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Abstract

In this paper, an alternative class of estimators in probability proportional to size (pps) with replacement sampling

scheme for multi- character surveys in which the study variables are poorly correlated with selection probabilities is

developed. This is achieved by redefining the selection probabilities. Some existing estimators have been shown to

be special cases of the proposed class. Numerical illustrations show that some transformations from the proposed

class are more efficient than existing estimators under a super-population model.

Keywords: Estimators, Multiple characteristics, Super-population model, Probability proportional to size, Selec-

tion probability, Sampling with replacement

1. Introduction

It is well known in large scale sample survey that interest is on estimating parameters relating to several population

characteristics. However, only one measure of size is usually used in selecting primary sampling units in pps

scheme. It may sometimes happen that some of these study variables are poorly but positively correlated with

selection probabilities, thereby rendering the existing estimators inadequate.

Rao (1966) proposed some alternative estimators and showed them to be more efficient than the usual estimators.

For the purpose of comparing his estimator with others he assumed the correlation to be equal to zero.

Bansal and Singh (I985), Amahia et al. (1989), Grewal (1999) and others have proposed estimators for charac-

teristics that are poorly correlated with selection probabilities. Their estimators have taken into consideration the

correlation coefficient between the variable of interest and selection probabilities even though this correlation may

be very small. For easy reference, we define these existing estimators as follows:

For a sample of size n selected using a pps with replacement sampling scheme, the conventional estimator may be

defined as

Ŷk =
1

n

n∑
i=1

yi

p∗ik
, i = 1, 2, 3, 4, 5, (1.1)

where

pi1 = pi (1.2)

pi2 =
1

N
(1.3)

pi3 =

(
1 +

1

N

)1−ρ
(1 + pi)

ρ − 1 (1.4)

pi4 = (1 − ρ) 1

N
+ ρpi (1.5)
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are respectively the selection probabilities substituted in (1.1) to give the conventional estimator, those proposed

by Raos (1966), Bansal and Singh (1985) and Amahia et al. (1989) respectively. A major feature in Amahia et al.

(1989) estimator which made it more attractive than Bansal and Singhs (1985) estimators was that while
N∑

i=1
pi3 � 1,

the selection probabilities defined in (1.5) will sum up to 1, qualifying it to be a selection probability.

Singh, Grewal and Joarder (2004) have proposed a general class of estimators for the estimation of population total

in multi character surveys. Their general class of estimators is of the form,

Ŷg =
1

n

n∑
i=1

yiH(pi), (1.6)

where H(pi) is a function of pi and satisfies certain regularity conditions defined as:

(i) H
(

1
N

)
N;

(ii) The first and second partial derivatives of H with respect to pi exist and are assumed to be known constants

for pi =
1
N . They have shown that all the estimators defined above are special cases of their general class even

where selection probabilities do not sum up to unity. They however did not consider what will be the behavior of

the expected variance of this class under a super-population model.

In this paper, we develop a class of alternative estimators of the form

Ŷp
α
=

1

n

n∑
i=1

yi

pαi
(1.7)

with pαi satisfying the following boundary conditions:

(i)
n∑

i=1
pαi = 1;

(ii)Ŷp
α

reduces to Rao’s (1966) estimator, ŶR for pαi =
1
N and to the conventional estimator, ŶC for pαi = pi.

2. The Proposed Class of Alternative Estimators

Let {pi}Ni=1 be probabilities,
N∑

i=1
pi = 1. Let f: N × [0, 1] × [0, 1] be such a continuous function that satisfies the

following boundary conditions:

(i) f (N, 0, pi) =
1
N , ∀1 ≤ i ≤ N, N ∈ N, where N is the set of natural numbers;

(ii) f (N, 1, pi) = pi, ∀1 ≤ i ≤ N, N ∈ N;

(iii)
N∑

i=1
f (N, ρ, pi) = 1, ∀0 ≤ ρ ≤ 1, N ∈ N, ∀ {pi}Ni=1 such that,

N∑
i=1

pi = 1.

