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Abstract

The dislocated topology associated with a Dislocated Fuzzy Quasi Metric Space (DFqM − S pace) is discussed and a
generalised common fixed point theorem for two mappings f : X → X and T : Xk → X in a DFqM − S pace is proved.
Our result extends and generalises many well known results.

Keywords: Dislocated fuzzy topology, Dislocated fuzzy quasi metric space, Coincidence and common fixed points,
Occasionally weakly compatible

1. Introduction

Zadehs introduction (Zadeh, 1965) of the notion of fuzzy sets laid down the foundation of fuzzy mathematics. In the
last two decades there were a tremendous growth in fuzzy mathematics. Many fixed point theorems for contractions
in fuzzy metric spaces and quasi fuzzy metric spaces appeared (see Cho, Sedghi, & Shobe, 2009; Fang, 1992; George
& Veeramani, 1997; Gregory & Romuguera, 2002; Gregory & Sapena, 2002; Mihet, 2004; Mishra, Sharma, & Singh,
1994; Radu, 2002; Romaguera, Sapena, & Tirado, 2007; Sedghi, Turkoghlu, & Shobe, 2007; Sharma, 2002; Vasuki,
1998; Vasuki & Veeramani, 2003). The role of topology in logic programming has come to be recognized in recent
years. In particular topological methods are employed in order to obtain fixed point semantics for logic programs. In
classical approach to logic programming semantics in which positive or definite positive programs are considered (those
in which negation does not occur) Knaster - Tarski fixed point theorem can be applied to obtain a least fixed point of an
operator called the single step or immediate consequence operator. However when the syntax is enhanced in the sense that
negation is allowed, the approach using Knaster - Tarski theorem does not work. In such cases the Banach contraction
mapping theorem for complete metric spaces is an alternative to Knaster - Tarski fixed point theorem. However topological
spaces which arise in the area of denotational semantics are often not Hausdorff and so spaces which are weaker than
metric spaces in a topological sense had to be cosidered. Motivated by this fact Hitzler and Seda (Hitzler & Seda,
2000) introduced the concept of dislocated metric space and studied the dislocated topologies which is a generalisation
of the conventinal topologies and can be thought of as underlying the notion of dislocated metrics. They also proved
a generalized version of Banach contraction mapping theorem which was applied to obtain fixed point semantics for
logic programs. Later George and Khan (Reny George & Khan, 2005) introduced the concept of dislocated fuzzy metric
spaces and studied the associated topologies. Alaca (Alaca, 2010) introduced the concept of Dislocated Fuzzy Quasi
Metric Space (DFqM − S pace)in the sense of Kramosil and Michalek as well as George and Veeramani and discussed
the topologies associated with it which is conventional in nature. In this paper we have discussed the dislocated fuzzy
topologies associated with a DFqM−S pace and also proved a common fixed point theorem of Presic type which extends
and generalises the well known Banach contraction principle in a Fuzzy metric space and also fuzzyfies other known
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results.

2. Preliminaries

Let (X, d) be a metric space and T : X → X and f : X → X be mappings. Let C(T, f ) denote the set of all coincidence
points of the mappings f and T , that is C(T, f ) = {u : f u = Tu}.
Definition 2.1 The mappings f and T are said to be weakly compatible if and only if they commute at their coincidence
points.

Remark 2.2 Clearly mappings f and T are not weakly compatible if and only if there exist some u ∈ C(T, f ), such that
f Tu , T f u. Obviously, if C(T, f ) = ϕ then f and T are weakly compatible.

Definition 2.3 The mappings f and T are said to be occasinally weakly compatible (owc) if and only if they commute at
some coincidence point of f and T , i.e. f Tu = T f u for some u ∈ C(T, f ).

Remark 2.4 Occasionally weakly compatible mappings requires the set of coincidence points to be non empty. In other
words if C(T, f ) = ϕ then mappings f and T cease to be owc. Hence owc mappings cannot be considered as a generalisa-
tion of weakly compatible mappings. Hence we put it in the following way.

Definition 2.5 The mappings f and T are said to be occasionally weakly compatible (owc) if and only if f Tu = T f u for
some u ∈ C(T, f ) whenever C(T, f ) , ϕ.

Definition 2.6 f is said to be coincidentally idempotent with respect to T if and only if f is idempotent at the coincidence
points of f and T .

Definition 2.7 The mapping f is said to be occasionally coincidentally idempotent (oci) if and only if f f u = f u for some
u ∈ C(T, f ) whenever C(T, f ) , ϕ.

