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Abstract

In this paper the existing simplex splitting algorithm for finding a feasible solution of systems of linear inequalities is
modified by evolving a vertex-determination technique. The existing algorithm cannot determine when the system of
linear inequalities is infeasible hence the need for a modification. The modified algorithm is able to determine the feasible
solution whenever it exists and to detect infeasibility whenever it occurs. The modified algorithm is tested on a problem
that has a feasible solution and also on a problem that has no feasible solution and is found to work perfectly well.

Keywords: Feasible solution, Infeasible solution, Polynomially bounded algorithm, Generalized relaxation method, Sim-
plex splitting algorithm

1. Introduction

A number of methods exist for finding solutions to systems of linear inequalities. These include the relaxation or projection
method developed by Agmon (1954), generalized relaxation method developed by Motzkin and Schonberg (1954), the
ellipsoid method by Khachiyan (1979) and the simplex splitting algorithm developed by Levin and Yamnitsky (1982).

Among all these methods, the ellipsoid and the simplex splitting methods solve the problem in polynomial time. One
major disadvantage of the ellipsoid method is that it is a nonlinear structure being used in solving a linear problem. Also
it takes a very long time for the ellipsoid method to detect nonexistence of solution.

The simplex splitting method involves arbitrary selection of initial simplex with (n+1) vertices for the problem involving
n variables, large enough to include at least one feasible solution (if any). If the centre of the simplex is a feasible solution
of the system of linear inequalities, then the problem is solved, otherwise the procedure continues until a desired solution
is obtained. Although the existing algorithm is polynomially bounded it has some pitfalls, namely, the arbitrary choice of
the vertices of the initial simplex, and its inability to detect when the problem is infeasible. Effanga (2009), proffered a
solution to this problem by modifying the existing simplex splitting algorithm.

2. The Problem

The problem to be solved is the following system of strict linear inequalities.
n∑

j=1

ai jx j < bi, i = 1, 2, · · · ,m
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x j > 0, j = 1, 2, · · · , n. (1)

If the given system of linear inequalities is not strict, they can be made to be strict by adding a very small positive number
ε to bi for i = 1, 2, · · · ,m, see Eiselt, et al (1987).

3. The Existing Simplex Splitting Algorithm

The outline of steps is as follows:

Step 0 Select the initial simplex with vertices v1, v2, · · · , vn+1 such that it include at least one feasible point (if any), and
compute the centre of the simplex as follows

x0 =
1

n + 1

n+1∑
i=1

v′. (2)

Set k = 0
Step 1 Is inequality satisfied?

Yes: Stop, xk is a solution to the problem.

No: Select the ith constraint such that
Aixk ≥ b, i = 1, 2, · · · ,m. (3)

Step 2 Calculate the slack S i(vl) of the lth vertex with respect to the ith constraint as

S i(vl) = Ai(xk − vl), l = 1, 2, · · · , n + 1 (4)

and determine p such that
S i(vp) = max

l
{S i(vl)} (5)

Step 3 Calculate

λl = 1 − S i(vl)
n2S i(vl)

, l = 1, 2, · · · , n + 1 (6)

and determine the vertices of the new simplex as

vl = vp +
1
λl

(vl − vp), l = 1, 2, · · · , n + 1 (7)

Step 4 Compute the centre of the new simplex as

xk+1 =
1

n + 1

n+1∑
l=1

vl (8)

Set k = k + 1. Return to Step 1.

4. Selection of Vertices for the Initial Simplex

Let v0 := (0, 0, 0, ..., 0, 0), v1 := (1, 0, 0, ..., 0, 0), v2 := (0, 1, 0, ..., 0, 0), · · · , vn := (0, 0, 0, ..., 0, 1) be (n+ 1) vectors, with
v1, v2, · · · , vn independents.

Let

C =

x : x =
n∑

j=1

λ jv j, 0 ≤ x j < ∞, j = 1, 2, · · · , n

 (9)

S 0 := Co
{
v j

}n

j=0
=

x : x =
n∑

j=0

λ jv j,

n∑
j=0

λ j = 1, λ j ≥ 0, j = 0, 1, 2, · · · , n

 (10)

S 00 := Co
{
v j

}n

j=1
=

x : x =
n∑

j=1

λ jv j,

n∑
j=1

λ j = 1, λ j ≥ 0, j = 1, 2, · · · , n

 (11)

Lemma 1

S 0 =

I∪
t=0

tS 00 =

I∪
t=0

∪
x∈S 00

tx (12)
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Proof: (i) Let y ∈ S 0. Then y , 0 and

y =
n∑

j=0

λ jv j = λ0v0 +

n∑
j=1

λ jv j =

n∑
j=1

λ jv j (since v0 = 0)

n∑
j=1

λJ ≤ 1.