Theorem 2.1 If f is a differenciable function in p and satisfies conditions (i) - (iii) then

f (N, ρ, pi) := (1 − g(ρ))
1

N
+ g(ρ)pi, 1 ≤ i ≤ N (2.1)

with a continuous one to one function g : [0, 1]→ [0, 1] fulfilling g(0) = 0 and g(1) = 1.

Remark If g takes the same value twice, that means that a state of estimation is repeated twice unnecessarily.

Hence a continuous one to one function g : [0, 1]→ [0, 1] with g(0) = 0 and g(1) = 1 is actually strictly ascending.

Proof. Let 1 ≤ i, j ≤ N, i � j be fixed. Then let ε > 0 be a number s.t pi,ε := pi + ε ≤ 1,

p j,ε := p j − ε ≥ 0, and pk,ε = pk, f or 1 ≤ k ≤ N, k � i and k � j.

From condition (iii), for {pk}Nk=1 and
{
pk,ε
}N
k=1 we have

N∑
k=1

f (N, ρ, pk) = 1, and
N∑

k=1

f (N, ρ, pk,ε) = 1. (2.2)
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Therefore the difference of the two sums in (2.2) gives 0, that is,

0 =

N∑
k=1

f (N, ρ, pk) −
N∑

k=1

f (N, ρ, pk,ε)

= f (N, ρ, pi) − f (N, ρ, pi + ε) + f (N, ρ, p j) − f (N, ρ, p j − ε),
from where

f (N, ρ, pi) − f (N, ρ, pi + ε) = f (N, ρ, p j − ε) − f (N, ρ, p j). (2.3)

Dividing (2.3) through by ε and taking the limit as ε tends to 0, we have:

∂ f (N, ρ, pi)

∂pi
=
∂ f (N, ρ, p j)

∂p j
. (2.4)

Fixing pi constant and varying all other p′j s in (2.4) proves that

∂ f (N, ρ, p)

∂p
= constant f unction o f p. (2.5)

By integrating (2.5), we have

f (N, ρ, p) = c1(N, ρ) + const(N, ρ) × p. (2.6)

Summing (2.6) and from condition (iii),

1 =

N∑
i=1

f (N, ρ, pi) = N · c1(N, ρ) + const(N, ρ) ·
N∑

i=1

pi.

This implies that

0 ≤ const(N, ρ) ≤ 1

and

N · c1(N, ρ) + const(N, ρ) = 1. (2.7)

Hence

c1(N, ρ) = (1 − const(N, ρ)) · 1

N
. (2.8)

Thus, selecting g(N, ρ) := g(ρ) := constant for each fixed ρ from [0, 1] since N is the number of elementary events

hence it does not change in a fixed system,

f (N, ρ, pi) = (1 − g(ρ)) · 1

N
+ g(ρ)pi, ∀1 ≤ i ≤ N (2.9)

with 0 ≤ g(ρ) ≤ 1. From (i): g(0) = 0 and from (ii): g(1) = 1 follow that p∗i = (1 − ρ) 1
N + ρpi falls in this category

and will always have
N∑

i=1
= 1.

It is therefore of interest to investigate the behavior of estimators of the form

Ŷp
α
=

1

n

n∑
i=1

yi

pαi
, (2.10)

where the selection probability belongs to the class

pαi = f (N, ρ, pi) = (1 − ρα) 1

N
+ ραpi, 1 ≤ i ≤ N. (2.11)

2.1 Bias and Variance of the Proposed Class of Estimators

The biases of the proposed class of estimators in (2.10)

B
(
Ŷp
α)
= E
(
Ŷp
α) − Y

=

N∑
i=1

yi

(
pi

pαi
− 1

)
,
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where pαi = (1 − ρα) 1
N + ρ

αpi and by substitution we obtain

B
(
Ŷp
α)
=

N∑
i=1

yi

(
N pi

1 − ρα + Nραpi

)

