(u(x, t)) in the following sense:

on Ω = [a, b] × [0, t] (a ≤ b, t ≥ 0), as l → ∞:
∫ t

0

∫ b

a

|ul(x, t) − u(x, t)|dxdt → 0 (14)

∫ t

0

∫ b

a

|Ul(x, t) − U(u(x, t))|dxdt → 0 (15)

As l → ∞:
‖ul − u‖1,Ω → 0 (16)

‖Ul − U‖1,Ω → 0 (17)

Proof: We will show that the limit function u(x, t) satisfies the weak form, for all φ ∈ C1
0(R2), u(x, t):

∫ ∞

0

∫ +∞

−∞
(φtu + φx f (u))dxdt = −

∫ ∞

−∞
φ(x, 0)u(x, 0)dx (18)
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Let φ be a C1
0(R2) test function and multiply the numerical method (2) by φ(x j, tn) and sum it over all j and

n ≥ 0. We obtain ∞∑
n=0

∞∑
j=−∞
φ(x j, tn)(un+1

j − un
j) = −

k

h

∞∑
n=0

∞∑
j=−∞
φ(x j, tn)( f̂ n

j+ 1
2
− f̂ n

j− 1
2
) (19)

we now use “summation by parts”, and multiply it by h:

hk{
∞∑

n=1

∞∑
j=−∞

φ(x j, tn) − φ(x j, tn−1)
k

un
j +

∞∑
n=1

∞∑
j=−∞

φ(x j+1, tn) − φ(x j, tn)
h

f̂ n

j+ 1
2
}

= −h

∞∑
j=−∞
φ(x j, 0)u0

j (20)

By our assumption that φ has compact support, and hence each of the sums is in fact a finite sum.
Since ul(x, 0), ul(x, t) are converge to u(x, 0), u(x, t) in L1, and φ(x, t) is smooth, we get the first term of (20) is
converges to

∫ ∞
0

∫ +∞
−∞ φt(x, t)u(x, t)dxdt and the third term converges to − ∫ ∞−∞ φ(x, 0)u(x, 0)dx. The second term

can be written as:

hk

∞∑
n=1

∞∑
j=−∞

φ(x j+1, tn) − φ(x j, tn)
h

f̂ n

j+ 1
2
= hk

∞∑
n=1

∞∑
j=−∞

φ(x j+1, tn) − φ(x j, tn)
h

f (un
j)

+hk

∞∑
n=1

∞∑
j=−∞

φ(x j+1, tn) − φ(x j, tn)
h

( f̂ n

j+ 1
2
− f (un

j)) (21)

Since f is continuous and the above conditions, the first term of (21) converges to
∫ ∞

0

∫ ∞
−∞ φx f (u(x, t))dxdt as

l → ∞. Next we will prove that the second term of the right (3.8) converges to 0. Because of f̂ ’s consistence,
and φ has compact support. φ is continuous different, e.t. there is a N > 0, such that |∂φ(x,t)

∂x | ≤ N, (x, t) ∈ R2.
So:

|hk

∞∑
n=1

∞∑
j=−∞

φ(x j+1, tn) − φ(x j, tn)
h

( f̂ n

j+ 1
2
− f (un

j))|

≤ KN{
j+k∑

i= j−k+1

(hk

∞∑
n=1

∞∑
j=−∞

|un
i − un

j |) +
j+p∑

i′= j−p+1

(hk

∞∑
n=1

∞∑
j=−∞

|Un
i′ − U(un

j)|q)}

Due to (13), (14), the right of the above formulas is:

= KN{
j+k∑

i= j−k+1

(
∫ t

0

∫ b

a

|ul(x, t) − ul(x + (i − j)h, t)|dxdt)

+

j+p∑
i′= j−p+1

(
∫ t

0

∫ b

a

|Ul(x, t) − U(ul(x + (i′ − j)h, t))|qdxdt)},

it includes: Ih1 =
∫ t

0

∫ b

a
|ul(x, t)−ul(x+ s1h, t)|dxdt, Ih2 =

∫ t

0

∫ b

a
|Ul(x, t)−U(ul(x+ s2h, t))|qdxdt. where−k+1 ≤

s1 ≤ k, −p + 1 ≤ s2 ≤ pis the positive integer, note:

Ih1 ≤
∫ t

0

∫ b

a

|ul(x, t) − u(x, t)|dxdt +

∫ t

0

∫ b

a

|u(x, t) − u(x + s1h, t)|dxdt

+

∫ t

0

∫ b

a

|u(x + s1h, t) − ul(x + s1h, t)|dxdt,

Sinceul(x, t) converging to u(x, t) in L1, asl → ∞, the right term of the above formulas → 0.
Using |a + b + c|q ≤ 3q(|a|q + |b|q + |c|q), q ≥ 0 we get:

Ih2 ≤ 3q{
∫ t

0

∫ b

a

|Ul(x, t) − U(u(x, t))|qdxdt +

∫ t

0

∫ b

a

|U(u(x, t)) − U(u(x + s2h, t))|qdxdt

+

∫ t

0

∫ b

a

|U(u(x + s2h, t)) − U(ul(x + s2h, t))|qdxdt}.
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Due to Hölder inequality ,
∫ t

0

∫ b

a
| f (x, t)|qdxdt can be controlled by

∫ t

0

∫ b

a
| f (x, t)|dxdt. SinceUl(x, t)→U(u(x, t))in

L1, right of the above inequality → 0, as l → ∞.

Above all the second term of the right of (21) → 0, as l → ∞. So u(x, t)satisfies:
∫ ∞

0

∫ ∞

−∞
(φtu(x, t) + φx f (u(x, t)))dxdt = −

∫ ∞

−∞
φ(x, 0)u(x, 0)dxdt.

The limit function u(x, t) is a weak solution of the conservation law.
We can prove the solution also satisfies the entropy condition in the same way. Note Dn

j
≥ 0 and φ(x, t) > 0 ∈

C1
0(R2
+).
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Abstract

The method of box dimension is used in this paper for calculating the fractal dimension of the fuel air ex-
plosive(FAE) explosive images. The relationship between fractal dimension and the expansion law of fireball
is discussed. The change of explosion image fractal dimension all the time is studied, and its change law is
inferred, with the reason analyzed, which lays the foundation for the further study of explosive process.

Keywords: FAE, Fractal, Box Dimension, Cloud

1. Introduction

Fractal geometry is a non-linear science which studies irregular physique attribute by American nationality
France mathematician B.B.Mandelbrot in 1973. As a result of its object of studying widespread, at present
it goes thorough natural social sciences in each domain day by day , and develops unceasingly. Fractal has
the following characteristics: Fractal geometry graph ’s irregularity everywhere and different criterion graph’s
regularity, and the fractal dimension is bigger than the topology dimension.Fractal dimension plays important
role in the fractal fundamental research, which is an important parameter in describing image fractal charac-
teristic. Fractal dimension analysis of fractal image has the vital significance for the characteristic and rule of
exploration fractal image change.

The detonation image can record the fuel physical disperser, characteristics of burning and detonation in deto-
nation process, which can reflect each performance in the knocking fuel. At present the domestic and foreign
research scholars have done massive work in method of researching the detonation image processing. Dong
Yucai , in literature (Dong Yucai, 2007), introduces the fractal theory in the detonation image processing, calcu-
lates fractal dimension in the liquid fuel detonation process in various times using the box dimension method,
summarizes the fractal dimension change rule in the liquid fuel detonation process, and analyzes the detonation
spread change near field. Liu Gengran used the high speed colored camera in literature (Liu Gengran, 2007)
to record process picture of 0.5kg solid state FAE detonation diffusion. In experiment, camera’s photography
frequency is 2000f/s, each gap is 0.5ms. The picture size is 640×480, which is preserved by the JPG document
format. This paper has calculated mean radius and the duration for the solid state air fuel (SFAE) detonation
fireball, summarize dissemination rule for explosive shock wave. On the foundation of the above experimen-
tal result, using fractal theory and through processing experimental image of exploding the spread, this paper
obtains the detonation image fractal curve, calculates dimension value of border curve in various times and
the dimension change rule. Moreover, this paper has analyzed the reason for dimension change, which lays
foundation for analyzing the denotation process.