Definition 2.8 (Hitzler & Seda 2000) Let X be a set. A relation ≻⊆ X × P(X) is called a d-membership relation on X if it
satisfies the following property :
x ≻ A and A ⊆ B implies x ≻ B ∀x ∈ X, and A, B ∈ P(X), where P(X) is the power set of X.
If x ≻ A we read it as x is below A.

Definition 2.9 (Hitzler & Seda 2000) Let X be a set, ≻ be a d-membership relation on X. For each x ∈ X, let Ux be the
collection of all subsets of X satisfying the following conditions:

(N1) if U ∈ Ux then x ≻ U.

(N2) if U,V ∈ Ux then U ∩ V ∈ Ux.

(N3) if U ∈ Ux then there is a V ⊂ U with V ∈ Ux, such that for all y ≻ V we have U ∈ Uy.

(N4) if U ∈ Ux and U ⊂ V then V ∈ Ux.

Then (Ux, ≻) is called a d-neighborhood system for x and each U ∈ Ux is called a d-neighborhood of x.

Remark 2.10 If U = {Ux : x ∈ X} then (X,U,≻) is called a dislocated topological space or a d-topological space.

Remark 2.11 Note that points can have empty d-neighborhoods and the above definition is exactly the definition of a
topological neighbourhood system if the relation ≻ is replaced by the membership relation ∈.
3. Dislocated Fuzzy Quasi Metric Space and Topologies

In this section we will define Dislocated Fuzzy Quasi Metric Space and discuss the topologies associated with it.

Definition 3.1 (Scweizer & Sklar 1960) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if ([0, 1], ∗)
is an abelian monoid with unit one such that, for all a, b, c, d in [0, 1], a ∗ b ≥ c ∗ d whenever a ≥ c and b ≥ d.

Definition 3.2 Let X be any non empty set, * be a continuous t-norm and M : X2×[0,∞)→ [0, 1] be a fuzzy set. Consider
the following conditions:

For all x, y, z ∈ X and t, s ∈ [0,∞)

FM1 M(x, y, 0) = 0

FM2 M(x, x, t) = 1

FM3 M(x, y, t) = 1 and M(y, x, t) = 1⇒ x = y

FM4 M(x, y, t) = M(y, x, t)

FM5 M(x, y, t + s) ≥ M(x, z, t) + M(z, y, s)
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FM6 M(x, y, .) : [0,∞)→ [0, 1] is left continuous

FM7 M(x, y, .) : (0,∞)→ [0, 1] is continuous

If M satisfies conditions FM1 to FM6 then (X,M, ∗) is called a Fuzzy Metric Space (Kramosil & Michalec 1975). If M
satisfies conditions FM1 and FM3 to FM6 then we say that (X,M, ∗) is a Dislocated Fuzzy Metric Space in the sense
of Kramosil and Michalek (in short DKMFM − S pace) (Reny George & Khan 2005). If M : X2 × (0,∞) → [0, 1]
satisfies conditions FM1 and FM3 to FM5 and FM7 then we say that (X,M, ∗) is a Dislocated Fuzzy Metric Space in
the sense of George and Veeramani (in short DGV FM − S pace)(Reny George & Khan 2005). If M satisfies conditions
FM1, FM3, FM5 and FM6 then we say that (X,M, ∗) is a Dislocated Fuzzy Quasi Metric Space in the sense of Kramosil
and Michalek (in short DKMFqM − S pace)(Alaca 2010). If M : X2 × (0,∞)→ [0, 1] satisfies conditions FM3, FM5 and
FM7 then we say that (X,M, ∗) is a Dislocated Fuzzy Quasi Metric Space in the sense of George and Veeramani (in short
DGV FqM − S pace) (Alaca 2010).

Example 3.3 Let X = R; Define a ∗ b = ab, M(x, y, t) = [exp
|x−y|+2|x|+|y|

t ]
−1

for all (x, y) ∈ X × X, t ∈ (0,∞). Then (X,M, ∗)
is a DGV FqM − S pace).

For all (x, y) ∈ X × X, t ∈ (0,∞) let M‡(x, y, t) = min{M(x, y, t),M(y, x, t)}. Clearly if (X,M, ∗) is a DGV FqM − S pace
(DKMFqM−S pace) then (X,M‡, ∗) is a DGV FM−S pace (DKMFM−S pace). Obviously each DGV FqM−S pace can be
cosidered as a DKMFqM − S pace by defining M(x, y, 0) = 0 for all x, y ∈ X (see Gregory & Romuguera 2004). Hereafter
by a Dislocated Fuzzy Quasi Metric Space (DFqM − S pace) we mean a DGV FqM − S pace or a DKMFqM − S pace.