= (1 − ρ)
N∑

i=1

(
N pi − 1

1 − ρα + Nραpi

)
yi

= N2

⎡⎢⎢⎢⎢⎢⎣ 1

N

N∑
i=1

piyi

(1 − ρα + Nραpi)
− 1

N2

N∑
i=1

yi

(1 − ρα + Nραpi)

⎤⎥⎥⎥⎥⎥⎦
= (1 − ρ)N2cov

(
y

1 − ρα + Nραp
, p
)

(2.1.1)

The bias of Ŷp
α

reduces to 0 at ρ = 1, to B
(
ŶR

)
at ρ = 0 and to B

(
Ŷp
∗)

at α = 1. Again, B
(
Ŷp
α)

is independent of

the sample size.

The variance of the proposed class of estimators is given as

V
(
Ŷp
α)
=

1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

y2
i pi(

pαi
)2 −
⎛⎜⎜⎜⎜⎜⎝

N∑
i=1

yi pi

pαi

⎞⎟⎟⎟⎟⎟⎠
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

2.2 Expected Biases and Mean Square Error of the Proposed Class of Estimators

To select the best estimator from the proposed class, we find the form of expected value of the biases and MSE’s

of the proposed class Ŷp
α

under the assumption of a super population model due to Cochran (1946).

The model assumes that

yi = βpi + ei, i = 1, 2, · · · ,N, (2.2.1)

where ei are random variables satisfying

ε (ei|pi) = 0

ε
(
e2

i |pi

)
= apg

i , a > 0, g ≥ 0

ε
(
eie j|pi p j

)
= 0, i � j = 1, 2, · · · ,N

and ε denotes expectation operator with respect to the super-population model. The parameters β, a, and g are

unknown positive constants. Under the model (2.2.1)
(
e2

i |pi

)
is the residual variance of y for p = pi. The expected

value of the residual variance is given by

E
(
apg

i

)
=

a
N

N∑
i=1

pg
i (2.2.2)

when the infinite super-population is simulated by the finite population for N units having the same characteris-

tics as that of the super-population. Also, this expected value of the residual variance is known to be given by

σ2
y

(
1 − ρ2

)
, where ρ is the product moment correlation coefficient between y and p. Thus we have,

a
N

N∑
i=1

pg
i = σ

2
y

(
1 − ρ2

)
(2.2.3)

εB
(
Ŷp
α)
= N2(1 − ρ)βcov

(
pi

1 − ρα + Nραp
, p
)
> 0, (2.2.4)

where β2 = ρ2
(
σ2

y/σ
2
y

)
which from (2.2.3) is equal to

β2 =
ρ2
(

a
N

)∑
pg

i

σ2
p
(
1 − ρ2

) .
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Therefore,

β2 =
ρ2

1 − ρ2
·

a
(∑

pg
i

)
Nσ2

p
, (2.2.5)

where

σ2
p =

1

N

[∑
p2

i −
(
∑

pi)
2

N

]
(2.2.6)

The expected mean square error of the proposed class of estimators is

εV
(
Ŷp
α)
=

1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

pi(
pαi
)2
(
β2 p2

i + apg
i

)
− a

N∑
i=1

p2
i pg

i(
pαi
)2 − β2

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

p2
i

pαi

⎞⎟⎟⎟⎟⎟⎠
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣a
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

pg+1

i(
pαi
)2 −

N∑
i=1

pg+2

i(
pαi
)2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + β2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
N∑

i=1

p3
i(

pαi
)2 −
⎛⎜⎜⎜⎜⎜⎝

N∑
i=1

p2
i

pαi

⎞⎟⎟⎟⎟⎟⎠
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.2.7)

where β2 =
ρ2

1−ρ2 · a(
∑

pg
i )

Nσ2
p

from (2.2.5).

3. Numerical Illustration

In this section we shall consider the efficiency of the proposed class of estimators for population 1 described below.

