A Limit Theorem for Random Allocations

István Fazekas (Corresponding author)
Faculty of Informatics, University of Debrecen

PO box 12, Debrecen 4010, Hungary
E-mail: fazekasi@inf.unideb.hu

József Túri
Faculty of Mechanical Engineering, University of Miskolc 3515 Miskolc-Egyetemváros, Hungary
E-mail: TuriJ@abrg.uni-miskolc.hu

Received: November 14, 2011 Accepted: November 29, 2011 Published: February 1, 2012 doi:10.5539/jmr.v4n1p17 URL: http://dx.doi.org/10.5539/jmr.v4n1p17

Abstract

A limit theorem is presented for random allocations. For a fixed period we allocate m balls into N boxes. We repeat the experiment throughout n periods. Let p_{q} denote the probability that we do not place more than q balls into any of the N boxes during any of the n repetitions. The limit of p_{q} is determined when $m, n, N \rightarrow \infty$.

Keywords: Limit theorem, Random allocation
2010 Mathematics subject classification: 60C05, 60F05

1. Introduction and Main Result

Let balls be placed successively and independently into N boxes. At each allocation the ball can fall into each box with probability $1 / N$. During a fixed period (for a day, say) we allocate m balls. We repeat the experiment throughout n days. Let p_{q} denote the probability that we do not place more than q balls into any of the N boxes during any of the n days.
(Avkhadiev \& Chuprunov, 2007) proved the following
Theorem A (Avkhadiev \& Chuprunov, 2007, Theorem 2) Let $m \geq 2$. Then

$$
\begin{equation*}
p_{1}=\left(1-\frac{1}{N}\right)^{n}\left(1-\frac{2}{N}\right)^{n} \ldots\left(1-\frac{m-1}{N}\right)^{n} . \tag{1}
\end{equation*}
$$

If m is fixed and $n, N \rightarrow \infty$ such that $n / N \rightarrow \alpha$, then $p_{1} \rightarrow e^{-\frac{m(m-1)}{2} \alpha}$; if $2 \leq q \leq m-1$, then $p_{q} \rightarrow 1$ as $n, N \rightarrow \infty$ such that $n / N \leq \alpha^{\prime}<\infty$.
We extend the above theorem in the following sense: To obtain non-trivial limit for p_{q} when $q>1$ we have to consider growing number of balls. We expect that the rate of convergence of m, n, N to ∞ will determine some q such that $\lim p_{q}$ is non-trivial, but $\lim p_{q-1}=0$ and $\lim p_{q+1}=1$. Our main result is the following

Theorem 1 Let q be a fixed positive integer. Assume that $m, n, N \rightarrow \infty$ such that

$$
\begin{equation*}
\frac{n}{N^{q}}\binom{m}{q+1} \rightarrow \alpha \tag{2}
\end{equation*}
$$

where α is a positive finite number and

$$
\begin{equation*}
\frac{m^{2}}{N} \rightarrow 0 \tag{3}
\end{equation*}
$$

Then

$$
\lim p_{l}= \begin{cases}0 & \text { if } \quad 0 \leq l<q \tag{4}\\ e^{-\alpha} & \text { if } \quad l=q \\ 1 & \text { if } \quad l>q\end{cases}
$$

Remark 1

$$
\begin{equation*}
\left(1-\frac{1}{N^{l}}\binom{m}{l+1}\right)^{n} \leq p_{l} \leq\left(1-\frac{1}{N^{l}}\binom{m}{l+1}(1-\varepsilon)\right)^{n} \tag{5}
\end{equation*}
$$

for $l=1,2, \ldots, m-1$, where $\varepsilon>0$ and $\varepsilon \rightarrow 0$ if $m \rightarrow \infty$ and $N \rightarrow \infty$ such that $m^{2} / N \rightarrow 0$.
We want to mention that random allocations have been widely studied. See the classic papers (Weiss, 1958; Rényi, 1962) and (Békéssy, 1963), the traditional monograph (Kolchin, Sevast'yanov \& Chistyakov, 1978). For more recent results, the reader can consult (Timashev, 2000) and (Chuprunov \& Fazekas, 2005).