Definition 3.4 Let (X,M, ∗) be a DFqM − S pace. We define a left open ball (L-open ball) with centre x and radius
r(0 < r < 1) in X as BL(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}, for all t ∈ (0,∞). We define a right open ball(R-open ball)
with centre x and radius r (0 < r < 1) in X as BR(x, r, t) = {y ∈ X : M(y, x, t) > 1− r}, for all t ∈ (0,∞). We define an open
ball with centre x and radius r (0 < r < 1) in X as B(x, r, t) = {y ∈ X : M‡(x, y, t) > 1 − r}, for all t ∈ (0,∞).

Obviously B(x, r, t) = BL(x, r, t)
∩

BR(x, r, t) and its not necessary that x ∈ B(x, r, t) for all x ∈ X.

Proposition 3.5 Let (X,M, ∗) be a DFqM − S pace. Define a d-membership relation ≻ by x ≻ A if and only if there exists
r(0 < r < 1) such that B(x, r, t)) ⊆ A. For each x ∈ X, let Ux be the collection of subsets A of X such that x ≻ A. Then
(Ux,≻) is a d-neighborhood system for x.

Proof: (N1) Clearly if U ∈ Ux then x ≻ U and vice versa.

(N2) Let U,V ∈ Ux, i.e. x ≻ U and x ≻ V . Then there exists 0 < r1 < 1 and 0 < r2 < 1 such that B(x, r1, t) ⊆ U and
B(x, r2, t) ⊆ V . Suppose r1 < r2 . Then we have 1−r1 > 1−r2. Let y ∈ B(x, r1, t). Then M‡(x, y, t) > 1−r1 ⇒ M‡(x, y, t) >
1 − r2 ⇒ y ∈ B(x, r2, t). Thus B(x, r1) ⊆ B(x, r2, t). Hence B(x, r1, t) = B(x, r1, t) ∩ B(x, r2, t) ⊆ U ∩ V ⇒ x ≻ U ∩ V .

(N3) Let U ∈ Ux i.e. x ≻ U. Then, there exists 0 < r < 1 such that B(x, r, t) ⊆ U. Also B(x, r, t) ∈ Ux. Let
y ∈ B(x, r, t) be arbitrary. Then there exist 0 < r1 < 1 such that B(y, r1, t) ⊆ B(x, r, t). But y ≻ B(y, r1, t). Thus we have
y ≻ B(y, r1, t) ⊆ B(y, r, t) ⊆ U ⇒ y ≻ U. Thus U ∈ Uy.

(N4) This is obvious.

Remark 3.6 The above construction yields the usual dislocated fuzzy topology associated with a DFqM − S pace and
consequently we may define a dislocated topology TD on X as TD = {A ⊂ X : x ≻ A for some x ∈ X and ≻ is as defined in
Proposition 3.5. The topology TD is called the Dislocated Fuzzy topology associated with the DFqM − S pace (X,M, ∗).
Clearly open balls in a DFqM−S pace is open in the dislocated topology TD. Collection of open balls in a DFqM−S pace
does not in general yield a conventional topology.

Proceeding on the same lines as in the proof of above proposition we have the following.

Proposition 3.7 Let (X,M, ∗) be a DFqM − S pace. Define a d-membership relation ≻L by x ≻L A if and only if there
exists r (0 < r < 1) such that BL(x, r, t)) ⊆ A. For each x ∈ X, let ULx be the collection of subsets A of X such that x ≻L A.
Then (ULx,≻L) is a d-neighborhood system for x.

Proposition 3.8 Let (X,M, ∗) be a DFqM − S pace. Define a d-membership relation ≻R by x ≻R A if and only if there
exists r(0 < r < 1) such that BR(x, r, t)) ⊆ A. For each x ∈ X, let URx be the collection of subsets A of X such that x ≻R A.
Then (URx,≻R) is a d-neighborhood system for x.

Definition 3.9 A sequence xn in a DFqM − S pace (X,M, ∗) is said to be bi-convergent to a point x ∈ X if and only if
Limn→∞M‡(xn, x, t) = 1 for all t > 0. In this case we say that limit of the sequence xn is x.

Definition 3.10 A sequence xn in a DFqM − S pace (X,M, ∗) is said to be Left (Right) Cauchy sequence if and only if
Limn→∞M(xn, xn+p, t) = 1 (Limn→∞M(xn+p, xn, t) = 1) for all t > 0, p > 0.
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Definition 3.11 A sequence xn in a DFqM−S pace (X,M, ∗) is said to be bi-Cauchy if and only if Limn→∞M‡(xn, xn+p, t) =
1 for all t > 0, p > 0.

Definition 3.12 A DFqM − S pace is said to be Left (Right) complete if and only if every Left (Right) Cauchy sequence
in it is bi-convergent.