Let
n∑

j=1

λ j =: t

if t > 0, then

y = t
n∑

j=1

λ jv j

t
= tx,

where x =
n∑

j=1

λ jv j

t ∈ S 00 (since
n∑

j=1

λ j

t = 1 and 0 < t ≤ 1).

(ii) let y = tx, where x ∈ S 00 and 0 ≤ t ≤ 1

if t > 0, x =
n∑

j=1
λ jv j with

n∑
j=1
λ j = 1 and λ j ≥ 0, then y =

n∑
j=1

tλ jv j + (1− t)v0 =
n∑

j=1
µ jv j + µ0v0 =

n∑
j=0
µ jv j, where µ0 = 1− t

and µ j = tλ j, j = 1, 2, · · · , n.

If t = 0, y = 0 · x, ∀x ∈ S 00, µ j = 0, j = 1, 2, · · · , n, µ0 = 1.

n∑
j=0

µ j = µ0 +

n∑
j=1

µ j = 1 − t + t = 1, µ j ≥ 0, 0 ≤ j ≤ n.

Hence, y ∈ S 0.

Lemma 2
MS 0 =

∪
0≤t≤M

tS 00 =
∪

0≤t≤M

∪
x∈S 00

tx (13)

Proof: Multiplying equation 12 through by M gives

MS 0 = M
I∪

t=0

tS 00 =

I∪
t=0

MS 00 =
∪

0≤t≤M

rS 00

with r := Mt.

Lemma 3 If x ∈ C \ {0}, then x = tx′, where x′ ∈ S 00, and t > 0. For an x, t and x′ are unique.

Proof: (i) Let x =
n∑

j=0
λ jv j =

n∑
j=1
λ jv j + λ0v0 =

n∑
j=1
λ jv j, λ j ≥ 0, 1 ≤ j ≤ n.

Let t =
n∑

j=1
λ j > 0, then x = t

n∑
j=1
λ jv j

t = t
∑
λ′jv j = tx′. With

n∑
j=1
λ′j = 1 and x′ =

n∑
j=1
λ′jv j ∈ S 00.

(ii)Suppose x = t1x′1 = t2x′2. Let x′1 =
n∑

j=1
λ′jv j ∈ S 00 and x′2 =

n∑
j=1
µ′jv j ∈ S 00.

Then

t1x′1 = t2x′2 ⇒
n∑

j=1

t1λ′jv j =

n∑
j=1

t2µ′jv j

⇒ t1λ′1 = t2µ′2, j = 1, 2, · · · , n

⇒ t1
n∑

j=1

λ′j = t2
n∑

j=1

µ′j

⇒ t1 = t2.

Hence x′1 = x′2.
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Lemma 4 Let f (x) =
n∑

j=1
x j, if x =

n∑
j=1

x jv j and x , 0, then x
f (x) ∈ S 00, ∀x ∈ C.

Proof: If x , 0, then f (x) =
n∑

j=1
x j > 0. If x =

n∑
j=1

x jv j then x
f (x) =

n∑
j=1

x jv j

f (x) ∈ S 00 (since
n∑

j=1

x j

f (x) = 1).

Theorem 1 If a feasible region Fr is compact, then Fr ⊆ RS 0, with R = max
x∈Fr

f (x).

Proof: If x ∈ Fr and x = 0, then x ∈ RS 0; If x , 0, then by lemma 2 and lemma 4 and f (x) ≤ R, x = f (x) x
f (x) ∈ RS 0.

Hence Fr ⊆ RS 0.

Theorem 2 If a feasible region Fr is bounded and if the constraints matrix contains a row i∗ with all entries positive,
then with,

R =
max
1≤i≤m

{|b j|}

M
(14)

M = min
{

min
1≤ j≤n
{ai· j : ai· j > 0}, 1

2

}
(15)

Fr ⊆ RS 0 (16)

The proof of Theorem 4.2 is provided in Effanga (2009).

Corollary The simplex with vertices at V0(0, 0, · · · , 0), V1(R, 0, · · · , 0), · · · , Vn(0, 0, · · · ,R) enclosed the feasible region
if it is compact.

5. Detection of infeasibility

Theorem 3 The modified simples splitting algorithm will terminate after at most 6n(n + 1) log2 R number of iterations
with either a feasible solution to the linear programming problem or with an indication that no feasible solution exists.