We denote this by Population 1. The population consists of a pair of 30 numbers randomly generated. The first

set (designated y) was generated using the table of random numbers after which another set (designated x) were

generated independent of the first. The correlation coefficient between y and x, ρ was computed to be 0.3519. The

data for Population 1 are in Table 1.

Table 2 shows the expected variances (as functions of a and β2) for the proposed class of estimators and the

estimate of the expected variances and biases for different α values and ρ̂ = 0.1, 0.2, 0.3, 0.35186, 0.5 respectively

for g = 0 while Table 3 gives the same information for ρ̂ = 0.1, 0.2, 0.3, 0.5, 0.707311 when g = 1 under the

supe-rpopulation model. The value of “a” used in obtaining the estimate of the expected variance was the variance

estimate of y obtained from a systematic sample of size 10 (a = 3468.97) while β2 was calculated using (2.2.5).

Table 4 provides the expected variances (as functions of a and β2 ) and their estimates for the proposed class of

estimators for ρ̂ = 0.1, 0.2, 0.3, 0.35186, 0.5 and g = 2 under the model. Figure 1 represent the scatter plots of

the estimates of expected variances against different α values for ρ̂ = 0.1, 0.2, 0.3, 0.35186, 0.5 and g = 0 under

model (2.2.1) shown in Table 2. Figure 2 are the plots of the estimates of the expected variances against α values

for ρ̂ = 0.1, 0.2, 0.3, 0.5, 0.707311 and g = 1 obtained in Table 3 while Figure 3 show the plots of the expected

variance estimates for ρ̂ = 0.1, 0.2, 0.3, 0.35186, 0.5 when g = 2 obtained in Table4.

4. Discussion of Results

The result of analysis in Table 2 for g=0 shows that:

The optimal estimate of the expected variance for the developed class of estimator, Ŷp
α

is 287049.3 and occurs at

the value of α satisfying: ρ̂α = ρ. (These are respectively α = 0.4536, 0.6490, 0.8676, 1, 1.5069 for ρ̂ = 0.1, 0.2,

0.3, 0.35186, 0.5). α = 1 which coincides with Amahia eta al 1989 estimator, Ŷp
α

will be the best estimator if and

only if ρ̂ = ρ.

The limit of the estimate of the expected variance of our proposed estimator Ŷp
α

as ρ̂α → 0 is 300509, being the

value of variance of Rao’s (1966) estimator ŶR.

It can also be seen that for g = 0, ŶR is more efficient than ŶC irrespective of the value of ρ̂. This result agrees with

that of Rao (1966).

Figure 1 show for ρ̂ = 0.1, 0.2, 0.3, 0.35186, 0.5 that the graphs start with a maximum 361807.1 at α = 0, reduces

steadily to a minimum 287049.3 at α = 0.4536, 0.6490, 0.8676, 1, 0.5069 respectively and then goes up before

converging to 300509. The result also shows that any α: ρ̂α < 2ρ (namely α > 0.1526, 0.2153, 0.2919, 0.3364 and

0.5069 respectively for ρ̂ = 0.1, 0.2, 0.3, 0.35186 and 0.5) will give a transformation of Ŷp
α

that is better (in terms

of efficiency) than the Rao’s estimator, ŶR.

When g = 1 (see Table 3) and for the assumed estimate of the correlation coefficient we observed that the optimal

expected variances of 9575.86 is obtained at α = 0.1526, 0.2183, 0.2919, 0.3364, 0.5069 respectively for ρ̂ = 0.1,
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0.2, 0.3, 0.5, 0.707311 and that ρ̂α = 0.707311 (that is ρ̂α = 2ρ). At α = 0, the estimate of the expected variance

of Ŷp
α

coincides with that of the conventional estimator ŶC which is observed to be 10060.04. The limit of the

estimate of the expected variance of the estimator Ŷp
α

as ρ̂α → 0 gives the estimate expected variance of Rao’s

estimator ŶR which in this case, is the maximum value of 11227. Figure 2 show the plots of the estimate of the

expected variance of Ŷp
α

against different α values respectively for ρ̂ = 0.1, 0.2, 0.3, 0.5, 0.707311 and it can

clearly be seen in all cases that the graph starts from the y- axis 10060.04 and decreases to 9575.86 and then goes

up again before converging to 11227.03, the point of convergence however varies from one ˆrho to another. Any α:

1 > ρ̂α > ρ will always produce a transformation of Ŷp
α

that is better than those of ŶC and ŶR while ŶC is more

efficient than ŶR irrespective of the value of ρ̂.