Definition 3.13 A DFqM−S pace is said to be bi-complete if and only if every bi-Cauchy sequence in it is bi-convergent.

Remark 3.14 Clearly a sequence xn in a DFqM − S pace (X,M, ∗) is bi- Cauchy sequence if and only if sequence xn

is a Cauchy sequence in the DFM − S pace (X,M‡, ∗). A DFqM − S pace (X,M, ∗) is bi-Complete if and only if the
DFM − S pace (X,M‡, ∗) is complete.

Proposition 3.15 Limit of a sequence in a DFqM − S pace (X,M, ∗) is unique.

Proof: Let xn be a sequence in X and suppose u and v are two limits of xn. Then we have M‡(u, v, t) ≥ M‡(u, xn, t/2) ∗
M‡(xn, v, t/2). Taking the limit as n→ ∞ we have M‡(u, v, t) ≥ 1 ∗ 1 = 1. Hence u = v.

Proposition 3.16 Let (X,M, ∗) be a DFqM−S pace(DFM−S pace) and xn be a sequence in X. If sequence xn bi-converges
(converges) to x ∈ X then M(x, x, t) = 1 for all t > 0.

Proof: We have M(x, x, t) ≥ M(x, xn, t/2)∗M(xn, x, t/2) for all n. Taking the limit as n→ ∞we have M(x, x, t) ≥ 1∗1 = 1.

Proposition 3.17 Let (X,M, ∗) be a DFqM − S pace (DFM − S pace), f , g : X → X be mappings. If f z = gz and
M‡( f gz, g f z, t) = 1 (M( f gz, g f z, t) = 1) for some z ∈ X and t ∈ [0,∞), then M( f f z, f f z, t) = 1 for all t ∈ [0,∞). Proof:
Since M‡( f gz, g f z, t) = 1 we have f gz = g f z. Therefore M( f f z, f f z, t) = M( f gz, f gz, t) = M( f gz, g f z, t) = 1.

4. Common Fixed Point Theorems

Let (X,M, ∗) be a DFqM−S pace, T : Xk → X and f : X → X be mappings.A point z ∈ X is said to be a coincidencepoint
of f and T if T (z, z, ..., z) = f z. z is said to be a coomon f ixedpoint of f and T if T (z, z, ..., z) = f z = z. Let C(T, f ) denote
the set of all coincidence points of the mappings f and T , that is C(T, f ) = {z : f z = T (z, z, ..., z)}.
Definition 4.1 The mappings f and T in a DFqM − S pace (DFM − S pace) are said to be weakly compatible if and only
if M‡(T ( f z, f z, ..., f z), f (T (z, z, ..., z), t) = 1 (M(T ( f z, f z, ..., f z), f (T (z, z, ..., z), t) = 1) for all z ∈ C(T, f ) and t ∈ [0,∞) .

Definition 4.2 The mappings f and T in a DFqM − S pace (DFM − S pace) are said to be occasinally weakly compatible
(owc) if and only if M‡(T ( f z, f z, ..., f z), f (T (z, z, ..., z), t) = 1 (M(T ( f z, f z, ..., f z), f (T (z, z, ..., z), t) = 1)for some z ∈
C(T, f ) and t ∈ [0,∞), whenever C(T, f ) , ϕ.

Definition 4.3 f is said to be coincidentally idempotent with respect to T if and only if f is idempotent at the coincidence
points of f and T .

Definition 4.4 The mapping f is said to be occasionally coincidentally idempotent (oci)with respect to T if and only if
f f u = f u for some u ∈ C(T, f ) whenever C(T, f ) , ϕ.

Now we present our main results as follows:

Theorem 4.5 Let (X,M, ∗) be a DFM−S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such that

T (Xk) ⊆ f (X) (1)

M(T (x1, x2, ..., xk),T (x2, x3, ..., xk+1), qt) ≥ Min{M( f x1, f x2, t),M( f x2, f x3, t), ...

M( f xk, f xk+1, t)}, (2)

where x1, x2, ...xk+1 are arbitrary elemants in X, 0 < q < 1
2 and t ∈ [0,∞)

f(X) is complete (3)

limt→∞M(x, y, t) = 1. (4)

Then f and T has a coincidence point, i.e. C( f ,T ) , ϕ. Further f and T has a common fixed point provided the pair ( f ,T )
are weakly compatible.

