
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

The Finite Element Methods for a Nonlinear Problem
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Abstract

In this paper we construct a nonlinear Sturm–Lioville problem of even degree for which we can apply the variation
methods developed in (Peter, 2008) and the finite element methods approximation for generalized solution of problem.
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1. Introduction

We consider the problem:

Pu =

m∑
k=0

(−1)k dk

dxk [Pk(
dku
dxk )

dku
dxk ] = f , f ∈ L2(a, b) (1)

With conditions: {
u(a) = u

′
(a) = ... = u(m−1)(a) = 0,

u(b) = u
′
(b) = ... = u(m−1)(b) = 0 (2)

and Pk for K = 0,m are from C(k) class and Pk depends only on dku
dxk and a, b finite.

We assume that

1. functions Pk satisfy conditions
d
dt

[tPk(t)] ≥ Ck > 0, for all k = 0,m

and there is at least one index k0 that d
dt [tPk0(t)] ≥ Ck0 > 0. satisfy conditions em: oblem. pply the variational methods

developed in (Peter, 2008) and the finite element methods approximation for

We consider the Hilbert space H = L2(a, b) and

Q = {u ∈ Cn[a, b]\u(a) = u
′
(a) = ... = u(m−1)(a)

= u(b) = u′(b) = ... = u(m−1)(b) = 0}, where n = 2m and P : Q→ L2(a, b).

Theorem 1 The operator P is potential operator with its Gateaux differential linear in h and positive definite.

Proof: There exists a functional

∀u ∈ Q, Fu =
∫ 1

0 (P(tu), u)L2(a,b)dt − ( f , u)L2(a,b)

=
∫ 1

0 dt
∫ b

a

∑m
k=0(−1)k dk

dxk [Pk(tu(k)) (tu(k)(x))]u(x)dx −
∫ b

a f (x)u(x)dx
(3)

and using the formula integration by parts and the limit condition we obtain:

∀u ∈ Q F(u) =
∑m

k=0

∫ b
a dx

∫ u(k)

0 Pk(t)tdt −
∫ b

a f (x)u(x)dx. (4)
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For every u, h ∈ Q, there exists DP(u)h linear in h

DP(u)h =
m∑

k=0

(−1)k dk

dxk

[(
Pk(

dku
dxk ) + Pk(

dku
dxk )

dku
dxk

)
dkh
dxk

]
and the symmetry and the positive definiteness results respectively from:

(DP(u)h1, h2)L2(a,b) =
∑m

k=0

∫ b
a

[
Pk( dku

dxk ) + Pk( dku
dxk ) dku

dxk

]
dkh1
dxk

dkh2
dxk dx= (DP(u) h2, h1)L2(a,b), ∀u, h1,h2 ∈ Q,

(DP(u)h, h)L2(a,b) =
∑m

k=0

∫ b
a

[
Pk( dku

dxk ) + Pk′( dku
dxk ) dku

dxk

]
( dkh

dxk )2dx ≥ Ck0
∥∥∥h(k0)

∥∥∥2
L2(a,b) ≥ Ck0

[
2

(b−a)

]k0 ∥h∥2L2(a,b) ,∀u, h ∈ Q.

Theorem 2 a) If problem (1), (2) has a unique solution, this is the unique solution and minimizes the functional (4), and
conversely, if there is an u0 ∈ Q that minimizes the functional (4) on Q, then u0 is the solution of problem (1), (2) and,
according to the first part of the theorem, the solution is unique.

b) The functional (4) is lower bounded on Q.

c) Any minimized sequence for the functional (4) has limit in L2 (a,b), (the existence of generalized solution of problem
(1), (2).

d) All minimized sequences have the same limit in L2 (a, b).