Table 4 gives the result of the analysis for the population under consideration for g = 2. Again, α = 0 coinciding

with ŶC gives the optimal estimate of expected variance irrespective of the value of ρ̂ also, as ρ̂α → 0, the expected

variance of Ŷp
α

converges to that of ŶR irrespective of ρ̂. From the plots of the estimate of expected variance shown

in Figure 3 the graph starts from 346.41 at α = 0 and increases at a steady rate to a point before converging to

470.75.

5. Conclusions

From the above findings, we conclude that for our proposed class of estimators for which Amahia et al. (1989),

Grewal et al. (1999) estimators constitute specific transformations, no transformation can be said to produce the

optimal results for all ρ and g. The optimality of a particular estimator depends on the value of ρ and g. For pps

with replacement sampling scheme and for g = 0, the optimal transformation will always occur at ρ̂α = ρ, ρ̂α = 2ρ
always gives the optimal for g = 1 whereas the conventional estimator is the best for g = 2.
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Table 2. Expected variances, estimates of expected variance and bias of Ŷp
α

for different values of α and ρ (g = 0)

ρ̂ α ρ̂α εV
(
Ŷp
α)

εV̂
(
Ŷp
α)

εB̂
(
Ŷp
α)

0 1 104.298a 361807.1 0

0.1 0.794328 90.314a + 0.000589β2 313295.7 0.006221

0.3 0.630957 85.254a + 0.00160β2 295745.5 0.011336

0.3 0.501187 83.339a + 0.00267β2 289102.0 0.013925

0.4 0.398107 82.771a + 0.00340β2 287130.3 0.014645

0.1 0.4536 0.351884 82.748a + 0.00421β2 287049.3 0.014504

0.5 0.316228 82.82a + 0.00464β2 287299.8 0.014171

0.6 0.251189 83.145a + 0.00547β2 288426.6 0.013018

1 0.1 84.80a + 0.00778β2 294238.2 0.007078

2 0.01 86.421a + 0.00946β2 299793.1 0.000843

4 0.001 86.625a + 0.00966β2 300501.9 8.59E-06

5 0.00001 86.627a + 0.00966β2 300508.4 8.59E-07

0 1 104.298a 361807.1 0

0.2 0.72478 87.715a + 0.000974β2 304280.4 0.00858

0.4 0.525306 83.585a + 0.00246β2 289955.3 0.0113572

0.6 0.380731 82.746a + 0.00388β2 287044.8 0.014628

0.649 0.351859 82.748a + 0.00421β2 287049.3 0.014502

0.2 0.8 0.275946 82.992a + 0.00514β2 287897.7 0.013545

1 0.2 83.569a + 0.00619β2 289901.2 0.011559

1.5 0.089443 84.984a + 0.00797β2 294808.1 0.006463

2 0.04 85.837a + 0.00887β2 297764.9 0.003182