Proof: Let x1, x2, ..., xk be arbitrary elemants in X. By (1) we define sequence < yn > in f (X) as follows :

yn+k = f (xn+k) = T (xn, xn+1, ..., xn+k−1), for n = 1, 2, ...
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Let αn = M(yn, yn+1, qt). By the method of mathematical induction we will prove that

αn ≥
(K − θn

K + θn

)2

(5)

where θ = 1
q , K = Min{ θ(1+

√
α1)

(1−
√
α1) ,

θ2(1+
√
α2)

(1−
√
α2) , ...,

θk(1+
√
αk)

(1−
√
αk) }.

Clearly from the definition of K, we see that (5) is true for n = 1, 2, ..., k. Let the k inequalities

αn ≥
(

K−θn

K+θn

)2
, αn+1 ≥

(
K−θn+1

K+θn+1

)2
, ..., αn+k−1 ≥

(
K−θn+k−1

K+θn+k−1

)2
, be the induction hypothesis. Then we have

αn+k = M(yn+k, yn+k+1, qt)
≥ M(T (xn, xn+1, ...xn+k−1),T (xn+1, xn+2, ...xn+k), qt)
≥ Min{M( f xn, f xn+1, t),M( f xn+1, f xn+2, t), ...M( f xn+k−1, f xn+k, t)}
≥ Min{αn, αn+1, ..., αn+k−1}

≥ Min{
(K − θn

K + θn

)2

,
(K − θn+1

K + θn+1

)2

, ...
(K − θn+k−1

K + θn+k−1

)2

}

=

(K − θn+k−1

K + θn+k−1

)2

≥
(K − θn+k

K + θn+k

)2

.

Thus inductive proof of (5) is complete.

Now for p ∈ N and t ∈ [0,∞), we have

M(yn, yn+p, t) ≥ M(yn, yn+1,
t
2 ) ⋆ M(yn, yn+1,

t
22 ) ⋆ ... ⋆ M(yn+p−1, yn+p,

t
2p ) ≥

(
K−2n

K+2n

)2
⋆

(
K−22n

K+22n

)2
⋆ ... ⋆

(
K−2np

K+2np

)2

→ 1 ⋆ 1 ⋆ ... ⋆ 1 = 1, as n→ ∞. Hence < yn > is a Cauchy sequence in f (X) and since f (X) is complete, there will exist
z in f (X) such that limn→∞yn = z. Let z = f (u) for some u ∈ X. Then we have
M(T (u, u, ..., u), f u, t) = limn→∞M(T (u, u, ..., u), yn+k, t)
= limn→∞M(T (u, u, ..., u), T (xn, xn+1, ..., xn+k−1), t)
≥ limn→∞M(T (u, u, ..., u), T (u, u, ..., xn), t

2 ) ⋆ M(T (u, u, ..., xn),T (u, u, ..., xn, xn+1), t
22 ) ⋆ M(T (u, u, ..., xn, xn+1),

T (u, u, ..., xn, xn+1, xn+2), t
23 ) ⋆ ... ⋆M(T (u, xn, ..., xn+k−2), T (xn, xn+1, ..., xn+k−1), t

2k−1 )
≥ limn→∞M( f u, f xn, t) ⋆ Min(M( f u, f xn, t),M( f xn, f xn+1, t))⋆ ... ⋆ Min(M( f u, f xn, t),M( f xn, f xn+1, t)),
...M( f xn+k−2, f xn+k−1, t))→ 1 i.e. f u = T (u, u, ..., u), and hence C(T, f ) , ϕ.

Now suppose the pair ( f , T ) are weakly compatible. Then we have
M( f f u, f u, qt) = M( f T (u, u, ..., u), f u, qt) = M(T ( f u, f u, ..., f u), f u, qt). Also we have
M(T ( f u, f u, ..., f u), f u, qt) = M(T ( f u, f u, ..., f u),T (u, u, ..., u), qt)
≥ M(T ( f u, f u, ..., f u),T ( f u, f u, ..., f u, u), qt

2 ) ⋆ M(T ( f u, f u, ..., f u, u),T ( f u, f u, ..., u, u), qt
22 ) ⋆ M(T ( f u, f u, ..., u, u),

T ( f u, f u, ..., u, u, u), qt
23 ) ⋆ ... ⋆ M(T ( f u, u, ..., u),T (u, u, ..., u), qt

2k−1 )

By (2), Propositions 3.14 and 3.15 we get
M(T ( f u, f u, ..., f u), f u, t) ≥ M( f f u, f u, t

2 ) ⋆ M( f f u, f u, t
22 ) ⋆ ... ⋆ M( f f u, f u, t

2k−1 )
= M(T ( f u, f u, ..., f u),T (u, u, ..., u), t

2 )⋆M(T ( f u, f u, ..., f u),T (u, u, ..., u), t
22 )⋆...⋆M(T ( f u, f u, ..., f u),T (u, u, ..., u), t

