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Abstract

k
We give bounds on multidimensional Berry-Esseen theorem on a set Ag(x) = {(W,wa,...,wg) € RX | Z w; < x} for
i=1
x € R by using the Berry-Esseen theorem in R. The rates of convergence are O(n’%). In addition, we give known
constants in the bounds of the approximation.
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1. Introduction
n
Forn € N, let X;, 1 <i < nbe independent and identically distributed random variables with zero means and Z EX,2 =1.

i=1
Define

=

Sy = X;

—_

and ®@; the standard normal distribution in R. Suppose that E|X;]* < oo for 1 < i < n. The uniform and non-uniform
versions of the Berry-Esseen inequality are

SUp|P(S, < x) - 1 (0] < Co Y EIXf

xeR im1

and

Ci « ;
PSS, <x)-0 < E|X;|
IP(S, < x) = ® () 1+|x|3; 1Xi|

respectively, where Cy and C; are positive constants. The uniform version was independently discovered by (Berry, 1941,
p. 122-136) and (Esseen, 1945, p. 1-125) and the non-uniform version was discovered by (Nagaev, 1965, p. 214-235).
Without assuming the identically of X;, the best constant Cy and C; were given by (Shevtsova, 2010, p. 862-864) and
(Paditz, 1989, p. 453-464), respectively. The results are as follows:

Theorem 1.1 (Shevtsova, 2010, p. 862-864) Let X;, 1 < i < n, be independent random variables such that EX; = 0 and

EIXi? < co. Assume that Z EXI-2 = 1. Then
i=1

n
sup [P(S,, < x) — (x)] < 0.5600 Z EIX;P.
xeR i=1
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Theorem 1.2 (Paditz, 1989, p. 453-464) Under the assumptions of theorem 1.1, we have

31.935 <
P(S, < x)—®(x)] < E|X;
IP(Sy < x) = @ () 1+|x|3; 1Xi|

for all real numbers x.

(Chen, 2001, p. 236-254) relaxed the condition to the finiteness of the second moments and gave uniform and non-uniform

versions of the inequality. The constant of the non-uniform version was given by (Neammanee, 2007, p. 1-10). Here are
the results.

Theorem 1.3 (Chen, 2001, p. 236-254) Let X;,1 < i < n, be independent random variables such that EX; = 0 and

n
D EX? = 1.Then
i=1

SUp|P(S, < x) = D1(0)] < 4.1 Y {EIXPIOX] > D) + EIXL (X < 1)
xeR i=1

and for all real numbers x,

S (EIXPIOX > 1+ EXPI|X;| <1+
IP(SnSx)—(Dl(x)ISCZ{ IXiI71(1X;] > le)+ IXilP1(1X;] < le)}
i=1

1+ [x2 1+ 2P

Theorem 1.4 (Neammanee, 2007, p. 1-10) Under the assumptions of theorem 1.3, we have

= (EIXPIOX > 1 EIXP10X] < 1
IP(SnSx)—Cbl(x)ISCZ{ [X;l“1(1X;] > 1 + |x]) | X" 1(1X;] +Ix|)}
i=1

1+ [xf2 1+ [xP

where

13.11 if0<|x <13,
2854 if 1.3 < x| <2,
4632 if2<|d<3,
61.40 if 3 <|x <7.98,
40.12 if 7.98 < |x| < 14,
3939 if |x| > 14.

The reduction they make is truncation. This method make the random variables become bounded random varibles. In the

case that each X; is bounded, the uniform and non-uniform versions were given in (Chen, 2005, p. 1-59) and (Chaidee,
2005), respectively.

Theorem 1.5 (Chen, 2005, p. 1-59) Let X;, 1 < i < n, be independent random variables such that EX; = 0, Z EXl2 =1

i=1
and |X;| < 0o, then

sup |P(S, < x) — D(x)| < 3.360.
xeR

Theorem 1.6 (Chaidee, 2005) Under the assumptions of theorem 1.5, there exists a constant C which does not depend on

0o such that for every real numbers x,

Coyp
P(S, < x) - ®d(x)] < .
IP(Sn <) = @100 < 10

For multidimensional case, let k € N and Y; = (Y;1, Yi, ..., Yix) be independent and identically distributed random vectors
in R* with zero means and covariance identity matrices I;. Define

1 n
Wy=— ) Y,
n \/ﬁ; 1
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Let F, be the distribution function of W,, and @, the standard Gaussian distribution in R¥. (Bergstrom, 1945, p. 106-127)
guaranteed that F,, converges weakly to @y for large n. The uniform and non-uniform bounds of this convergence have
been repeatedly refined over subsequent decades by many researchers such as (Esseen, 1945, p. 1-125), (Rao, 1961, p.
359-361) , (Bahr, 1967, p. 61-69), (Bahr, 1967, p. 71-88) and (Bhattacharya, 1970, p. 68-86), etc. For the assumption
that

k
Z ElY " < oo,
J=1

(Esseen, 1945, p. 1-125) gave a uniform bound on this convergence which is of the form

|Fn(Br) - (Dk(Br)| <

Kk
N k+1

where B, = {(wi,w2,...,wx) € R [ w} + w} + -+ w? < r?} for r > 0 and C is an absolute constant depending only on
the moment. (Rao, 1961, p. 359-361) generalized Esseen’s result to any measurable convex subset A of R¥. His result is

C _
|Fa(A) = Di(A)] < —=(log n) 7, ()
\n
(Bahr, 1967, p. 71-88) assumed
k
EQ Y1)t <o,
=1
for an integer s > k > 1 and improved the rate of convergence in (1) by the inequality
IFA(B) - Ou(B)| < ~— @
n k = \/ﬁ .