4 0.0016 86.594a + 0.00963β2 300393.2 0.000137

6 0.000064 86.626a + 0.00966β2 300504.5 5.5E-06

8 2.56E-06 86.627a + 0.00966β2 300508.9 2.2E-07

0 1 104.298a 361807.1 0

0.4 0.617801 84.989a + 0.0017β2 294825.0 0.01167

0.8 0.381678 82.747a + 0.00388β2 287047.7 0.01463

0.8676 0.351884 82.748a + 0.00421β2 287049.3 0.014502

0.9 0.338383 82.766a + 0.00437β2 287112.7 0.014401

0.3 1 0.3 82.878a + 0.00484β2 287501.0 0.013952

1.5 0.164317 83.952a + 0.00673β2 291228.8 0.010223

2 0.09 84.975a + 0.00796β2 294777.5 0.006497

4 0.0081 86.46a + 0.0095β2 299927.6 0.000685

6 0.000729 86.612a + 0.00965β2 300456.2 6.25E-05

9 1.97E-05 86.627a + 0.00966β2 300507.7 1.69E-06

12 3.6E-06 86.627a + 0.00966β2 300509.1 3.09E-07

0 1 104.298a 361807.1 0

0.3 0.730989215 87.917a + 0.000937β2 304981.8 0.008378

0.6 0.534345233 83.689a + 0.00238β2 290316.8 0.013424

0.9 0.390600602 82.758a + 0.00378β2 287085.1 0.014643

1 0.35186 82.748a + 0.00421β2 287049.3 0.014503

0.35186 1.3 0.257205865 83.104a + 0.00539β2 288286.9 0.013156

1.5 0.20871557 83.487a + 0.0606β2 289614.2 0.011844

2 0.12380546 84.472a + 0.00738β2 293031.9 0.008358

4 0.015327792 86.314a + 0.00935β2 299419.9 0.001278

9 8.26664E-05 86.626a + 0.00966β2 300503.1 7.1E-06

12 3.60113E-06 86.627a + 0.00966β2 300508.9 3.09E-07

15 1.56873E-07 86.627a + 0.00966β2 300509.1 1.35E-08
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Table 2. Expected variances, estimates of expected variance and bias of Ŷp
α

for different values of α and ρ (g = 0)

(Continued)

ρ̂ α ρ̂α εV
(
Ŷp
α)

εV̂
(
Ŷp
α)

εB̂
(
Ŷp
α)

0 1 104.298a 361807.1 0

0.5 0.707107 87.168a + 0.00108β2 302384.2 0.009143

1 0.5 83.328a + 0.00268β2 289064.1 0.01394

1.4 0.378929 82.745a + 0.00391β2 287039.7 0.014624

1.5069 0.351866 82.748a + 0.00421β2 287049.3 0.014503

0.5 2 0.25 83.153a + 0.00549β2 288455.0 0.01299

3 0.125 84.455a + 0.00736β2 292974.2 0.008419

5 0.03125 86.002a + 0.00904β2 298338.1 0.002528

7 0.007813 86.466a + 0.00951β2 299948.0 0.000661

12 0.000244 86.622a + 0.00965β2 300491.4 2.1E-05

18 3.81E-06 86.627a + 0.00966β2 300508.8 3.28E-07

20 9.54E-07 86.628a + 0.00966β2 300509.0 8.1E-08

Table 3. Expected variances, estimates of expected variance and bias of Ŷp
α

for different values of α and ρ (g = 1)

ρ̂ α ρ̂α εV
(
Ŷp
α)

εV̂
(
Ŷp
α)

εB̂
(
Ŷp
α)