2k−1 )
≥ M( f f u, f u, t

2q ) ⋆ M( f f u, f u, t
22q ) ⋆ ... ⋆ M( f f u, f u, t

2k−1q )

Repeating the above process n times we get
M(T ( f u, f u, ..., f u), f u, t) ≥ M( f f u, f u, t

2nqn ) ⋆ M( f f u, f u, t
2n+1qn ) ⋆ ... ⋆ M( f f u, f u, t

2n+k−2qn )

Taking the limit as n→ ∞ we get
M(T ( f u, f u, ..., f u), f u, t) ≥ 1 ⋆ 1 ⋆ ....1 = 1. Hence f u = f f u = T ( f u, f u, ..., f u).

In the next result we will remove the condition limt→∞M(x, y, t) = 1 and also increase the range of q.

Theorem 4.6 Let (X,M, ∗) be a DFM−S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such that

T (Xk) ⊆ f (X) (6)

M(T (x1, x2, ..., xk),T (x2, x3, ..., xk+1), qt) ≥ Min{M( f x1, f x2, t),M( f x2, f x3, t), ...

M( f xk, f xk+1, t)}, (7)
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where x1, x2, ..., xk+1 are arbitrary elemants in X, 0 < q < 1 and t ∈ [0,∞)

f(X) is complete (8)

Then f and T has a coincidence point, i.e. C( f , T ) , ϕ. Further f and T has a common fixed point provided either f is
oci with respect to T and the pair ( f ,T ) are weakly compatible or f is coincidentally idempotent with respect to T and
the pair ( f ,T ) are occasionally weakly compatible.

Proof: Proceeding as in the proof of previous theorem, we can show that C(T, f ) , ϕ. Now suppose f is oci with
respect to T and the pair ( f ,T ) are weakly compatible. Then there will exist z ∈ C( f ,T ) such that f f z = f z and also
f (T (z, z, ..., z)) = T ( f z, f z, ..., f z).

Thus we have f z = f f z = f (T (z, z, ..., z)) = T ( f z, f z, ..., f z), i.e. f z is a common fixed point of f and T . The proof
follows on the same lines in the other case also.

Theorem 4.7 Let (X,M, ∗) be a DFqM − S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such
that

T (Xk) ⊆ f (X) (9)

M(T (x1, x2, ..., xk),T (x2, x3, ..., xk+1), qt) ≥ Min{M( f x1, f x2, t),M( f x2, f x3, t), ...

M( f xk, f xk+1, t)} (10)

where x1, x2, ...xk+1 are arbitrary elemants in X, 0 < q < 1
2 and t ∈ [0,∞)

f(X) is L-complete (11)

limt→∞M(x, y, t) = 1 f orallx, y ∈ X. (12)

Then f and T has a coincidence point, i.e. C( f ,T ) , ϕ. Further f and T has a common fixed point provided the pair
( f , T ) are weakly compatible.

Proof: Proceeding as in Theorem 4.5 we see that M(yn, yn+p, t) → 1, as n → ∞ and so < yn > is a L-Cauchy sequence in
f (X) and since f (X) is L-complete, there will exist z in f (X) such that limn→∞yn = z. Rest of the proof goes on the same
lines as that of Theorem 4.5.

Theorem 4.8 Let (X,M, ∗) be a DFqM − S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such
that

T (Xk) ⊆ f (X) (13)

M(T (x1, x2, ..., xk),T (x2, x3, ..., xk+1), qt) ≥ Min{M( f x1, f x2, t),M( f x2, f x3, t), ...

M( f xk, f xk+1, t)} (14)

where x1, x2, ..., xk+1 are arbitrary elemants in X, 0 < q < 1 and t ∈ [0,∞)

f(X) is L-complete (15)

Then f and T has a coincidence point, i.e. C( f , T ) , ϕ. Further f and T has a common fixed point provided either f is
oci with respect to T and the pair ( f ,T ) are weakly compatible or f is coincidentally idempotent with respect to T and
the pair ( f ,T ) are occasionally weakly compatible.

Proof: The proof follows on the same line as in the previous theorem and Theorem 4.6.

Theorem 4.9 Let (X,M, ∗) be a DFqM − S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such
that

T (Xk) ⊆ f (X) (16)

M(T (x1, x2, ..., xk),T (xk+1, x1, x2, ..., xk−1), qt) ≥ Min{M( f x1, f xk+1, t),M( f x2, f x1, t), ...