2. Proof of Main Result

The proof is based on the following
Theorem B (Avkhadiev \& Chuprunov, 2007, Theorem 1) Let $m \geq 2$ and $1 \leq q \leq m-1$. Then

$$
\begin{equation*}
p_{q}=\left(1-\frac{A_{q}}{q!N}\right)^{n} \tag{6}
\end{equation*}
$$

where

$$
A_{q}=\left.\sum_{l=q}^{m-1} \frac{1}{N^{l-1}} \frac{d^{l}\left[z^{q}\left(f_{q}(z)\right)^{N-1}\right]}{d z^{l}}\right|_{z=0}
$$

and

$$
f_{k}(z)=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\cdots+\frac{z^{k}}{k!}
$$

for any non-negative integer k.
We mention that the proof of Theorem B is based on a result by (Timashev, 2000).
Remark 2 First we consider the case $q=1$ because it is very simple and shows that Condition (2) is natural. Effectively, in virtue of (1),

$$
\begin{equation*}
\ln p_{1}=n \sum_{i=0}^{m-1} \ln \left(1-\frac{i}{N}\right) \tag{7}
\end{equation*}
$$

Using Taylor's expansion $\ln (1-x)=-x-x^{2} /\left(2(1-\vartheta x)^{2}\right)$ with $\vartheta \in(0,1)$, we obtain

$$
\begin{equation*}
\ln p_{1}=-n \sum_{i=0}^{m-1} \frac{i}{N}-\frac{n}{2} \sum_{i=0}^{m-1}\left(\frac{i}{N}\right)^{2}\left(1-\vartheta_{i} \frac{i}{N}\right)^{-2} \tag{8}
\end{equation*}
$$

For the first addend in (8) we have $-n \sum_{i=0}^{m-1} \frac{i}{N}=-\frac{n}{N}\binom{m}{2} \rightarrow-\alpha$. Assuming $m<N$, the second addend in (8) can be handled as

$$
\begin{aligned}
&\left|-\frac{n}{2} \sum_{i=0}^{m-1}\left(\frac{i}{N}\right)^{2}\left(1-\vartheta_{i} \frac{i}{N}\right)^{-2}\right| \leq \frac{n}{2 N^{2}}\left(1-\frac{m}{N}\right)^{-2} \sum_{i=0}^{m-1} i^{2} \\
& \leq \frac{n}{2 N^{2}}\left(1-\frac{m}{N}\right)^{-2} \frac{(m-1) m(2 m-1)}{6}=\frac{n}{N}\binom{m}{2} \frac{2 m-1}{6 N}\left(1-\frac{m}{N}\right)^{-2} \rightarrow 0
\end{aligned}
$$

Therefore $p_{1} \rightarrow e^{-\alpha}$, if $\frac{n}{N}\binom{m}{2} \rightarrow \alpha$.
Proof of Theorem 1 By the Leibniz formula, we have for $v \geq q$

$$
\left.\frac{d^{v}\left[z^{q}\left(f_{q}(z)\right)^{N-1}\right]}{d z^{v}}\right|_{z=0}=\left.\left.\sum_{k=0}^{v}\binom{v}{k} \frac{d^{k}\left[z^{q}\right]}{d z^{k}}\right|_{z=0} \frac{d^{v-k}\left[\left(f_{q}(z)\right)^{N-1}\right]}{d z^{v-k}}\right|_{z=0}=\left.\binom{v}{q} q!\frac{d^{v-q}\left[\left(f_{q}(z)\right)^{N-1}\right]}{d z^{v-q}}\right|_{z=0}
$$

Therefore

$$
\begin{equation*}
A_{q}=\left.\sum_{l=q}^{m-1} \frac{1}{N^{l-1}}\binom{l}{q} q!\frac{d^{l-q}\left[\left(f_{q}(z)\right)^{N-1}\right]}{d z^{l-q}}\right|_{z=0} \tag{9}
\end{equation*}
$$