In the case that each ¥; may not be identically distributed random vectors, (Bhattacharya, 1970, p. 68-86) assumed

k
ZE|YI-]~|3+‘5 <oo for 1<i<n where 6>0,
=1

and gave a bound of the approximation as in (2) on any Borel subset of R
For a non-uniform version, (Bahr, 1967, p. 61-69) is the first one who investigated this version. He assumed the identically
assumption on each Y; and gave the rate of convergence on B, (r). Under the finiteness assumption of the s moments,

k
EQ Y1)t <o,
j=1

for integer s > 3, the result is

|F(Bi(r)) — ®p(Bi(r))] < ¢ d{?) for r> (Zm(s —2)log n)%
r’nz

where m is the largest eigenvalue of the covariance matrix of Y;, d(n) is bounded by one and lim d(n) = 0.

The aim of this paper is to find bounds on normal approximation to the distribution of W, over the set

k
Ar(x) = {(wi, wa, ..., wp) € RY | Zw,- < x}.
i=1

k
. 1 - . . . .
In this work, assume only that —kVar(Z Z Y;;) = 1 and give our results on various assumptions, the random variables
n
i=1 j=1
Y;; are bounded, ElY,'jl3 < oo and E[Y;;|P < oo for some 2 < p < 3. Our results are as follows:
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Theorem 1.7 If|Y;;| < 6o for 1 <i<nand1 < j<k then

3.3Vks
sup [P(W, € A(x)) = D(Ax(x))] € =—=—
xeR \/ﬁ
and there exists a constant C which does not depend on &y such that for every real numbers X,
Ck*6y

P(W, €A - Or(A S
(P € ) = DAl = s ]

Theorem 1.8 If E|Y;;|” < cofor2 <p<3,1<i<nandl < j<k, then

75(4)P lk
sup [P(W,, € Ay(x)) — Or(Ak(X)] £ ———— EIYl P

and there exists an absulute constant C such that for x € R,

5PCk?
|P(Wn € Ar(x)) = Dp(Ar(x))] < ElY;
\/_+ IxXD? = =

Theorem 1.9 IfE|Y;;|* < oo for 1 <i<nand1< j<k, then

n k
0.5600 Vk
Vk SE

sup [P(W,, € Ar(x)) — Op(Ar(x))] < 3 Yl
xeR nz i=1 j=l
and for all real numbers x
319352 v
[P(W, € Ap(x)) = Pp(Ap(0)| £ ——— Ely,P.
n3 [(VE)3 + |x?] = Z !

The proofs of our main theorems are given in the next section.

2. Proof of Main Theorems

In the proofs of main theorems, we use the Berry-Esseen theorems in R in which the limit distribution is ®;. However,
the limit distribution in our theorems is the standard Gaussian distribution ®; in R¥. In the following proposition, we give

a relation between @ and ®y.

Proposition 2.1 For k € N and x € R, we have

D(AL(x) = By (—=).

vk
Proof: To prove the proposition, we let B = {by, by, ..., by} be an orthonorrmal basis for R¥ with by = #(1, 1,...,1)and
w= W, wa,...,wr) € Ar(x). Set
ty ={(by,w) and t; = (b;,w) fort=2,3,... k.
Then
k X
— < —,-o0o<t;<oo, fort=2,3,...,k, and
k£ Z i
k
Z (biywy by =w = )" (e whe;
i=1 i=1
where {e1, es, ..., e} is a usual orthonormal basis for R¥. Thus, we have

k k
Qvi= Z el —||Z<61,W>6’||2—||Z<buw)b||2—||2tb||2
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Let J be the Jacobian matrix,

oty oty ot
dwp owy o 0w

] — 612 a.lz (9.12
wowy L ow

oty oty Oty

Thun | det(J)| = 1. Then by (3), we have

1
(Dk(Ak(x)) = T i=1 dWldWQ s de
(2m)2

Ar(x)

_ t?
1 o oo o g 2
" Q0 e =1 |detJldndt---di
1 f@ e
V2r J-

X
=®, ().
1(\/%)

Hence, the proposition is proved.

The proof of theorem 1.7 is completed by applying theorem 1.5-1.6. The proof of theorem 1.8, we use the propostion 2.1
and theorems in (Chen, 2004, p. 1985-2028). Theorem 1.9 is proved by applying theorem 1.1-1.2, respectively.