Proof: In the ellipsoid method developed by Khachiyan(1979), the algorithm terminates after at most 6n(n+1)L iterations,
where 2L is the radius of the initial ellipsoid with centre at the origin. But the vertices of the initial simplex are points on
the ellipsoid of radius R. Thus by letting R = 2L, we obtain L = log2R.
Hence the modified simplex splitting algorithm will terminate after at most 6n(n + 1)log2R number of iterations.

6. The Outline of the Modified Simplex Splitting Algorithm

The outline of steps is as follows:

Step 0 Select the initial simplex with vertices V0(0, 0, · · · , 0), V1(R, 0, · · · , 0), · · · , Vn(0, 0, · · · ,R) such that it include the
feasible region (if any), and compute the centre of the simplex as follows

x0 =
1

n + 1

n∑
l=0

vl

Set k = 0.
Step 1 Is Axk < b?

Yes: Stop, xk is a solution to the problem.
No: Go to step 2.

Step 2 Is k > 6n(n + 1) log2 R?
Yes: Stop, no feasible solution exists.
No: Go to step 3.

Step 3 Select the ith constraint such that Aixk ≥ bi, i = 1, 2, · · · ,m
Go to step 4.

Step 4 Calculate the slack S i(vl) of the lth vertex with respect to the ith constraint as S i(vl) = Ai(xk − vl), l = 1, 2, · · · , n
and determine p such that S i(vp) = max

l
{S i(vl)}.

Step 5 Calculate λl = 1 − S i(vl)
n2S i(vl) , l = 1, 2, · · · , n and determine the vertices of the new simplex as vl = vp + 1

λl
(vl − vp),

l = 1, 2, · · · , n.

Step 6 Compute the centre of the new simplex as xk+l = 1
n+1

n∑
l=0

vl.

Set k = k + 1. Return to Step 1.
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7. Illustration

Example 1 Consider the following system of linear inequalities,

5x1 − 4x2 ≤ 14 (I)

−x1 + 4x2 ≥ 2 (II)

2x1 + x2 ≥ 5 (III)

6x1 − x2 ≥ 3 (IV)

4x1 + 9x2 ≤ 60 (V)

x1 ≥ 0 , x2 ≥ 0

R =
max{bi}

M
=

60
1
2

= 120

If the problem has a feasible solution, then it is sure that the vertices of the simplex that enclosed the feasible region are
A(0, 0) , B(120, 0) and C(0, 120). See figure 1. The modified simplex splitting algorithm gives the feasible solution as
x1 = 4.4265 , x2 = 3.7511.

<Figure 1>

Example 2 Consider the following system of linear inequalities,

2x1 + x2 ≤ 2 (I)

3x1 + 4x2 ≥ 12 (II)

x1 ≥ 0 , x2 ≥ 0

R =
max{bi}

M
=

24
1
2

= 48.

<Figure 2>

Clearly the simplex with vertices A(0, 0), B(24, 0) and C(0, 24) does not enclosed the feasible region as it does not exists.
See figure 2. The modified simplex splitting algorithm confirms that this problem does not have a feasible solution.

8. Concluding Remarks

The modified simplex splitting algorithm presented in this paper is designed for the system of strict linear inequalities
of less than type. Hence any inequality not in this form must first undergo suitable transformations before applying the
algorithm. A very large simplex enclosing the feasible region may slow down the rate of convergence of the algorithm.
The simplex selected to enclose the feasible region discussed in section 4 may not, in all cases, be the convex hull of the
feasible region and thus required further investigation.

References

E. O. Effanga. (2009). Alternative Technique for solving linear programming problems, Ph. D Thesis. Department of
Mathematics/Statistics and Computer Science, University of Calabar - Nigeria (unpublished).

G. Eiselt, C. Pederzolli, & L. Sandblom. (1987). Operations Research. W de G. New York.

L. A. Levin, & B. Yammitsky. (1982). An old linear programming algorithm runs in polynomial time. Proceeding 23rd

Annual Symposium of foundations of Computer Science. IEEE Computer Society, Long Beach. California, 327 – 328.

L. G. Khachiyan. (1979). Polynomial algorithm for linear programming. Doklady Academic Nauk SSSR 255/5, 1093 -
1096.

S. Agmon. (1954). The relaxation method for linear complementarity problems. Mathematical Programming 28, 349 -
362.

T. S. Motzkin, & I. J. Schonberg. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics
2, 293 - 404.

120 ISSN 1916-9795 E-ISSN 1916-9809