We see that $\frac{d^{l}\left(f_{k}(z)\right)}{d z^{l}}=f_{k-l}(z)$, where $f_{h}(z)$ is defined as 0 for $h<0$. We have $\left.\left(f_{q}(z)\right)^{t}\right|_{z=0}=1=t^{0}$ for $q \geq 0$. Now we shall show that for $t \geq k \geq 1$ and $q \geq 1$

$$
\begin{equation*}
t_{(k)} \leq\left.\frac{d^{k}\left[\left(f_{q}(z)\right)^{t}\right]}{d z^{k}}\right|_{z=0} \leq t^{k} \tag{10}
\end{equation*}
$$

where $t_{(k)}=t(t-1) \ldots(t-k+1)$. We will prove these inequalities by induction. For $k=1$ we have

$$
\left.\frac{d\left[\left(f_{q}(z)\right)^{t}\right]}{d z}\right|_{z=0}=\left.\left.t\left(f_{q}(z)\right)^{t-1}\right|_{z=0} f_{q}^{\prime}(z)\right|_{z=0}=\left.\left.t\left(f_{q}(z)\right)^{t-1}\right|_{z=0} f_{q-1}(z)\right|_{z=0}=t
$$

By the Leibniz formula,

$$
\begin{gathered}
\left.\frac{d^{k+1}\left[\left(f_{q}(z)\right)^{t}\right]}{d z^{k+1}}\right|_{z=0}=\left.\frac{d^{k}\left[t\left(f_{q}(z)\right)^{t-1} f_{q-1}(z)\right]}{d z^{k}}\right|_{z=0} \\
=\left.\left.t \sum_{l=0}^{k}\binom{k}{l} \frac{d^{l}\left[\left(f_{q}(z)\right)^{t-1}\right]}{d z^{l}}\right|_{z=0} f_{q-1-(k-l)}(z)\right|_{z=0}=\left.t \sum_{l=k+1-q}^{k}\binom{k}{l} \frac{d^{l}\left[\left(f_{q}(z)\right)^{t-1}\right]}{d z^{l}}\right|_{z=0}=F .
\end{gathered}
$$

Using the induction hypothesis,

$$
F \geq t \sum_{l=k+1-q}^{k}\binom{k}{l}(t-1)_{(l)} \geq t(t-1)_{(k)}=(t)_{(k+1)}
$$

and

$$
F \leq t \sum_{l=k+1-q}^{k}\binom{k}{l}(t-1)^{l} \leq t t^{k}=t^{k+1}
$$

Hence (10) holds and can be used as follows

$$
\begin{align*}
\frac{A_{q}}{q!N} \geq \sum_{k=q}^{m-1} \frac{1}{N^{k}}\binom{k}{q}(N-1)_{(k-q)}=\frac{1}{N^{q}} \sum_{k=q}^{m-1}\binom{k}{q} \frac{(N-1)(N-2) \cdots(N-(k-q))}{N^{k-q}} \geq \\
\geq \frac{1}{N^{q}} \sum_{k=q}^{m-1}\binom{k}{q}(1-\varepsilon)=\frac{1}{N^{q}}\binom{m}{q+1}(1-\varepsilon) \tag{11}
\end{align*}
$$

where $\varepsilon>0$ and $\varepsilon \rightarrow 0$ as $m, N \rightarrow \infty$ such that Condition (3) is satisfied. In (11), we only need prove $(N-1)(N-2) \cdots(N-(k-q)) / N^{k-q} \geq 1-\varepsilon$. To do so, given $k=q, q+1, \ldots, m-1$ we consider

$$
\begin{gathered}
0 \geq \ln \left(\frac{(N-1)(N-2) \cdots(N-(k-q))}{N^{k-q}}\right) \geq \sum_{l=1}^{m-1-q} \ln \frac{N-l}{N} \geq \\
\geq \int_{1}^{m-1-q} \ln \frac{N-x}{N} d x=\left[(a-N) \ln \left(1-\frac{a}{N}\right)-a\right]-\left[(1-N) \ln \left(1-\frac{1}{N}\right)-1\right]
\end{gathered}
$$

where $a=m-1-q$. Note that the second addend in the previous expression tends trivially to 0 ; whereas the first addend shows the same tendency due to Condition (3) and Taylor's expansion for $\ln (1-a / N)$. This involves that (11) holds.
Again by (10),

$$
\begin{gather*}
\frac{A_{q}}{q!N} \leq \sum_{k=q}^{m-1} \frac{1}{N^{k}}\binom{k}{q}(N-1)^{k-q}=\frac{1}{N^{q}} \sum_{k=q}^{m-1}\binom{k}{q}\left(\frac{N-1}{N}\right)^{k-q} \tag{12}\\
\leq \frac{1}{N^{q}} \sum_{k=q}^{m-1}\binom{k}{q}=\frac{1}{N^{q}}\binom{m}{q+1} \tag{13}
\end{gather*}
$$