M( f xk, f xk−1, t)} (17)

where x1, x2, ...xk+1 are arbitrary elemants in X, 0 < q < 1
2 and t ∈ [0,∞)

f(X) is R-complete (18)

limt→∞M(x, y, t) = 1 for all x, y ∈ X. (19)
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Then f and T has a coincidence point, i.e. C( f ,T ) , ϕ. Further f and T has a common fixed point provided the pair
( f ,T ) are weakly compatible.

Proof: Let x1, x2, ..., xk be arbitrary elemants in X. By (16) we define sequence < yn > in f (X) as follows:

yn+k = f (xn+k) = T (xn, xn+1, ..., xn+k−1), for n = 1, 2, ...

Let αn = M(yn+1, yn, qt). By the method of mathematical induction we will prove that

αn ≥
(K − θn

K + θn

)2

(20)

where θ = 1
q , K = Min{ θ(1+

√
α1)

(1−
√
α1) ,

θ2(1+
√
α2)

(1−
√
α2) , ...,

θk(1+
√
αk)

(1−
√
αk) }.

Clearly from the definition of K, we see that (4.4) is true for n = 1, 2, ..., k. Let the k inequalities

αn ≥
(

K−θn

K+θn

)2
, αn+1 ≥

(
K−θn+1

K+θn+1

)2
, ...αn+k−1 ≥

(
K−θn+k−1

K+θn+k−1

)2
, be the induction hypothesis. Then we have

αn+k = M(yn+k+1, yn+k, qt)
≥ M(T (xn+1, xn+2, ..., xn+k),T (xn, xn+1, xn+2, ..., xn+k−1), qt)
≥ Min{M( f xn+1, f xn, t),M( f xn+2, f xn+1, t), ...M( f xn+k, f xn+k−1, t)}
≥ Min{αn, αn+1, ...αn+k−1}

≥ Min{
(K − θn

K + θn

)2

,
(K − θn+1

K + θn+1

)2

, ...,
(K − θn+k−1

K + θn+k−1

)2

=

(K − θn+k−1

K + θn+k−1

)2

≥
(K − θn+k

K + θn+k

)2

Thus inductive proof of (20) is complete.

Now for p ∈ N and t ∈ [0,∞), we have
M(yn+p, yn, t) ≥ M(yn+p, yn+p−1,

t
2 ) ⋆ M(yn+p−1, yn+p−2,

t
2 ) ⋆ ... ⋆ M(yn+1, yn,

t
22 )

≥
(

K−2n

K+2n

)2
⋆

(
K−22n

K+22n

)2
⋆ ... ⋆

(
K−2np

K+2np

)2

→ 1 ⋆ 1 ⋆ ... ⋆ 1 = 1, as n→ ∞. Hence < yn > is a R-Cauchy sequence in f (X) and since f (X) is R-complete, there will
exist z in f (X) such that limn→∞yn = z. Let z = f (u) for some u ∈ X. Then we have
M(T (u, u, ..., u), f u, t) = limn→∞M(T (u, u, ..., u), yn+k, t)
= limn→∞M(T (u, u, ...u),T (xn, xn+1, ...xn+k−1), t)
≥ limn→∞M(T (u, u, ..., u), T (xn+k−1, u, ..., u), t

2 ) ⋆ M(T (xn+k−1, u, ..., u),T (xn+k−2, xn+k−1, u, ..., u), t
22 ) ⋆

M(T (xn+k−2, xn+k−1, u, ..., u),T (xn+k−3, xn+k−2, xn+k−1, ..., u), t
23 ) ⋆ ... ⋆M(T (xn+1, ..., xn+k−1, u),T (xn, xn+1, ..., xn+k−1), t

2k−1 )
≥ limn→∞M( f u, f xn+k−1, t) ⋆ Min(M( f u, f xn+k−1, t),M( f xn+k−1, f xn+k−2, t))⋆
... ⋆ Min(M( f u, f xn+k−1, t),M( f xn+k−1, f xn+k−2, t)), ..., M( f xn+1, f xn, t))→ 1.

Similarly it can be shown that M( f u,T (u, u, ..., u), t) = 1. Hence f u = T (u, u, ..., u), and so C(T, f ) , ϕ.