Proposition 3 If condition (A) is satisfied for all k = 0,m then

(DP(u)h, h)L2(a,b) ≥
min

k
Ck

max
k

Pk(0) (DP(0)h, h)L2(a,b),∀u, h ∈ Q (5)

and
(min

k
Pk(0) ∥h∥2wm,2(a,b)) ≤ (DP(0)h, h)L2(a,b) ≤ (max

k
Pk(0)) ∥h∥2wm,2(a,b) ,∀h ∈ Q (6)

Proof: The first inequality results from

(DP(u)h, h)L2(a,b) ≥
∑m

k=0 ck
∫ b

a ( dkh
dxk )2dx≥ ( min

k
ck)

∑m
k=0

∫ b
a ( dkh

dxk )2dx = (min
k

ck) ∥h∥2wm,2(a,b)

and
(DP(0)h, h)L2

(a,b)
=

∑m
k=0

∫ b
a Pk(0)( dkh

dxk )2dx ≤ (maxkPk(0))
∑∫ b

a ( dkh
dxk )2dx

≤ (maxk Pk(0))
∑m

k=0 ∥h(k)∥2
L2

(a,b)
= (maxkPk(0))∥h∥2

wm,2
(a,b)

(7)

The second results from (7) and

(DP(0)h, h)L2(a,b) =
∑m

k=0

∫ b
a Pk(0)( dkh

dxk )2dx≥ ( min
k

Pk(0))
∑m

k=0

∫ b
a ( dkh

dxk )2dx

≥ ( min
k

Pk(0))
∑m

k=0

∥∥∥h(k)
∥∥∥2

L2(a,b)
= ( min

k
Pk(0)) ∥h∥2

wm,2(a,b)
.

We consider H0 the energetic space of problem (1), (2), the completion of Q by virtue of inner product

(u, v)0 = (DP(0)u, v)L2(a,b), ∀u, v ∈ Q.

If condition (A) is true for allk = 0,m, then the corresponding norm ∥ . ∥0is equivalent to the norm ∥ . ∥wm,2(a,b) .This fact
results from the inequalities (5) and (6) so

( min
k

Pk(0)) ∥u∥2
wm,2(a,b)

≤ ∥u∥0 ≤ ( max
k

Pk(0)) ∥u∥2
wm,2(a,b)

,∀u ∈ H0. (8)

Proposition 4 If condition (A) is true for all k = 0,m, then P is a strong monotone operator.
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Proof: The strong monotony results from relations

(Pu1 − Pu2, u1 − u2)L2(a,b)

=
∫ 1

0 (DP(tu1 + (1 − t)u2) (u1 − u2), u1 − u2)L2(a,b)dt

≥
min

k
ck

max
k

Pk(0)

∫ 1
0 (DP(0)(u1 − u2), u1 − u2)dt

≥
min

k
ck

max
k

Pk(0) ∥u1 − u2 ∥ 2
0 = γ

2 ∥ u1 − u2 ∥20
≥ C ∥u1 − u2∥2

wm,2(a,b)
≥ C ∥u1 − u2∥L2(a,b)

where γ2 =
min

k
ck

max
k

Pk(0) and we have use the inequality (5).

Theorem 5 If condition (A) is true for all k = 0,m, then:

a) Any minimized sequence for functional (4) has a limit in H0,

b) All the minimized sequences for functional (4) have the same limit in H0,

c) The limit in H0 for any minimized sequence for functional (4) is the generalized solution of problem (1), (2),

d) The generalized solution of problem (1), (2) has generalized derivatives to and including m degree.

2. Finite Element Approximation

We introduce on the interval [a,b] a finite element mesh consisting of nodes

a = x0 < x1 < ... < xN = b

and finite element Ti = (xi, xi+1), i = 0,N − 1 with conditions:

T̄i
∩

T̄ j =


xi if j = i + 1
xi+1 if j = i − 1
ϕ if j , i + 1, i − 1∪N−1

i=0 T̄i = [a, b].

We introduce on the interval [a,b] a finite element mesh consisting of nodes

a = x0 < x1 < ... < xN = b

and finite element Ti = (xi, xi+1), i = 0,N − 1 with conditions:

T̄i
∩

T̄ j =


xi if j = i + 1
xi+1 if j = i − 1
ϕ if j , i + 1, i − 1∪N−1

i=0 T̄i = [a, b].

