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Abstract

A limit theorem is presented for random allocations. For a fixed period we allocate m balls into N boxes. We repeat the
experiment throughout n periods. Let pq denote the probability that we do not place more than q balls into any of the N
boxes during any of the n repetitions. The limit of pq is determined when m, n,N → ∞.
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1. Introduction and Main Result

Let balls be placed successively and independently into N boxes. At each allocation the ball can fall into each box with
probability 1/N. During a fixed period (for a day, say) we allocate m balls. We repeat the experiment throughout n days.
Let pq denote the probability that we do not place more than q balls into any of the N boxes during any of the n days.

(Avkhadiev & Chuprunov, 2007) proved the following

Theorem A (Avkhadiev & Chuprunov, 2007, Theorem 2) Let m ≥ 2. Then

p1 =

(
1 − 1

N

)n (
1 − 2

N

)n

. . .

(
1 − m − 1

N

)n

. (1)

If m is fixed and n,N → ∞ such that n/N → α, then p1 → e−
m(m−1)

2 α; if 2 ≤ q ≤ m− 1, then pq → 1 as n,N → ∞ such that
n/N ≤ α′ < ∞.

We extend the above theorem in the following sense: To obtain non-trivial limit for pq when q > 1 we have to consider
growing number of balls. We expect that the rate of convergence of m, n,N to ∞ will determine some q such that lim pq

is non-trivial, but lim pq−1 = 0 and lim pq+1 = 1. Our main result is the following

Theorem 1 Let q be a fixed positive integer. Assume that m, n,N → ∞ such that

n
Nq

(
m

q + 1

)
→ α (2)

where α is a positive finite number and
m2

N
→ 0. (3)

Then

lim pl =


0 if 0 ≤ l < q,
e−α if l = q,
1 if l > q.

(4)
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Remark 1 (
1 − 1

N l

(
m

l + 1

))n

≤ pl ≤
(
1 − 1

N l

(
m

l + 1

)
(1 − ε)

)n

(5)

for l = 1, 2, . . . ,m − 1, where ε > 0 and ε→ 0 if m→ ∞ and N → ∞ such that m2/N → 0.

We want to mention that random allocations have been widely studied. See the classic papers (Weiss, 1958; Rényi, 1962)
and (Békéssy, 1963), the traditional monograph (Kolchin, Sevast’yanov & Chistyakov, 1978). For more recent results, the
reader can consult (Timashev, 2000) and (Chuprunov & Fazekas, 2005).

2. Proof of Main Result

The proof is based on the following

Theorem B (Avkhadiev & Chuprunov, 2007, Theorem 1) Let m ≥ 2 and 1 ≤ q ≤ m − 1. Then

pq =

(
1 −

Aq

q!N

)n

(6)

where

Aq =

m−1∑
l=q

1
N l−1

dl[zq( fq(z))N−1]
dzl

∣∣∣∣∣∣
z=0

,

and

fk(z) = 1 +
z
1!
+

z2

2!
+ · · · + zk

k!
for any non-negative integer k.

We mention that the proof of Theorem B is based on a result by (Timashev, 2000).

Remark 2 First we consider the case q = 1 because it is very simple and shows that Condition (2) is natural. Effectively,
in virtue of (1),

ln p1 = n
m−1∑
i=0

ln
(
1 − i

N

)
. (7)

Using Taylor’s expansion ln(1 − x) = −x − x2/(2(1 − ϑx)2) with ϑ ∈ (0, 1), we obtain

ln p1 = −n
m−1∑
i=0

i
N
− n

2

m−1∑
i=0

( i
N

)2 (
1 − ϑi

i
N

)−2

. (8)

For the first addend in (8) we have −n
∑m−1

i=0
i
N = −

n
N

(
m
2

)
→ −α. Assuming m < N, the second addend in (8) can be

handled as ∣∣∣∣∣∣∣−n
2

m−1∑
i=0

( i
N

)2 (
1 − ϑi

i
N

)−2
∣∣∣∣∣∣∣ ≤ n

2N2

(
1 − m

N

)−2 m−1∑
i=0

i2

≤ n
2N2

(
1 − m

N

)−2 (m − 1)m(2m − 1)
6

=
n
N

(
m
2

)
2m − 1

6N

(
1 − m

N

)−2
→ 0.

Therefore p1 → e−α, if n
N

(
m
2

)
→ α.

Proof of Theorem 1 By the Leibniz formula, we have for ν ≥ q

dν[zq( fq(z))N−1]
dzν

∣∣∣∣∣∣
z=0
=

ν∑
k=0

(
ν

k

)
dk[zq]

dzk

∣∣∣∣∣∣
z=0

dν−k[( fq(z))N−1]
dzν−k

∣∣∣∣∣∣
z=0
=

(
ν

q

)
q!

dν−q[( fq(z))N−1]
dzν−q

∣∣∣∣∣∣
z=0

.