2. Computation for Dimension of Detonation Image Fractal

2.1 Extract detonation border curve

This paper applies the MATLAB software to process detonation image, and obtains the detonation curve grad-
ually. The detonation image extraction divides into six steps.
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First we will read the detonation image in procedure, then the image will be preserved by 480×640×3 matrix.In
order to be advantageous for processing, transforms the image to the gradation image preserved, by 480 × 640,
where each element is a picture element spot and the different element value represents different brightness
or the gradation level. The value 0 represents the black and the value 255 represents the white. That the
value is bigger indicated the brightness of picture element in this position is higher. In order to eliminate
the irrelevant picture element disturbance in the graph, we need remove the graph background, and carry on
screening the graph matrix through the selection threshold value. The value in this paper is taken by 240, the
original graph transformation is two value charts, the graph matrix transformation is 480×640 binary matrices,
where element only has 0 and 1. The digital 0 represents the position picture whose element in original graph
matrix is smaller than or equal to 240, but digital 1 is bigger than 240, which is the same to the gradation image.
When demonstrating graph, the value 0 represents the black and the value 1 represents the white. While cutting
the background image, this paper constitutes a matrix with the last image, and carries on each image to spot
ride with this matrix, then the curve obtained is the boundary curve of detonation image.

The above is a detonation image in the 15ms time. Figure (1) is the primitive image photographed, figure (2)
is the gradation chart, figure (3) is two value charts, figure (4) is the initial boundary curves, figure (5) is the
image removing the impurity background, figure (6) namely is the boundary diagram of curves finally obtained

2.2 Calculate curve fractal dimension using box dimension

Fractal dimension is the most core content in the fractal theory, which is discussed most much in the fractal
theory. Also it is studied most widespread and can reflect the complex degree of fractal image. The computation
methods of fractal dimension quite are many, where the box dimension is most commonly used.

Define box dimension: Supposes A ⊂ Rn is a non-spatial set, under Euclid distance, A is contained close with
the small box for length of side δ. Let N(A) be the smallest box number which contains A . Then the fractal
box dimension is:

D = lim
δ→0

lnN(A)
−lnδ

This paper uses MATLAB to carry on the programming. First read boundary curve in procedure, then the
boundary curve will be preserved by a 480 × 640 binary matrix. Structure length of side with r1 = 1(picture
element), cover the image with this check, judge whether the covered small square does contain the boundary
curve, and record the check number K1 containing the image. Then take the length of side r2 = 2 and record
the check number K2,· · · · · · . Take the length of side rn = 2 ∗ rn−1 and record the check number Kn containing
the image. If rn > 480, withdraw the circulation, then we will obtain two groups of data r1, r2, · · · , rn and
K1,K2, · · · ,Kn , which are taken the logarithm and linearly fit. In the last the inverse of the fitted straight line
slope is namely the fractal dimension of boundary curve.

3. Fractal dimension change analysis

Through contrasting the picture , flame brightness has changes from bright to dark, then to bright again in the
detonation process. When exploding in 0.5ms, since the explosion products have extremely high pressure, the
rate of the denotion fireball outward expansion is extremely quick, whose interior radius can achieve 4.9m in the
extremely short time. Along with further proliferation of the explosion product, the explosion center pressure
drops rapidly, the fireball edge flame starts to extinguish and the fireball radius changes rapidly small. But in
this time massive nondetonation product in explosion center starts to burn, the flame starts to change bright, and
diffuses outward, fireball radius slow fill-out. When fireball burning finished, flame brightness starts to change
dark until extinguishment.

Figure 5 is the change tendency of various frequently fractal dimension in the SFAE fuel detonation process.

The dimension value change may divide into two stages: One is rise stage for the dimension value, two is the
dimension tends to the steady stage.