Now suppose the pair ( f , T ) are weakly compatible. Then we have
M( f f u, f u, qt) = M( f T (u, u, ..., u), f u, qt) = M(T ( f u, f u, ..., f u), f u, qt). Also we have
M(T ( f u, f u, ..., f u), f u, qt) = M(T ( f u, f u, ..., f u),T (u, u, ..., u), qt)
≥ M(T ( f u, f u, ..., f u),T (u, f u, ..., f u), qt

2 ) ⋆ M(T (u, f u, ..., f u),T (u, u, ..., f u, f u), qt
22 ) ⋆ M(T (u, u, ..., f u, f u),

T (u, u, u, ..., f u, f u), qt
23 ) ⋆ ... ⋆ M(T (u, u, ..., f u),T (u, u, ..., u), qt

2k−1 )

By (4.17), Proposition 3.14 and 3.15 we get
M(T ( f u, f u, ..., f u), f u, t) ≥ M( f f u, f u, t

2 ) ⋆ M( f f u, f u, t
22 ) ⋆ ... ⋆ M( f f u, f u, t

2k−1 )
= M(T ( f u, f u, ..., f u),T (u, u, ..., u), t

2 )⋆M(T ( f u, f u, ..., f u),T (u, u, ..., u), t
22 )⋆...⋆M(T ( f u, f u, ..., f u),T (u, u, ..., u), t

2k−1 )
≥ M( f f u, f u, t

2q ) ⋆ M( f f u, f u, t
22q ) ⋆ ... ⋆ M( f f u, f u, t

2k−1q ).

Repeating the above process n times we get
M(T ( f u, f u, ..., f u), f u, t) ≥ M( f f u, f u, t

2nqn ) ⋆ M( f f u, f u, t
2n+1qn ) ⋆ ... ⋆ M( f f u, f u, t

2n+k−2qn ).

Taking the limit as n→ ∞, we get
M(T ( f u, f u, ..., f u), f u, t) ≥ 1 ⋆ 1 ⋆ ....1 = 1. Hence f u = f f u = T ( f u, f u, ..., f u).
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Theorem 4.10 Let (X,M, ∗) be a DFqM − S pace, k a positive integer, f : X −→ X and T : Xk −→ X be mappings, such
that

T (Xk) ⊆ f (X) (21)

M(T (x1, x2, ..., xk),T (xk+1, x1, x2, ..., xk−1), qt) ≥ Min{M( f x1, f xk+1, t),M( f x2, f x1, t), ...

M( f xk, f xk−1, t)} (22)

where x1, x2, ..., xk+1 are arbitrary elemants in X, 0 < q < 1
2 and t ∈ [0,∞)

f(X) is R-complete (23)

limt→∞M(x, y, t) = 1 for all x, y ∈ X. (24)

Then f and T has a coincidence point, i.e. C( f , T ) , ϕ. Further f and T has a common fixed point provided either f is
oci with respect to T and the pair ( f ,T ) are weakly compatible or f is coincidentally idempotent with respect to T and
the pair ( f ,T ) are occasionally weakly compatible.

Taking k = 1 in the Theorems 4.7 and 4.9, we get the following.

Corollary 4.11 Let (X,M, ∗) be a DFqM − S pace, f : X −→ X and T : X −→ X be mappings, such that

T (X) ⊆ f (X) (25)

M(T x,Ty, qt) ≥ Min{M( f x, f y, t)}, (26)

for all x, y ∈ X, 0 < q < 1
2 and t ∈ [0,∞)

f(X) is L-complete or R-complete (27)

limt→∞M(x, y, t) = 1. (28)

Then f and T has a coincidence point, i.e. C( f ,T ) , ϕ. Further f and T has a common fixed point provided the pair
( f , T ) are weakly compatible.

Taking k = 1 in the Theorems 4.8 and 4.10, we get the following.

Corollary 4.12 Let (X,M, ∗) be a DFqM − S pace, f : X −→ X and T : X −→ X be mappings, such that

T (X) ⊆ f (X) (29)

M(T x,Ty, qt) ≥ M( f x, f y, t), (30)

where x, y ∈ X , 0 < q < 1 and t ∈ [0,∞)

f(X) is L-complete or R-complete (31)

Then f and T has a coincidence point, i.e. C( f , T ) , ϕ. Further f and T has a common fixed point provided either f is
oci with respect to T and the pair ( f ,T ) are weakly compatible or f is coincidentally idempotent with respect to T and
the pair ( f ,T ) are occasionally weakly compatible.

If we take f to be the identity mapping in the above corollaries, we get the following.

Corollary 4.13 Let (X,M, ∗) be a L-complete or R-complete DFqM − S pace, T : X −→ X be mappings, such that

M(T x,Ty, qt) ≥ M(x, y, t), (32)

where x, y ∈ X , 0 < q < 1 and t ∈ [0,∞). Then T has a fixed point.

Remark 4.14 Corollary 4.13 is generalised fuzzy version of Banach Contraction Principle proved in (Grabiec, 1988).
Corollary 4.11 and 4.12 are generalised and extended version of the result proved in (Reny George & Khan, 2005).
Theorems 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 are generalised and extended fuzzy version of the results proved in (Ciric &
Presic, 2007; Dhage, 1987; Presic, 1965).
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