0 1 2.9a 10060.04 0

0.1 0.794328 2.770a + 0.000589β2 9609.808 0.001136

0.13 0.74131 2.762a + 0.000876β2 9580.842 0.001468

0.1526 0.70372 2.760a + 0.001105β2 9575.909 0.001689

0.2 0.630957 2.767a + 0.001604β2 9598.805 0.00207

0.1 0.3 0.501187 2.805a + 0.002675β2 9732.167 0.002542

0.5 0.316228 2.912a + 0.004637β2 10102.44 0.002587

1 0.1 3.112a + 0.007782β2 10798.58 0.001292

2 0.01 3.223a + 0.00946β2 11180.81 0.000154

3 0.001 3.235a + 0.00964β2 11222.38 1.56E-05

4 0.0001 3.236a + 0.00966β2 11226.57 1.57E-06

5 0.00001 3.236a + 0.00966β2 11226.99 1.57E-07

0 1 2.9a 10060.04 0

0.1 0.85134 2.789a + 0.000331β2 9673.926 0.000767

0.13 0.811211 2.775a + 0.000507β2 9624.982 0.001027

0.15 0.785515 2.768a + 0.0006333β2 9603.077 0.001192

0.2183 0.7.372 2.760a + 0.001105β2 9575.909 0.001689

0.2 0.4 0.525306 2.796a + 0.002458β2 9699.106 0.002478

0.6 0.380731 2.868a + 0.003888β2 9950.215 0.002671

1 0.02 3.009a + 0.006192β2 10439.84 0.00211

2 0.04 3.184a + 0.00887β2 11046.77 0.000581

4 0.0016 3.236a + 0.00963β2 11219.58 2.5E-05

6 0.000064 3.236a + 0.00966β2 11226.73 1E-06

8 2.56E-06 3.236a + 0.00966β2 11227.02 4.01E-08
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Table 3. Expected variances, estimates of expected variance and bias of Ŷp
α

for different values of α and ρ
(g = 1) (Continued)

ρ̂ α ρ̂α εV
(
Ŷp
α)

εV̂
(
Ŷp
α)

εB̂
(
Ŷp
α)

0 1 2.9a 10060.04 0

0.1 0.886568 2.806a + 0.00203β2 9733.458 0.000541

0.2 0.786003 2.768a + 0.000631β2 9603.429 0.001189

0.2919 0.70372 2.760a + 0.001105β2 9575.909 0.001689

0.4 0.617801 2.769a + 0.001703β2 9607.158 0.002131

0.3 0.6 0.485593 2.812a + 0.0028195β2 9755.462 0.002578

1 0.3 2.924a + 0.004837β2 10144.63 0.002547

1.5 0.164317 3.044a + 0.00673β2 10560.3 0.001866

3 0.027 3.201a + 0.00912β2 11104.02 0.000402

6 0.000729 3.235a + 0.00965β2 11223.64 1.14E-05

9 1.97E-05 3.236a + 0.00966β2 11226.94 3.09E-07

12 5.31E-07 3.236a + 0.00966β2 11227.03 8.33E-09

0 1 2.9a 10060.04 0

0.3 0.812252396 2.775a + 0.000502β2 9626.019 0.001020258

0.4 0.757858283 2.764a + 0.000782β2 9586.989 0.001366073

0.5069 0.703720172 2.760a + 0.001105β2 9575.909 0.001688721

0.6 0.659753955 2.763a + 0.001398β2 9584.906 0.00192724

0.5 0.7 0.615572207 2.770a + 0.001719β2 9608.694 0.002140739

1 0.5 2.806a + 0.002686β2 9733.888 0.002545137

1.5 0.353553391 2.886a + 0.004β2 10011.35 0.002649757

3 0.125 3.085a + 0.00736β2 10702.65 0.001537073

5 0.03125 3.196a + 0.00904β2 11085.16 0.000461576

10 0.000976563 3.235a + 0.00964β2 11222.48 1.52835E-05

15 3.05176E-05 3.236a + 0.00966β2 11226.89 4.78469E-07

0 1 2.9a 10060.04 0

0.4 0.868875869 2.775a + 0.000501β2 9704.557 0.000636606

0.6 0.809909706 2.775a + 0.000501β2 9626.201 0.001009846

0.8 0.754945276 2.764a + 0.000780β2 9587.091 0.001351491

1 0.703711 2.760a + 0.00108β2 9575.86 0.001650678

0.703711 1.5 0.590325454 2.774a + 0.00188β2 9624.561 0.00220366

3 0.348484141 2.886a + 0.00419β2 10010.43 0.002603574

6 0.121441197 3.085a + 0.00736β2 10701.6 0.001491758

12 0.014747964 3.216a + 0.00935β2 11154.84 0.000224418

18 0.00179101 3.234a + 0.00962β2 11217.88 2.79771E-05

24 0.000217502 3.236a + 0.00966β2 11225.88 3.40871E-06

30 2.64138E-05 3.236a + 0.00966β2 11226.89 4.14127E-07
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Table 4. Expected variances, estimates of expected variance and bias of Ŷp
α

for different values of α and ρ (g = 0)