Therefore

Aq =

m−1∑
l=q

1
N l−1

(
l
q

)
q!

dl−q[( fq(z))N−1]
dzl−q

∣∣∣∣∣∣
z=0

. (9)

We see that
dl( fk(z))

dzl = fk−l(z), where fh(z) is defined as 0 for h < 0. We have ( fq(z))t |z=0 = 1 = t0 for q ≥ 0. Now we

shall show that for t ≥ k ≥ 1 and q ≥ 1

t(k) ≤
dk[( fq(z))t]

dzk

∣∣∣∣∣∣
z=0
≤ tk (10)
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where t(k) = t(t − 1) . . . (t − k + 1). We will prove these inequalities by induction. For k = 1 we have

d[( fq(z))t]
dz

∣∣∣∣∣∣
z=0
= t ( fq(z))t−1

∣∣∣
z=0 f ′q(z)

∣∣∣
z=0
= t ( fq(z))t−1

∣∣∣
z=0 fq−1(z)

∣∣∣
z=0 = t.

By the Leibniz formula,
dk+1[( fq(z))t]

dzk+1

∣∣∣∣∣∣
z=0
=

dk[t( fq(z))t−1 fq−1(z)]
dzk

∣∣∣∣∣∣
z=0

= t
k∑

l=0

(
k
l

)
dl[( fq(z))t−1]

dzl

∣∣∣∣∣∣
z=0

fq−1−(k−l)(z)|z=0 = t
k∑

l=k+1−q

(
k
l

)
dl[( fq(z))t−1]

dzl

∣∣∣∣∣∣
z=0
= F.

Using the induction hypothesis,

F ≥ t
k∑

l=k+1−q

(
k
l

)
(t − 1)(l) ≥ t(t − 1)(k) = (t)(k+1)

and

F ≤ t
k∑

l=k+1−q

(
k
l

)
(t − 1)l ≤ ttk = tk+1.

Hence (10) holds and can be used as follows

Aq

q!N
≥

m−1∑
k=q

1
Nk

(
k
q

)
(N − 1)(k−q) =

1
Nq

m−1∑
k=q

(
k
q

)
(N − 1)(N − 2) · · · (N − (k − q))

Nk−q ≥

≥ 1
Nq

m−1∑
k=q

(
k
q

)
(1 − ε) =

1
Nq

(
m

q + 1

)
(1 − ε) (11)

where ε > 0 and ε → 0 as m,N → ∞ such that Condition (3) is satisfied. In (11), we only need prove
(N − 1)(N − 2) · · · (N − (k − q))/Nk−q ≥ 1 − ε. To do so, given k = q, q + 1, . . . ,m − 1 we consider

0 ≥ ln
(

(N − 1)(N − 2) · · · (N − (k − q))
Nk−q

)
≥

m−1−q∑
l=1

ln
N − l

N
≥

≥
∫ m−1−q

1
ln

N − x
N

dx =
[
(a − N) ln

(
1 − a

N

)
− a

]
−

[
(1 − N) ln

(
1 − 1

N

)
− 1

]
where a = m − 1 − q. Note that the second addend in the previous expression tends trivially to 0; whereas the first addend
shows the same tendency due to Condition (3) and Taylor’s expansion for ln(1 − a/N). This involves that (11) holds.

Again by (10),
Aq

q!N
≤

m−1∑
k=q

1
Nk

(
k
q

)
(N − 1)k−q =

1
Nq

m−1∑
k=q

(
k
q

) (
N − 1

N

)k−q

(12)

≤ 1
Nq

m−1∑
k=q

(
k
q

)
=

1
Nq

(
m

q + 1

)
. (13)

Thus the upper and the lower bounds of Aq

q!N are of the form 1
Nq

(
m

q+1

)
and 1

Nq

(
m

q+1

)
(1 − ε), respectively, where ε > 0 and

ε→ 0 as m,N → ∞ such that Condition (3) is satisfied. In virtue of (6),(
1 − 1

Nq

(
m

q + 1

))n

≤ pq =

(
1 −

Aq

q!N

)n

≤
(
1 − 1

Nq

(
m

q + 1

)
(1 − ε)

)n

(14)

where ε > 0 and ε→ 0 as m,N → ∞ such that Condition (3) is satisfied. Consequently, in virtue of (2),

pq → e−α.

Above we applied only Condition (3) (and we did not apply Condition (2)) to obtain (14). Consequently we have proved
Remark 1.
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Now consider pq+1 and pq−1. Using (5),

pq+1 ≈

1 − n
Nq+1

(
m

q+2

)
n


n

→ e0 = 1,

since
n

Nq+1

(
m

q + 2

)
→ 0 in virtue of (2) and (3). (Here as ≈ bs means that as − bs → 0 as s→ ∞). Moreover,

pq−1 ≈

1 − n
Nq−1

(
m
q

)
n


n

→ e−∞ = 0

because
n

Nq−1

(
m
q

)
→ ∞ and

n
Nq−1

(
m
q

)
/n→ 0 by (2) and (3).
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