Thus the upper and the lower bounds of $\frac{A_{q}}{q!N}$ are of the form $\frac{1}{N^{q}}\binom{m}{q+1}$ and $\frac{1}{N^{q}}\binom{m}{q+1}(1-\varepsilon)$, respectively, where $\varepsilon>0$ and $\varepsilon \rightarrow 0$ as $m, N \rightarrow \infty$ such that Condition (3) is satisfied. In virtue of (6),

$$
\begin{equation*}
\left(1-\frac{1}{N^{q}}\binom{m}{q+1}\right)^{n} \leq p_{q}=\left(1-\frac{A_{q}}{q!N}\right)^{n} \leq\left(1-\frac{1}{N^{q}}\binom{m}{q+1}(1-\varepsilon)\right)^{n} \tag{14}
\end{equation*}
$$

where $\varepsilon>0$ and $\varepsilon \rightarrow 0$ as $m, N \rightarrow \infty$ such that Condition (3) is satisfied. Consequently, in virtue of (2),

$$
p_{q} \rightarrow e^{-\alpha}
$$

Above we applied only Condition (3) (and we did not apply Condition (2)) to obtain (14). Consequently we have proved Remark 1.

Now consider p_{q+1} and p_{q-1}. Using (5),

$$
p_{q+1} \approx\left(1-\frac{\frac{n}{N^{q+1}}\binom{m}{q+2}}{n}\right)^{n} \rightarrow e^{0}=1
$$

since $\frac{n}{N^{q+1}}\binom{m}{q+2} \rightarrow 0$ in virtue of (2) and (3). (Here $a_{s} \approx b_{s}$ means that $a_{s}-b_{s} \rightarrow 0$ as $s \rightarrow \infty$). Moreover,

$$
p_{q-1} \approx\left(1-\frac{\frac{n}{N^{q-1}}\binom{m}{q}}{n}\right)^{n} \rightarrow e^{-\infty}=0
$$

because $\frac{n}{N^{q-1}}\binom{m}{q} \rightarrow \infty$ and $\frac{n}{N^{q-1}}\binom{m}{q} / n \rightarrow 0$ by (2) and (3).

Acknowledgment

The authors are indebted to A. Chuprunov for helpful comments. The authors would like to thank the referee for useful remarks which helped to clarify the exposition.

References

Avkhadiev, F. G., \& Chuprunov, A. N. (2007). The probability of a successful allocation of ball groups by boxes. Lobachevskii J. Math, 25, 3-7.

Békéssy, A. (1963). On classical occupancy problems. I. Magyar Tud. Akad. Mat. Kutató Int. Közl, 8 (1-2), 59-71.
Chuprunov, A., \& Fazekas, I. (2005). Inequalities and strong laws of large numbers for random allocations. Acta Math. Hungar, 109 (1-2), 163-182.
Kolchin, V. F., Sevast'yanov, B. A., \& Chistyakov, V. P. (1978). Random allocations. V. H. Winston \& Sons, Washington D. C.

Rényi, A. (1962). Three new proofs and a generalization of a theorem of Irving Weiss. Magyar Tud. Akad. Mat. Kutató Int. Közl, 7 (1-2), 203-214.
Timashev, A. N. (2000). On the asymptotics of large deviations in schemes for allocating particles to different cells of bounded sizes. Teor. Veroyatnost. i Primenen. 45 (3), 521-535 (in Russian). Translation into English in Theory Probab. Appl, 45 (3), 494-506 (2002).
Weiss, I. (1958). Limiting distributions in some occupancy problems. Ann. Math. Statist, 29 (3), 878-884.