We consider the minimized problem: find a function u ∈ H0 such that:

F(u) = min
v∈H0

F(v) (9)

and the discrete problem: find a function uh ∈ Hh so that:

F(uh) = min
vh∈Hh

F(vh). (10)

Theorem 6 The minimization problems (9) and (10) both have one and only one solution. Their respective solution
u ∈ H0 and uh ∈ Hh are also the unique solutions of the variational equations:

m∑
k=0

∫ b

a
Pk(

dku
dxk )

dku
dxk

dkv
dxk dx =

∫ b

a
f vdx, ∀ v ∈ H0 (11)
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m∑
k=0

∫ b

a
Pk(

dkuh

dxk )
dkuh

dxk

dkvh

dxk dx =
∫ b

a
f vhdx (12)

Proof: The functional F is Gateaux differentiable and

(DF(u))v = (Pu − f , v) =
m∑

k=0

∫ b

a
Pk(

dku
dxk )

dku
dxk

dkv
dxk dx −

∫ b

a
f v dx,

so the solution u and uhof the minimization problem (9) and (10) must satisfy relations (11) and (12) respectively. In view
of the strict convexity of functional F, these relations are also sufficient for the existence of the unique solution.

Theorem 7 The discrete solutions uh are bounded independently of subspace Hh.

Proof: Using the strong monotone propriety of the operator P we obtain

(Puh − Pu, uh − u)L2(a,b) ≥ γ2 ∥uh − u∥20≥ C ∥uh − u∥2
wm,2(a,b)

an we use the inequality.

∥uh − u∥2wm,2(a,b) ≤ (Puh − Pu, uh − u)L2(a,b) ≤ ∥PuL − Pu∥∗∥uh − u∥L2(a,b) ≤ ∥Puh − Pu∥∗∥uh − u∥wm,2(a,b)

Taking v = θ and uh is the solution of discrete problem we obtain

∥uh∥wm,2(a,b) ≤
1
γ2 ∥ f ∥

∗

Theorem 8 If uh is the discrete solution of equation (12), the condition

(A) is satisfied for all k = o,m and if
Pk ⊂ P̂ ⊂ H0(T̂ ) (13)

Wm,2(T̂ )→ Cσ(T̂ ) (14)

where σ is the greatest derivation degree that appears in definition of T̂, the reference finite element, then (uh)h∈H is the
minimization sequence of functional F and has an unique limit in H0 .

Proof: The sequence (uh)h∈H is bounded in a reflexive space Wm,2(a, b).

So, there exists a subsequence (uhi) which weakly converges to the same elementu ∈ Wm,2(a, b). We shall prove that u in
minimum point of functional (4) in Wm,2 (a, b), so (uh)h∈H is a minimized sequence.

Let be φ ∈ D(a, b), the space of testing function. By definition of the discrete problem we have, in particular

∀i ≥ 1 : F(uhi) ≤ F(Πhiφ)

Where Πhi is the operator of finite element approximation. Since the functional F is continuous and convex we have

F(u) = lim
i→∞

F(uhi) ≤ lim
i→∞

F(Πhiφ). (15)

Since σ is the maximum order of derivatives occurring in interpolation than, using Theorem 2.10.3 from (Titus Petrila &
Calin John Cheorghiu, 1987) and from (13) and (14) we get

∥ Πhiφ − φ ∥wm,2(T̂ ) ≤ Chm
T̂
| φ |wm,2(T̂ )

and summation after all T we have

∥Πhiφ − φ∥wm,2(a, b) ≤ Chm
T̂
| φ |wm,2(a, b),

so:
lim
i→∞
∥Πhiφ − φ∥wm,2(a,b) = 0.

This last relation and the continuity of the functional (4) imply that

lim
i→∞

F(Πhiφ) = F(φ)
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and so, using (15) it results that
∀φ ∈ D(a, b) F(u) ≤ F(φ).

The space D (a, b) being dense in Wm,2 (a, b), it implies that

∀v ∈ Wm,2(a, b) F(u) ≤ F(v)

and therefore the function u is the unique solution of minimized problem (10), and (uh)h∈His a minimized sequence.

Theorem 9 If ((uh)h∈His a minimization sequence (solution of discrete problem) and if (uh)h∈H weakly converges to the
same element u, then u ∈ H0 and u has generalized derivatives up to the aforementioned order m inclusively.

Proof: This result is obtained from Theorem 5.