First stage is the rise stage for dimension. Under explosive shock wave function fuel is staved and diffuses out-
ward. These staved explosion product starts burning while diffusing outward, and produces many small burning
pellets in the detonation fireball edge; Meanwhile as a result of the explosion center pressure, the fireball in-
flates unceasingly distorts, thus making the fireball edge to be more and more complex and the corresponding
curve dimension assumes escalation trend.
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Fractal dimension of the second stage tends to steady. After the fireball expands to the limit radius, the shock-
wave has already been separated from the fireball contact surface, alone disseminates outward. In this time no
new detonation and burning in the fireball edge occur . The fireball maintains the original shape and the fractal
dimension also tends to steady.

Overall, the fractal dimension may divide into the rise stage and the steady stage, but from partial condition,
the detonation dimension continuously is in during, which is showed in the following chart:

The reason of this phenomenon is that in detonation process fuel proliferation explodes, which can produce
some burning explosion in the detonation fireball edge. These products interior can produce pressure and inflate
while detonating, which causes the detonation fireball edge to become complex and the fractal dimension to
increase; Meanwhile as a result of the detonation fireball internal pressure, those diffused explosion product
can be separated, until burning extinguishes, thus making the entire fractal dimension to have a drop value. In
the entire detonation process, the detonation fireball edge can have many such products, therefore the fractal
dimension can be in during the shake.

4. Conclusion

Through comparison and analysis, the tendency of fractal dimension change and the rule of boundary curve
is similar, which can reflect the change tendency of the boundary curve. Researching the detonation image
and analyzing fireball change rule of detonation process has laid certain foundation for further researching
detonation image and analyzing fireball change rule of detonation process foundation.But when withdrawing
the boundary curve, the method of processing the edge impurity need to further study, which can obtain the
more accurate dimension value.
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Table 1. Number of check contained by boundary curves in time 15ms

Check check r takes K takes Check check r takes K takes
radius r quantity K logarithm logarithm radius r quantity K logarithm logarithm

1 745 0 2.8722 32 25 1.5051 1.3979
2 443 0.3010 2.6464 64 11 1.8062 1.0414
4 242 0.6021 2.3838 128 5 2.1072 0.6990
8 120 0.9031 2.0792 256 2 2.4082 0.3010

16 55 1.2041 1.7404
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Table 2. Border curve dimension value from150ms to 163ms

time dimension time dimension time dimension time dimension
150 1.1341 153.5 1.1597 157 1.1684 160.5 1.1847

150.5 1.1412 154 1.1625 157.5 1.1668 161 1.1874
151 1.1445 154.5 1.1664 158 1.1716 161.5 1.1819

151.5 1.1493 155 1.1649 158.5 1.1643 162 1.1888
152 1.1516 155.5 1.1625 159 1.1739 162.5 1.1895

152.5 1.1517 156 1.1678 159.5 1.1802 163 1.1922
153 1.1594 156.5 1.1662 160 1.1876 163.5 1.1909

Table 3. border curve dimension value from 250ms to 263ms

time dimension time dimension time dimension time dimension
250 1.2856 253.5 1.2718 257 1.2748 260.5 1.2764

250.5 1.2789 254 1.2748 257.5 1.2717 261 1.276
251 1.2834 254.5 1.2772 258 1.2746 261.5 1.276

251.5 1.2672 255 1.2763 258.5 1.2759 262 1.2761
252 1.2727 255.5 1.2792 259 1.2723 262.5 1.2762

252.5 1.2735 256 1.2757 259.5 1.2757 263 1.2778
253 1.2769 256.5 1.2759 260 1.2786 263.5 1.2789

Picture read - in  

procedure

Change  into the  

gradation chart

Change  into two  

value char t 

Withdraw  the  

boundary curve

Elimination

background impurity

Obtain  the final boundary  

curve

Figure 1. Flow chart for border curve extraction

Figure (1) Figure (2) Figure (3)

Figure (4) Figure (5) Figure (6)

Figure 2. Fitting chart for border curve fractal dimension in time 15ms
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Figure 3. Fractal dimension fitting chart of the border curve in time 15ms

Figure 4. Detonation chart and corresponding boundary of solid state FAE

Figure 5. Fractal dimension change chart
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Figure 6. Fractal dimension change chart

explosio n 

n

extinguish

Dimension Value 1.0428 Dimension Value 1.0134
Figure 7. two value chart of detonation image in 3.5-4.5ms
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