ρ̂ α ρ̂α εV
(
Ŷp
α)

εV̂
(
Ŷp
α)

0 1 0.0999a 346.4107

0.2 0.630957344 0.105a + 0.002β2 365.9727

0.4 0.398107171 0.113a + 0.00370β2 393.6547

0.6 0.251188643 0.120a + 0.00547β2 417.1529

0.1 0.8 0.158489319 0.125a + 0.00682β2 434.7489

1 0.1 0.128a + 0.00778β2 447.1006

2 0.01 0.135a + 0.00946β2 468.2321

3 0.001 0.136a + 0.00964β2 470.4992

4 0.0001 0.136a + 0.00966β2 470.7275

5 0.00001 0.136a + 0.00966β2 470.7504

0 1 0.0999a 346.4107

0.2 0.724779664 0.103a + 0.000974β2 357.9349

0.4 0.525305561 0.109a + 0.00246β2 377.1596

0.6 0.380730788 0.114a + 0.003889β2 396.1754

0.2 0.8 0.275945932 0.119a + 0.00514β2 412.8333

1 0.2 0.123a + 0.00619β2 426.5828

2 0.04 0.133a + 0.00887β2 460.8839

4 0.0016 0.136a + 0.00963β2 470.3471

6 0.000064 0.136a + 0.00963β2 470.7367

8 0.00000256 0.136a + 0.00963β2 470.7523

0 1 0.0999a 346.4107

0.4 0.617800851 0.106a + 0.00170β2 346.2434

0.6 0.485593375 0.110a + 0.00282β2 381.9479

0.8 0.381677891 0.114a + 0.00388β2 396.0363

0.3 1 0.3 0.118a + 0.00484β2 408.781

1.5 0.164316767 0.125a + 0.00673β2 433.5734

3 0.027 0.134a + 0.00912β2 464.0292

6 0.000729 0.136a + 0.00965β2 470.5679

9 0.000019683 0.136a + 0.00966β2 470.7479

12 5.3144E-07 0.136a + 0.00966β2 470.7528

0 1 0.09986a 346.4107

0.4 0.658488 0.105a + 0.00141β2 363.4268

0.6 0.534345 0.108a + 0.00238β2 376.1145

0.8 0.433607 0.112a + 0.00332β2 388.7089

0.35186 1 0.35186 0.115a + 0.00421β2 400.5118

1.5 0.208716 0.122a + 0.006β2 424.9284

3 0.043562 0.133a + 0.0088β2 460.0322

6 0.001898 0.136a + 0.00963β2 470.2717

9 8.27E-05 0.136a + 0.00966β2 470.7319

12 3.6E-06 0.136a + 0.00966β2 470.752

0 1 0.0999a 346.4107

0.4 0.757858283 0.102a + 0.000781β2 355.5416

0.6 0.659753955 0.104a + 0.00140β2 363.3135

0.8 0.574349177 0.107a + 0.00204β2 2371.6875

0.5 1 0.55 0.110a + 0.00269β2 380.1736

1.5 0.353553391 0.115a + 0.00419β2 400.2523

3 0.125 0.127a + 0.00736β2 441.6957

5 0.03125 0.133a + 0.00904β2 462.9945

10 0.000976563 0.136a + 0.00964β2 470.5051

15 3.05176E-05 0.136a + 0.00966β2 470.7452
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Figure 1. Expected Variance of Estimator, Ŷa
p for different values of α and ρ at g = 0

Figure 2. Expected Variance of Estimator, Ŷa
p for different values of α and ρ at g = 1
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Figure 3. Expected Variance of Estimator, Ŷa
p for different values of α and ρ at g = 2
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