Proof of theorem 1.7

Proof: Foreach 1 <i<nand, 1 < j <k, we define

W, = %;Yu and T, = %ZYU'

Thus Ty, To, - - - » Ty are independent,

koo
E(T;) =0, |Tyl < —, 4
() =0, [Tul < 2 “
k n
Wy = (Wip, Wan, .o, We) - and D" Wiy = > Tin. 5)
4 -

Since Y; has zero mean and covariance matrix I,

Var(Y;)=1 and Cow(Y;;,Yx)=0 for j+#k

Therefore

Var(— Z ;) = Varz Tin = Varz Z (6)

i=1 j=1
By applying theorem 1.5, proposition 2.1 and (4)-(6), we have

sup [P(W, € Ay(x) — Ox(A(x) —sup|P(Z in < 1) = Oy (—F)]

xeR xeR =1 \/I;
X

=sup|P()> Tiy < x)— D(—
sup| (; ()

= P Tin < -0 (— 7
sup |P(— Z \f> 1((» (7)
3.3 Vkdo

< —-

A
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For the second part, we apply theorem 1.6. The result is

|P(W, € Ar(x)) — Dr(Ar(x))] = IP(— Z Ty < \/_) ~ Dy ()

N
< C\/_éo
V(1 + |EP)
Ck*6
VAL(VE? + [P
for all real numbers x.

In theorem 1.8, we give the bounds by applying theorem 2.4 and theorem 2.5 in (Chen, 2004, p. 1985-2028). To prove
this, we need the proposition 2.2. This proposition gives us that the random field {Y;; | i = 1,2,...,n,j = 1,2,...,k}
satisfied (LD4*) in (Chen, 2004, p. 1985-2028). This condition is proposed as follows:

Let J be a finite index set of cardianality n, and let {X;,i € J} be a random field with zero means and finite variances. For
A C T, let Xy denote {X;,i € AL, A° ={j € J : j ¢ A} and |A| the cardinality of A. The random field {X;,i € J} satisfied
(LD4") if for each i € J there exists A; C B; C B} C C} C D; C J such that X; is independent of XA?-, X, 1s independent
of Xp: and then Xy, is independent of {Xy4, j € Bi“},{Xa,,/ € B;} is independent of {X,,,j € C;°} and {X4,, € C}} is
independent of {X,,, j € D}°}.

Proposition 2.2 Fork,n € N, let Y; = (Y;1, Yi, ..., Yir), i = 1,2, ..., n be independent random vectors in RK with zero means.
Then{Y;j|i=1,2,...,n,j=1,2,...,k} satisfies (LD4").

Proof: This proposition is completed by setting A;; C B;; C B;fj C C;‘j C Dl’.‘j fori = 1,2,...,nand j = 1,2,...,k as
follows:

Ay=1{il|l=12,... kifori=1,2,...,n,
S={il i+ DI 1=1,2,... k) fori= 1,2,...,n—landanzB(,,_l)j,
By =Cij={il,.(i+ DL +2)|1=12,... Kkfori=12,. . n-2and
BEF )j C(,, m)j—B(n 2)j form—l 2

=L G+ Dl...,i+3)1=1,2,... .k} fori=1,2,...,n—3and

C(*ﬂ—m)j C(n—3)j =1,2,3,
D:‘I ={LG+DL...,0+dl1=1,2,...k}fori=1,2,....,n— 4anden ) DZ‘,HW m=1,2,3,4.
So, we have the proposition.
From the sets defined in the above proposition, we can compute directly that for eachi = 1,2,...,n,
max(IN(C), {j:ieCill <4 3
and
max max([D}|,[{j:i¢€ D}‘-}I) <5 9)
1<i<n

where N(C;) is defined in theorem 2.3 in (Chen, 2004, p. 1985-2028).
The condition (LD4*) implies the condition (LD3) in (Chen, 2004, p. 1985-2028). Thus {Y;; | i = 1,2,...,n,j
1,2,...,k} satisfies (LD3).

Proof of theorem 1.8

Proof: For each 1 <i < n, define T}, as in the proof of theorem 1.7. By the inequality

k k
PRIET DN (10)
j=1 j=1

we have

1
EIT, ) = —EE|Z Yl < — ZElY 1P < co.
nz n
J=
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So, by (4), (6), (8), (10), proposition 2.2 and theorem 2.4 in (Chen, 2004, p. 1985-2028), we have

sup |P(W, € Ar(x)) — Dr(Ar(x))] = sup IP(— Z Tin < \/_) - cI31(7)|

< 75(4)P! Z E|—’|”

_ 154y p=l &
(nk) ZE|Z il

i=1

75(4)p kP <&
B (I’lk)z Z Z E|YI]|

i=1 j=1

Applying theorem 2.5 in (Chen, 2004, p. 1985-2028) and (9) to non-uniform case, we have for x € R,

[P(W), € Ap(x)) — Dr(Ax(0)] = IP(Z Tin < ®1(7)|
i=1

5°C o T
<—— E|—=°
(A+15r & Z vk

(5k)PC
< E|Y;i|?
n»(«f+|x|>PZZ st

i=l j=1

Proof of theorem 1.9

Proof: By theorem 1.1, 1.2 and the same argument as in theorem 1.7, we have the theorem.

Remark The above theorems include the case that each Y; has an indicator covariance matrix .
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