In order to have an approach similar to that of the linear case we have obtained minimization sequence (solution of discrete
problem) and if lem (10), and an analogous result as Cea’s Lemma.

Theorem 10 If Pk for all k = 0,m are bounded functions on [a,b], then there exists a constant C, independent of the space
Hh, such that:

∥ u − uh∥wm,2(a,b) ≤ C inf
vh∈Hh
∥ u − vh∥wm,2(a,b) (16)

Proof: From Hh ⊂ Wm,2(a, b) it results

(P(u),wh)L2(a,b) = ( f ,wh)L2(a,b), ∀wh∈Hh.

(P(uh),wh)L2(a,b) = ( f ,wh)L2(a,b), ∀wh∈Hh.

We subtract these equalities and we get
P (u) − P (uh),wh)L2(a,b) = 0.

Let be wh = uh − vh and we get
(P (u) − P (uh), uh − vh)L2(a,b) = 0

and so
∥u − uh∥2

wm,2(a,b)
≤ (P(u) − P(uh), u − uh)

L2(a,b)
≤ (P(u) − P(uh) , u − vh + vh − uh)L2(a,b)

= (P(u) − P(uh), u − vh)L2(a,b)≤
∣∣∣∣∣(∑m

k=0

∫ b
a

[
Pk( dku

dxk ) dku
dxk − Pk( dkuh

dxk ) dkuh
dxk

]
, dk(u−vh)

dxk

)
L2(a,b)

∣∣∣∣∣
≤ C

∑m
k=0

∫ b
a

∣∣∣∣ dku
dxk − dkuh

dxk

∣∣∣∣ ∣∣∣∣ dk(u−uh)
dxk

∣∣∣∣ dx ≤ C
√∑m

k=0

∥∥∥∥ dk(u−uh)
dxk

∥∥∥∥2

L2(a,b).

.

√∑m
k=0

∥∥∥∥ dk(u−vh)
dxk

∥∥∥∥2

L2(a,b)

= C ∥ u − uh∥wm,2(a,b) ∥ u − vh∥wm,2(a,b) .

It results that

∥ u − uh∥wm,2(a,b) ≤ C ∥ u − vh∥wm,2(a,b) ,∀vh ∈ Hhand∥ u − uh∥wm,2(a,b) ≤ C inf
vh∈Hh
∥ u − vh∥wm,2(a,b).

We can obtain an error evaluation:

Theorem 11 In the above conditions if u is in Wm+k,2(a,b), than there is a constant C independent of the space Hh such
that:

∥u − uh∥wm,2(a,b) ≤ Chk |u|wm+k,2(a,b). (17)

Proof: Using the Theorem 10 we get

∥ u − uh∥wm,2(a,b) ≤ inf
wh∈Hh

∥u − vh∥wm,2(a,b)≤ ∥ u − Πhu ∥wm,2(a,b) ≤ Chk |u|wm+k,2(a,b) .

Let be w1, w2, ..., ws a basis in Hh. Than we have uh =
∑s

k=0 αkwk. We solve the nonlinear system:∑s
k=0

∫ b
a Pk

(∑s
i=0 αi

dkwi
dxk

) (∑s
i=0 αi

dkwi
dxk

)
dkwh
dxk dx =

∫ b
a f whdx

with the unknowns α1, α2, ......, αs. We shall approximate the integrals on each subinterval, so we have

m∑
k=0

N−1∑
j=0

∫ x j+1

x j

Pk

 s∑
i=0

αi
dkwi

dxk

  s∑
i=0

αi
dkwi

dxk

 dkwh

dxk dx =
∫ b

a
f whdx,
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for all wh ∈ {w1,w2...,ws} and for each subinterval the integrals are approximated through the process of numerical
integration, using a quadrature scheme. This scheme must be compatible with the error estimation of finite element
method. We obtain a nonlinear system for which we can apply Newton – Kantorovici method.

Remark 1 As usual, the same latter C stands for various constants independent of h and the various functions involved.

Remark 2 An analogous problem can be solved when operator P is

P(u) =
∑m

k=0(−1)k dk

dxk [gk( dku
dxk )]

and the corresponding conditions
g′(t) ≥ Ck+1 ≥ 0,∀k = 0,m.
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